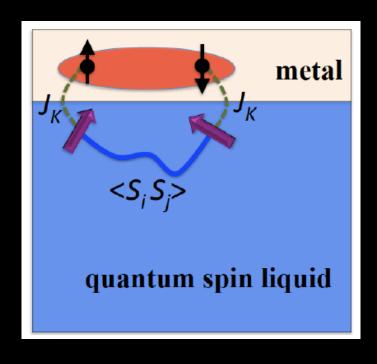
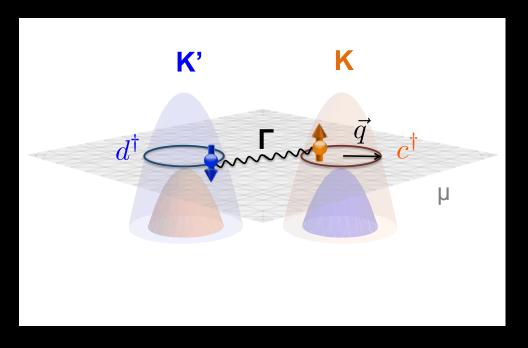
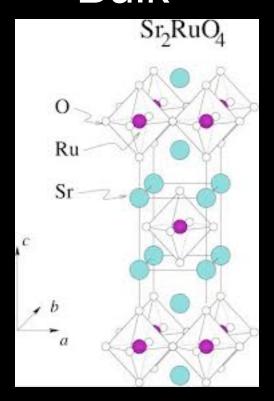
Let There Be Topological Superconductors



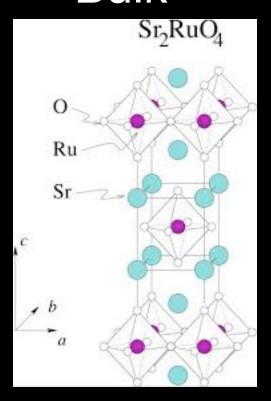


Eun-Ah Kim (Cornell)

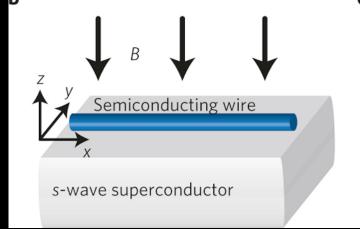
Bulk



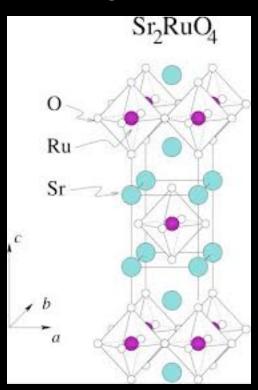
Bulk



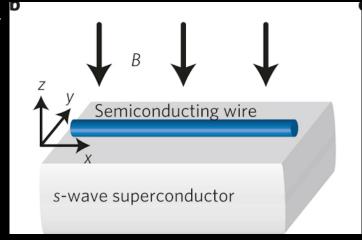
1D proximity



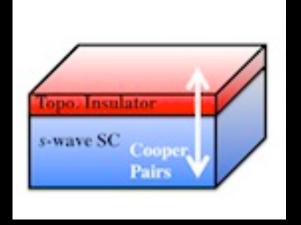
Bulk



1D proximity



2D proximity?



Designing 2D topological SC's

Designing 2D topological SC's

- 2D topological SC
 - odd-parity SC of spinless fermions
 - Majorana bound state

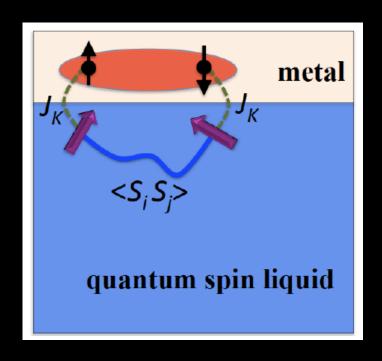
Designing 2D topological SC's

- 2D topological SC
 - odd-parity SC of spinless fermions
 - Majorana bound state
- Strategies:
- 1) interaction,
- 2) spinlessness

Strategy I

 Manipulate the pairing interaction: target non-phononic mechanism

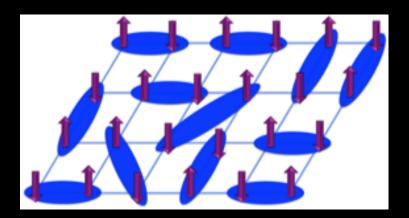
Topological Superconductivity in Metal/ Quantum-Spin-Ice Heterostructures



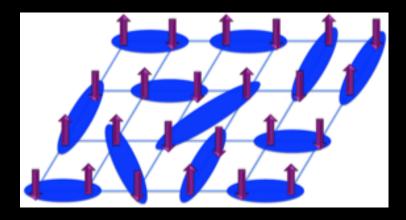
Jian-Huang She, Choonghyun Kim, Craig Fennie, Michael Lawler, E-AK (arXiv:1603.02692)

P.W.Anderson

P.W.Anderson

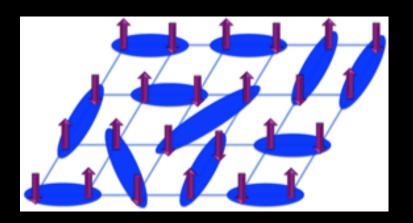


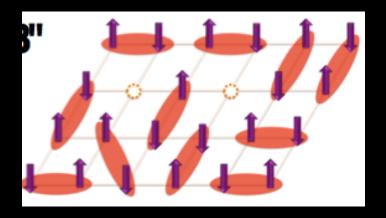
P.W.Anderson



RVB singlet

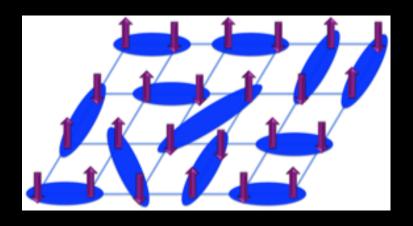
P.W.Anderson

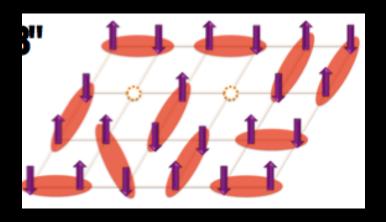




RVB singlet

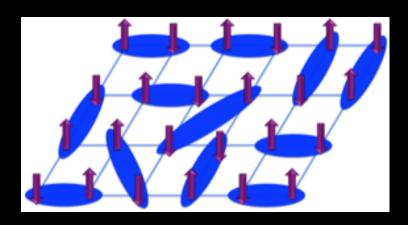
P.W.Anderson



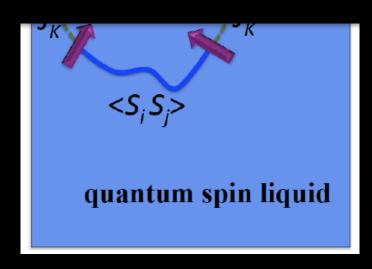


Cooper pair single

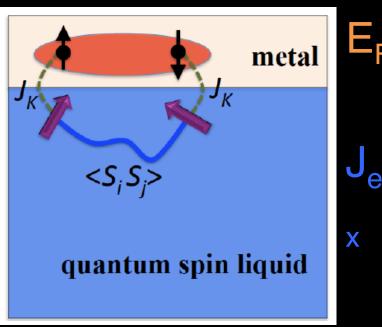
Use Quantum spin liquid



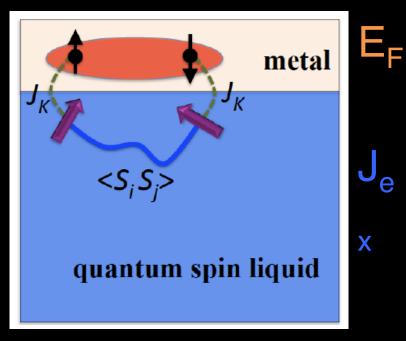
Use Quantum spin liquid



Use Quantum spin liquid

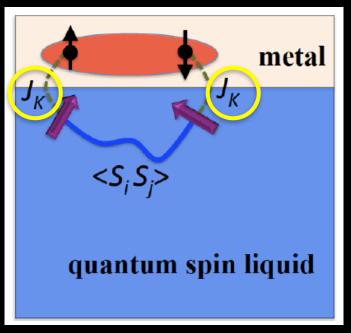


Use Quantum spin liquid



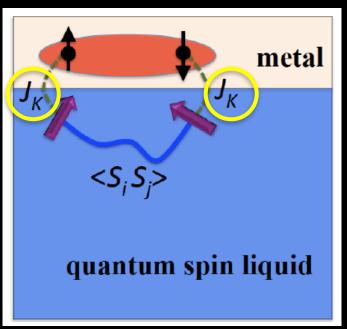
Characteristic energy scales:

Use Quantum spin liquid



Characteristic energy scales:

Use Quantum spin liquid



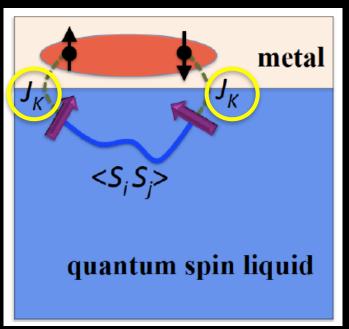
Characteristic energy scales:

$$\mathsf{E}_{\mathsf{F},}\,\mathsf{J}_{\mathsf{ex},}\,\mathsf{J}_{\mathsf{K}}$$

Perturbative limit:

$$J_K/E_F <<$$

Use Quantum spin liquid



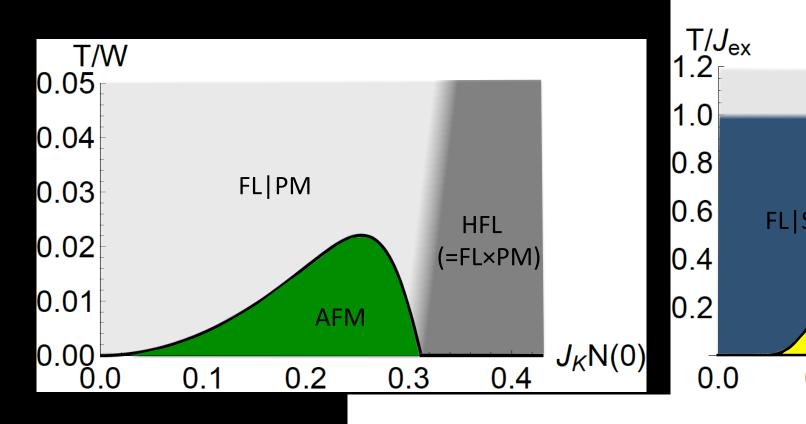
Characteristic energy scales:

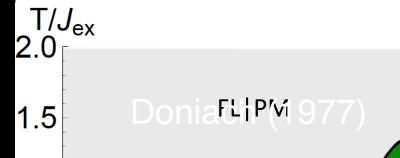
$$\mathsf{E}_{\mathsf{F}_{\mathsf{I}}}\mathsf{J}_{\mathsf{ex}_{\mathsf{I}}}\mathsf{J}_{\mathsf{K}}$$

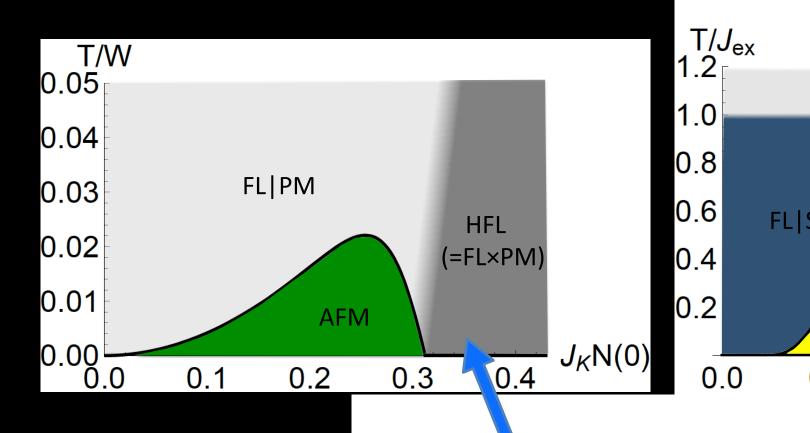
Perturbative limit:

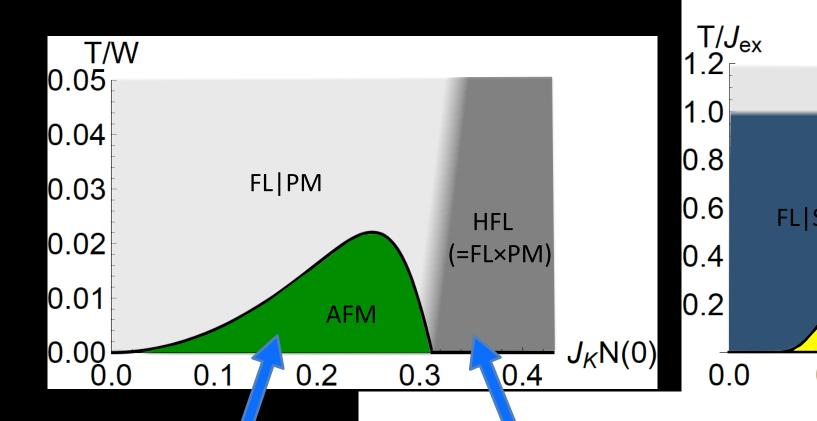
$$J_K/E_F << 1$$

Spin-fermion model



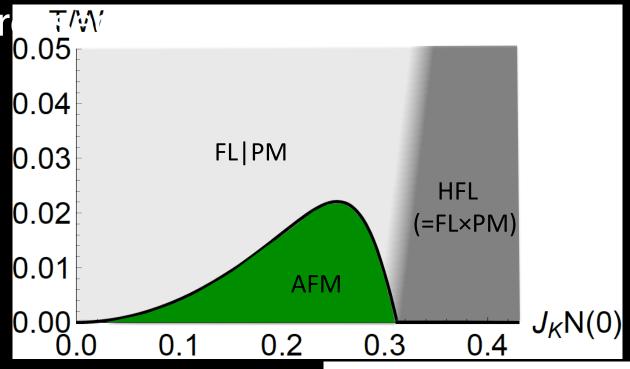






For $J_{RKKY} \sim J_K^2 N(0) < J_{ex}$ AFM order suppressed.

For $J_{RKKY} \sim J_K^2 N(0) < J_{ex}$ AFM order supproved 0.05



T/*J*_{ex} 1.2 □

1.0

8.0

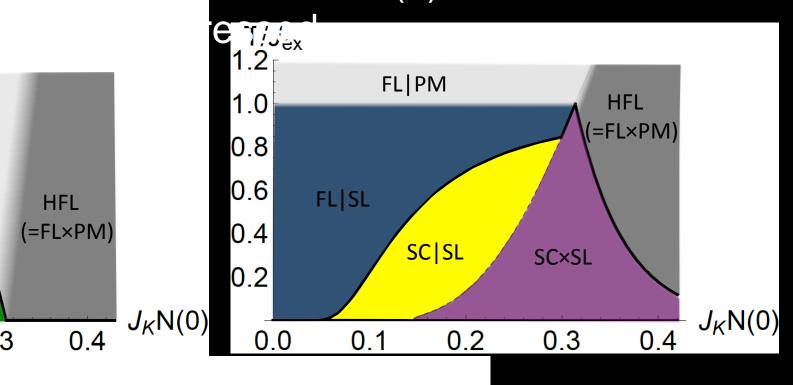
0.6

0.4

0.2

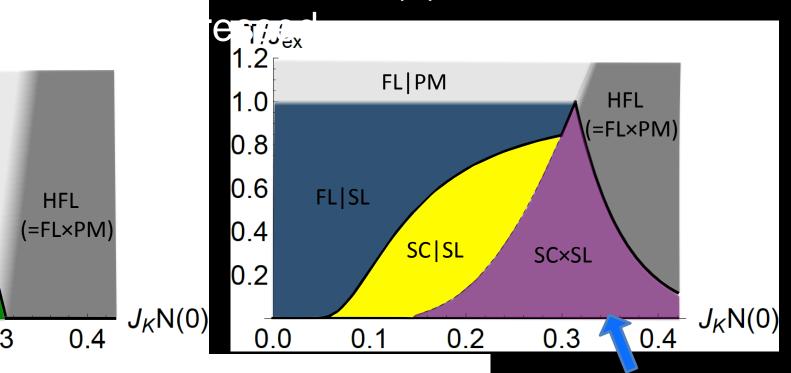
0.0

For $J_{RKKY} \sim J_K^2 N(0) < J_{ex} AFM$ order



FL|PM

For $J_{RKKY} \sim J_K^2 N(0) < J_{ex} AFM$ order



FL|PM

ondo-Singlet + RVB
nglet+Cooper pair
nglet
nglet
Nollet
No

For $J_{RKKY} \sim J_K^2 N(0) < J_{ex} AFM$ order

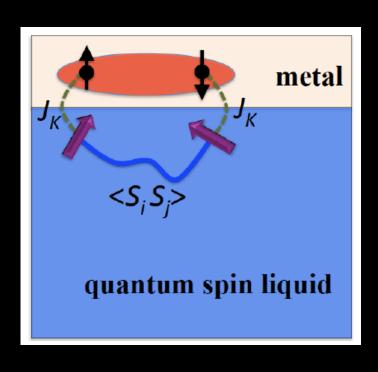


Superconduct

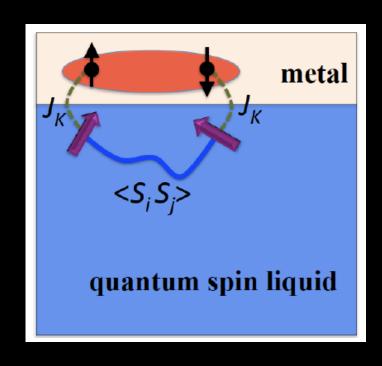
or "riding" on

ondo-Singlet + RVB
nglet+Cooper pair
nglet
oleman & Andrei (1989)
Senthil, Vojta, Sachdev (2003)

How to predictively materialize SCIQSL?

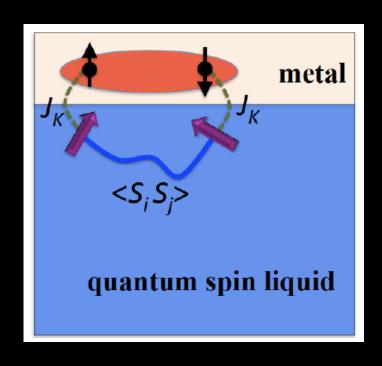


How to predictively materialize SCIQSL?

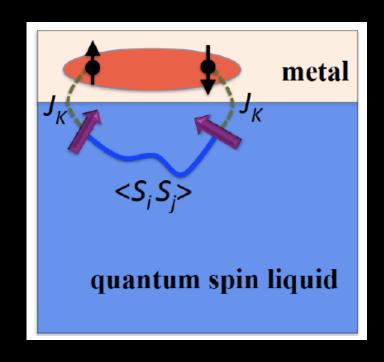


Simple isotropic metal

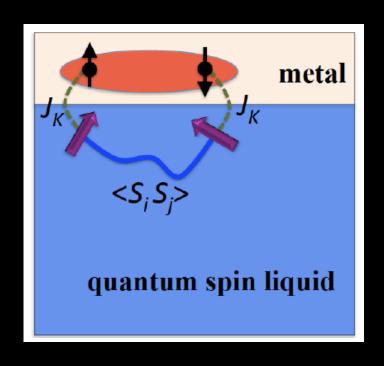
How to predictively materialize SCIQSL?



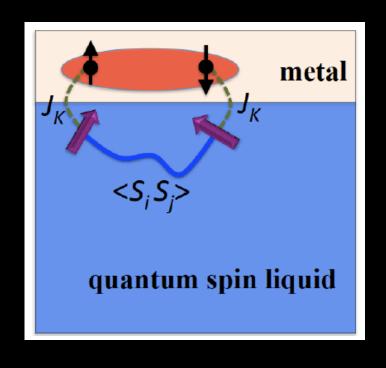
Simple isotropic metal



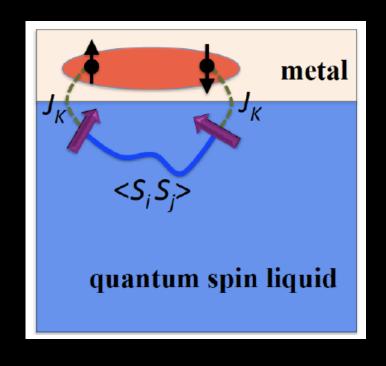
- 1. <S>=0
- 2. Dynamic spin fluctuation <S_iS_i>



- 1. <S>=0
- 2. Dynamic spin fluctuation <S,S,>
- 3. Gapped spectrum

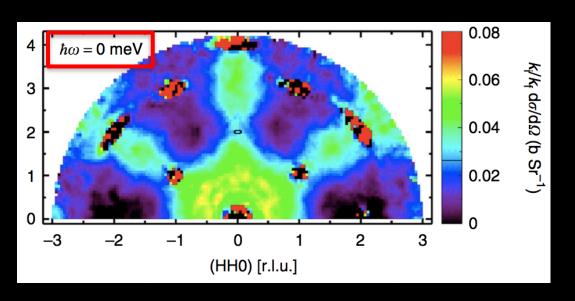


- 1. <S>=0
- 2. Dynamic spin fluctuation <S,S,>
- 3. Gapped spectrum
- 4. Well understood



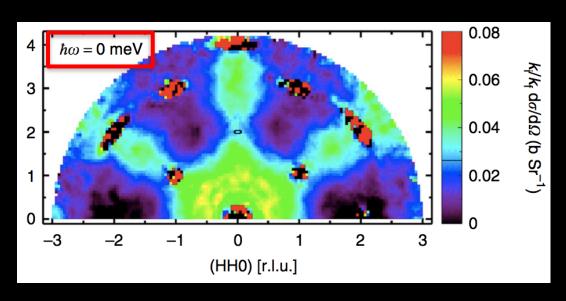
- 1. <S>=0
- 2. Dynamic spin fluctuation <S_iS_i>
- 3. Gapped spectrum
- 4. Well understood
- Quantum Spin Ice

K. Kimura¹, S. Nakatsuji^{1,2}, J.-J. Wen³, C. Broholm^{3,4,5}, M.B. Stone⁵, E. Nishibori⁶ & H. Sawa⁶

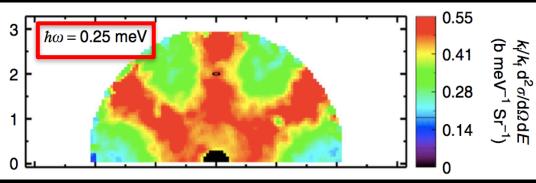


 Elastic neutron: pinch points (spin-ice like)

K. Kimura¹, S. Nakatsuji^{1,2}, J.-J. Wen³, C. Broholm^{3,4,5}, M.B. Stone⁵, E. Nishibori⁶ & H. Sawa⁶



 Elastic neutron: pinch points (spin-ice like)



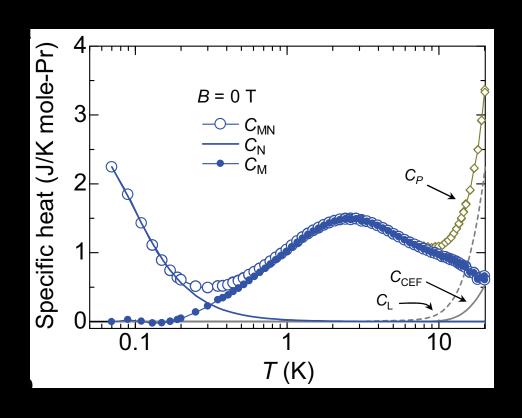
Inelastic neutron: over 90% weight

K. Kimura¹, S. Nakatsuji^{1,2}, J.-J. Wen³, C. Broholm^{3,4,5}, M.B. Stone⁵, E. Nishibori⁶ & H. Sawa⁶

 No order down to 20mK



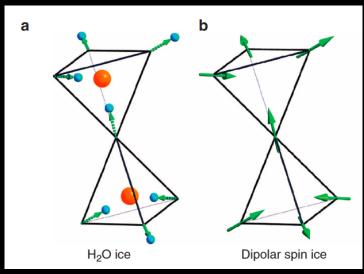
- No order down to 20mK
- Gapped quantum paramagnet



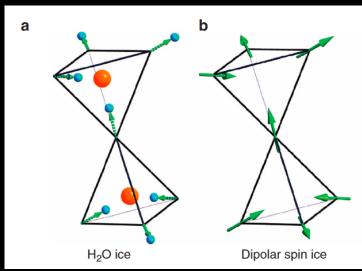
- No order down to 20mK
- Gapped quantum paramagnet ω_s=0.17meV



- No order down to 20mK
- Gapped quantum paramagnet ω_s=0.17meV
- Inelastic spectra peaked at Q=0

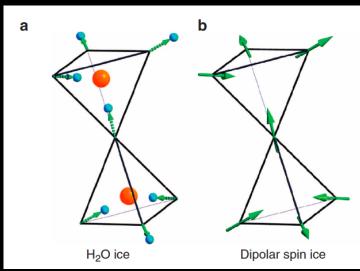


Kimura et al (2013)



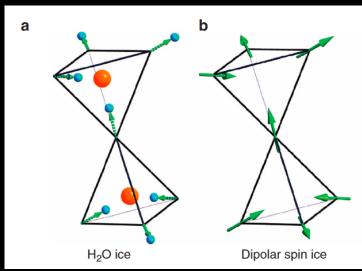
Kimura et al (2013)

• 2-in 2-out ice rule



Kimura et al (2013)

• 2-in 2-out ice $\nabla \cdot \vec{S}(r) = 0$

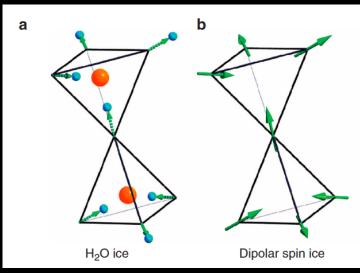


Kimura et al (2013)

• 2-in 2-out ice

$$\nabla \cdot \vec{S}(\boldsymbol{r}) = 0$$

$$\vec{S}(\boldsymbol{r}) = \nabla \times \vec{A}(\boldsymbol{r})$$

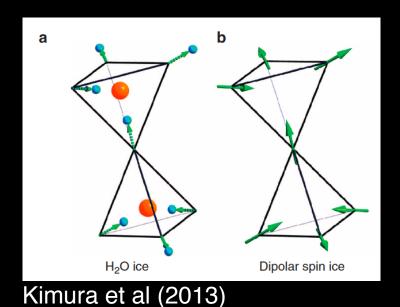


Kimura et al (2013)

 Gauge Field Propagator • 2-in 2-out ice $\nabla \cdot \vec{S}(\mathbf{r}) = 0$

$$\vec{S}(\boldsymbol{r}) = \nabla \times \vec{A}(\boldsymbol{r})$$

$$\langle A_a(\boldsymbol{q})A_b(-\boldsymbol{q})\rangle \sim \frac{1}{q^2} \left(\delta_{ab} - 2\hat{q}_a\hat{q}_b\right)$$



• 2-in 2-out ice

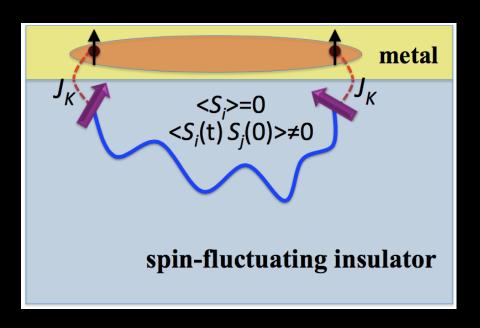
$$\nabla \cdot \vec{S}(\boldsymbol{r}) = 0$$

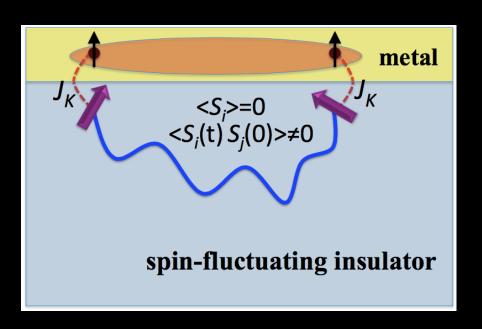
$$\vec{S}(\boldsymbol{r}) = \nabla \times \vec{A}(\boldsymbol{r})$$

 Gauge Field Propagator

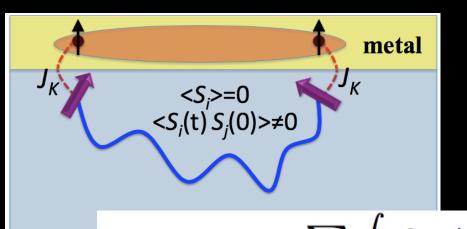
$$\langle A_a(\boldsymbol{q})A_b(-\boldsymbol{q})\rangle \sim \frac{1}{q^2} \left(\delta_{ab} - 2\hat{q}_a\hat{q}_b\right)$$

• Spin-spin correlation $\langle S_a(q)S_b(-q)\rangle \sim \delta_{ab} - \hat{q}_a\hat{q}_b$



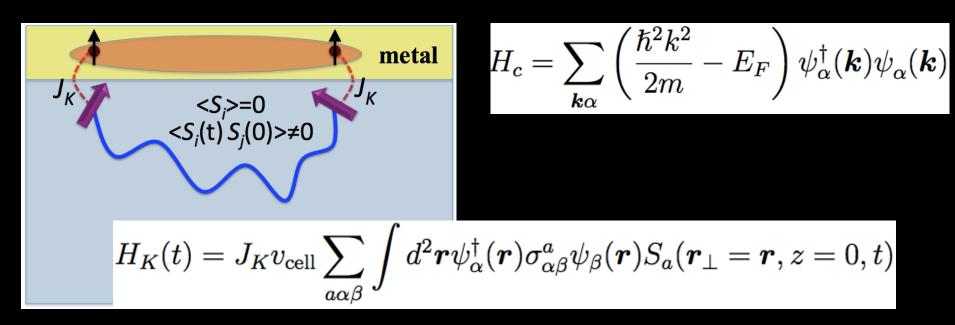


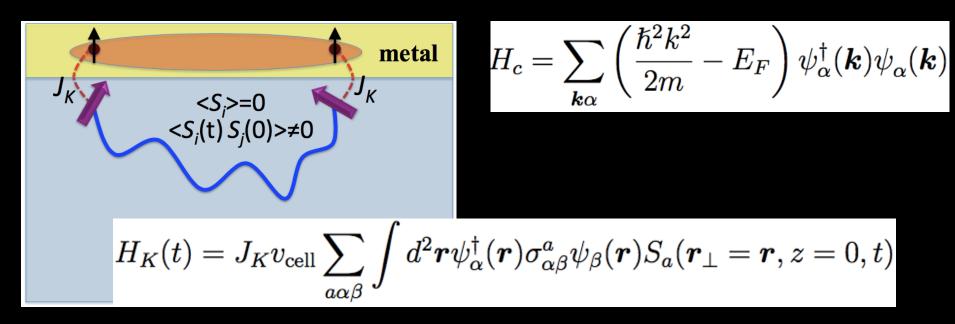
$$H_c = \sum_{m{k}lpha} \left(rac{\hbar^2 k^2}{2m} - E_F
ight) \psi_lpha^\dagger(m{k}) \psi_lpha(m{k})$$



$$H_c = \sum_{m{k}lpha} \left(rac{\hbar^2 k^2}{2m} - E_F
ight) \psi_lpha^\dagger(m{k}) \psi_lpha(m{k})$$

$$H_K(t) = J_K v_{
m cell} \sum_{alphaeta} \int d^2m{r} \psi^\dagger_lpha(m{r}) \sigma^a_{lphaeta} \psi_eta(m{r}) S_a(m{r}_ot=m{r},z=0,t)$$



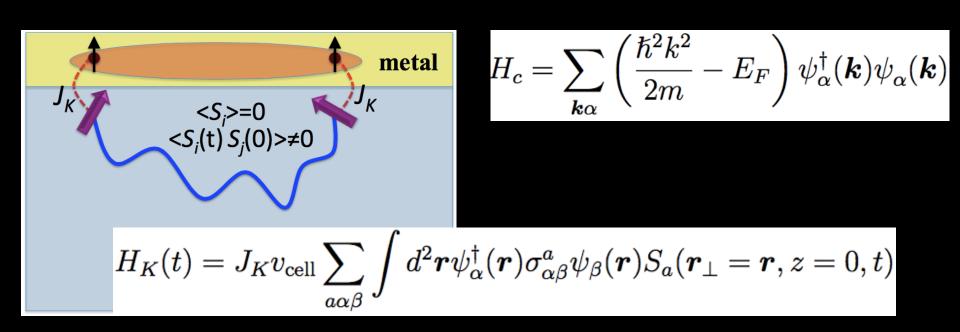


$$H_{\rm int}(t) = -(J_K^2 v_{\rm cell}^2 / 2\hbar) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$



$$H_{\rm int}(t) = -(J_K^2 v_{\rm cell}^2 / 2\hbar) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$

$$s_a(\boldsymbol{r},t) = \sum_{\alpha\beta} \psi_{\alpha}^{\dagger}(\boldsymbol{r},t) \sigma_{\alpha\beta}^a \psi_{\beta}(\boldsymbol{r},t)$$



$$H_{\rm int}(t) = -(J_K^2 v_{\rm cell}^2 / 2\hbar) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$

$$s_a(\boldsymbol{r},t) = \sum_{\alpha\beta} \psi_{\alpha}^{\dagger}(\boldsymbol{r},t) \sigma_{\alpha\beta}^a \psi_{\beta}(\boldsymbol{r},t)$$

Minimal Coupling

$$\vec{j}(\boldsymbol{q}) \cdot \vec{A}(\boldsymbol{q}) = e \sum_{\boldsymbol{k} = \alpha} \vec{A}(\boldsymbol{q}) \cdot \frac{\boldsymbol{k}}{m} \psi_{\boldsymbol{k} + \frac{\boldsymbol{q}}{2}, \alpha}^{\dagger} \psi_{\boldsymbol{k} - \frac{\boldsymbol{q}}{2}, \alpha}$$

Minimal Coupling

$$\vec{j}(\boldsymbol{q}) \cdot \vec{A}(\boldsymbol{q}) = e \sum_{\boldsymbol{k} = \alpha} \vec{A}(\boldsymbol{q}) \cdot \frac{\boldsymbol{k}}{m} \psi_{\boldsymbol{k} + \frac{\boldsymbol{q}}{2}, \alpha}^{\dagger} \psi_{\boldsymbol{k} - \frac{\boldsymbol{q}}{2}, \alpha}$$

 Repulsion against Cooper pairing

Minimal Coupling

$$\vec{j}(\boldsymbol{q}) \cdot \vec{A}(\boldsymbol{q}) = e \sum_{\boldsymbol{k} = \alpha} \vec{A}(\boldsymbol{q}) \cdot \frac{\boldsymbol{k}}{m} \psi_{\boldsymbol{k} + \frac{\boldsymbol{q}}{2}, \alpha}^{\dagger} \psi_{\boldsymbol{k} - \frac{\boldsymbol{q}}{2}, \alpha}$$

$$-\sum_{\boldsymbol{p}_{1}\boldsymbol{p}_{2}\boldsymbol{q}\alpha}D(q)\frac{(\boldsymbol{p}_{1}\times\hat{\boldsymbol{q}})\cdot(\boldsymbol{p}_{2}\times\hat{\boldsymbol{q}})}{m^{2}}\psi_{\boldsymbol{p}_{1}+\boldsymbol{q},\alpha}^{\dagger}\psi_{\boldsymbol{p}_{1},\alpha}\psi_{\boldsymbol{p}_{2},\beta}^{\dagger}\psi_{\boldsymbol{p}_{2},\beta}$$

Minimal Coupling

$$\vec{j}(\boldsymbol{q}) \cdot \vec{A}(\boldsymbol{q}) = e \sum_{\boldsymbol{k} = \alpha} \vec{A}(\boldsymbol{q}) \cdot \frac{\boldsymbol{k}}{m} \psi_{\boldsymbol{k} + \frac{\boldsymbol{q}}{2}, \alpha}^{\dagger} \psi_{\boldsymbol{k} - \frac{\boldsymbol{q}}{2}, \alpha}$$

$$-\sum_{\boldsymbol{p}_1\boldsymbol{p}_2\boldsymbol{q}\alpha}D(q)\frac{(\boldsymbol{p}_1\times\hat{\boldsymbol{q}})\cdot(\boldsymbol{p}_2\times\hat{\boldsymbol{q}})}{m^2}$$

Minimal Coupling

$$\vec{j}(\boldsymbol{q}) \cdot \vec{A}(\boldsymbol{q}) = \sum_{\boldsymbol{k} = \alpha} \vec{A}(\boldsymbol{q}) \cdot \frac{\boldsymbol{k}}{m} \psi_{\boldsymbol{k} + \frac{\boldsymbol{q}}{2}, \alpha}^{\dagger} \psi_{\boldsymbol{k} - \frac{\boldsymbol{q}}{2}, \alpha}$$

$$-\sum_{\boldsymbol{p}_1\boldsymbol{p}_2\boldsymbol{q}\alpha}D(q)\frac{(\boldsymbol{p}_1\times\hat{\boldsymbol{q}})\cdot(\boldsymbol{p}_2\times\hat{\boldsymbol{q}})}{m^2}$$

Minimal Coupling

$$\vec{j}(\boldsymbol{q}) \cdot \vec{A}(\boldsymbol{q}) = \sum_{\boldsymbol{k} = \alpha} \vec{A}(\boldsymbol{q}) \cdot \frac{\boldsymbol{k}}{m} \psi_{\boldsymbol{k} + \frac{\boldsymbol{q}}{2}, \alpha}^{\dagger} \psi_{\boldsymbol{k} - \frac{\boldsymbol{q}}{2}, \alpha}$$

$$-\sum_{\boldsymbol{p}_1\boldsymbol{p}_2\boldsymbol{q}\alpha}D(q)\frac{(\boldsymbol{p}_1\times\hat{\boldsymbol{q}})\cdot(\boldsymbol{p}_2\times\hat{\boldsymbol{q}})}{m^2}$$

Minimal Coupling

$$\vec{j}(\boldsymbol{q}) \cdot \vec{A}(\boldsymbol{q}) = \sum_{\boldsymbol{k} = \alpha} \vec{A}(\boldsymbol{q}) \cdot \frac{\boldsymbol{k}}{m} \psi_{\boldsymbol{k} + \frac{\boldsymbol{q}}{2}, \alpha}^{\dagger} \psi_{\boldsymbol{k} - \frac{\boldsymbol{q}}{2}, \alpha}$$

Repulsion
 against Cooper
 pairing

$$-\sum_{\boldsymbol{p}_1\boldsymbol{p}_2\boldsymbol{q}\alpha}D(q)\frac{(\boldsymbol{p}_1\times\hat{\boldsymbol{q}})\cdot(\boldsymbol{p}_2\times\hat{\boldsymbol{q}})}{m^2}$$

Spin-ice/electron

$$J_K \sum_{\boldsymbol{r}\alpha\beta} \psi_{\boldsymbol{r}\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} \psi_{\boldsymbol{r}\beta} \cdot \left[\vec{\nabla} \times \vec{A}(\boldsymbol{r}) \right]$$

Minimal Coupling

$$\vec{j}(\boldsymbol{q}) \cdot \vec{A}(\boldsymbol{q}) = \sum_{\boldsymbol{k} = \alpha} \vec{A}(\boldsymbol{q}) \cdot \frac{\boldsymbol{k}}{m} \psi_{\boldsymbol{k} + \frac{\boldsymbol{q}}{2}, \alpha}^{\dagger} \psi_{\boldsymbol{k} - \frac{\boldsymbol{q}}{2}, \alpha}$$

Repulsion
 against Cooper
 pairing

$$-\sum_{\boldsymbol{p}_1\boldsymbol{p}_2\boldsymbol{q}\alpha}D(q)\frac{(\boldsymbol{p}_1\times\hat{\boldsymbol{q}})\cdot(\boldsymbol{p}_2\times\hat{\boldsymbol{q}})}{m^2}$$

Spin-ice/electron

$$J_K \sum_{\boldsymbol{r}\alpha\beta} \psi_{\boldsymbol{r}\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} \psi_{\boldsymbol{r}\beta} \cdot \left[\vec{\nabla} \times \vec{A}(\boldsymbol{r}) \right]$$

Electrons are not magnetic monopoles

Minimal Coupling

$$\vec{j}(\boldsymbol{q}) \cdot \vec{A}(\boldsymbol{q}) = \sum_{\boldsymbol{k} = \alpha} \vec{A}(\boldsymbol{q}) \cdot \frac{\boldsymbol{k}}{m} \psi_{\boldsymbol{k} + \frac{\boldsymbol{q}}{2}, \alpha}^{\dagger} \psi_{\boldsymbol{k} - \frac{\boldsymbol{q}}{2}, \alpha}$$

Repulsion
 against Cooper
 pairing

$$-\sum_{\boldsymbol{p}_1\boldsymbol{p}_2\boldsymbol{q}\alpha}D(q)\frac{(\boldsymbol{p}_1\times\hat{\boldsymbol{q}})\cdot(\boldsymbol{p}_2\times\hat{\boldsymbol{q}})}{m^2}$$

Spin-ice/electron

$$J_K \sum_{\boldsymbol{r}\alpha\beta} \psi_{\boldsymbol{r}\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} \psi_{\boldsymbol{r}\beta} \cdot \left[\vec{\nabla} \times \vec{A}(\boldsymbol{r}) \right]$$

Electrons are not magnetic

• Attractive equalspin interaction!

$$-J_K^2 D(q) \left(\vec{\sigma}_{\alpha\beta} \times \hat{\boldsymbol{q}} \right) \cdot \left(\vec{\sigma}_{\alpha'\beta'} \times \hat{\boldsymbol{q}} \right)$$

Dealing with interacting electrons?

$$H_{\text{int}}(t) = -(J_K^2 v_{\text{cell}}^2 / 2\hbar) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$

$$H_{\text{int}}(t) = -(J_K^2 v_{\text{cell}}^2 / 2\hbar) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$

- Separation of scale: ω_s/E_F <<1
 - → "Migdal theorem"

$$H_{\text{int}}(t) = -(J_K^2 v_{\text{cell}}^2 / 2\hbar) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$

- Separation of scale: ω_s/E_F <<1
 - → "Migdal theorem"
- Dimensionless ratio $\lambda \sim N(0)V \sim J_K^2 N(0)/J_{\rm ex} < 1$

$$H_{\rm int}(t) = -(J_K^2 v_{\rm cell}^2 / 2\hbar) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$

- Separation of scale: ω_s/E_F <<1
 - → "Migdal theorem"
- Dimensionless ratio $\lambda \sim N(0)V \sim J_K^2 N(0)/J_{\rm ex} < 1$
- Full problem ≈
 solving the BCS mean-field
 theory

$$H_{\rm int}(t) = -(J_K^2 v_{\rm cell}^2 / 2\hbar) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$

- Separation of scale: $\omega_s/E_F <<1$
 - → "Migdal theorem"
- Dimensionless ratio $\lambda \sim N(0)V \sim J_K^2 N(0)/J_{\rm ex} < 1$
- Full problem \approx solving the BCS mean-field theory $\omega_s e^{-1/\lambda}$

Pair binding problem with dipole-dipole interaction

$$V_{\rm dd} = \frac{1}{r^3} [\vec{S}_1 \cdot \vec{S}_2 - 3(\vec{S}_1 \cdot \hat{r})(\vec{S}_2 \cdot \hat{r})] \propto \mathcal{R}^{(2)}(r_1, r_2) \cdot \mathcal{S}^{(2)}(s_1, s_2)$$

Pair binding problem with dipole-dipole interaction

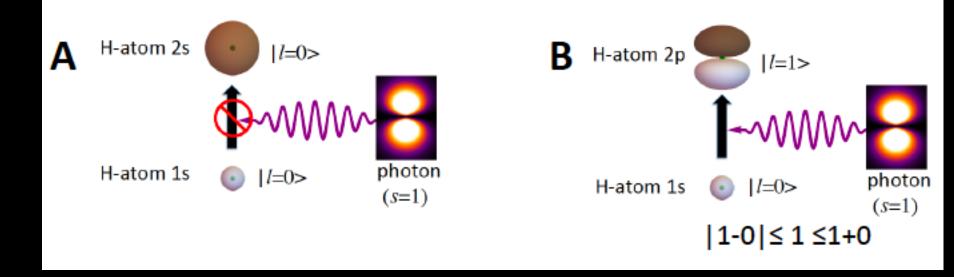
$$V_{\mathrm{dd}} = \frac{1}{r^3} [\vec{S}_1 \cdot \vec{S}_2 - 3(\vec{S}_1 \cdot \hat{r})(\vec{S}_2 \cdot \hat{r})] \propto \mathcal{R}^{(2)}(r_1, r_2) \cdot \mathcal{S}^{(2)}(s_1, s_2)$$

• Wigner-Eckart thm $\langle l' | \mathcal{T}^{(r)} | l \rangle = 0$ unless $|r - l| \leq l' \leq (r + l)$

Pair binding problem with dipole-dipole interaction

$$V_{\rm dd} = \frac{1}{r^3} [\vec{S}_1 \cdot \vec{S}_2 - 3(\vec{S}_1 \cdot \hat{r})(\vec{S}_2 \cdot \hat{r})] \propto \mathcal{R}^{(2)}(r_1, r_2) \cdot \mathcal{S}^{(2)}(s_1, s_2)$$

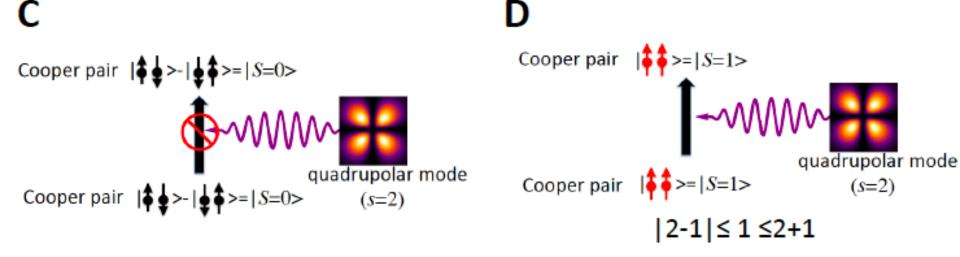
• Wigner-Eckart thm $\langle l' | \mathcal{T}^{(r)} | l \rangle = 0$ unless $|r - l| \leq l' \leq (r + l)$

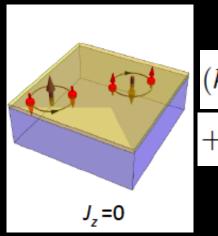


Pair binding problem with dipole-dipole interaction

$$V_{\rm dd} = \frac{1}{r^3} [\vec{S}_1 \cdot \vec{S}_2 - 3(\vec{S}_1 \cdot \hat{r})(\vec{S}_2 \cdot \hat{r})] \propto \mathcal{R}^{(2)}(r_1, r_2) \cdot \mathcal{S}^{(2)}(s_1, s_2)$$

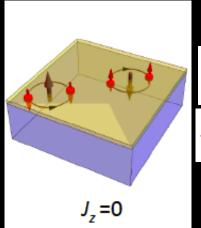
• Wigner-Eckart thm $\langle l' | \mathcal{T}^{(r)} | l \rangle = 0$ unless $|r - l| \leq l' \leq (r + l)$



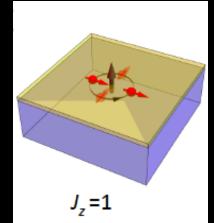


$$(k_x + ik_y)|\downarrow\downarrow\rangle$$

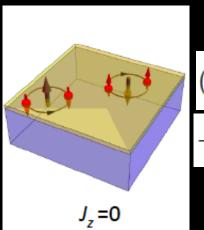
$$+\left(k_{x}-ik_{y}\right)|\uparrow\uparrow\rangle$$

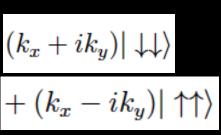


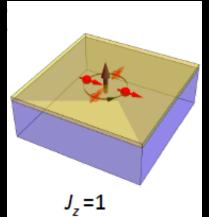
$$\frac{(k_x + ik_y)|\downarrow\downarrow\rangle}{+(k_x - ik_y)|\uparrow\uparrow\rangle}$$



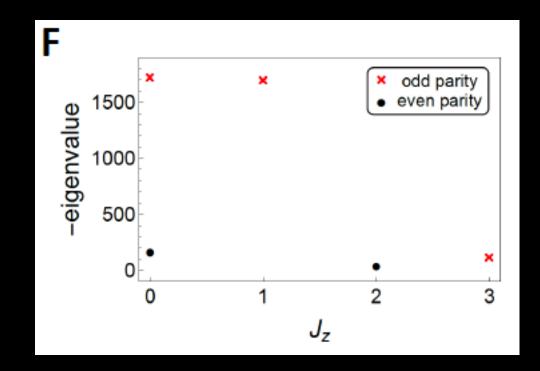
$$(k_x \pm ik_y) \frac{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}{\sqrt{2}}$$







$$(k_x \pm ik_y) \frac{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}{\sqrt{2}}$$



Can we persuade a material synthesis person?

Criteria for Metal

Criteria for Metal

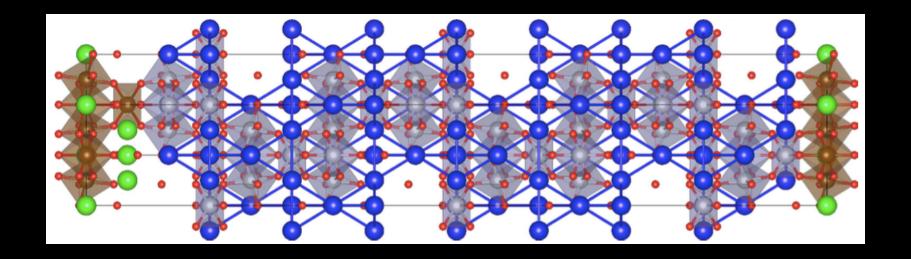
- Structural
 - Lattice match
 - \rightarrow A₂B₂O₇
 - No orphan bonds

Criteria for Metal

- Structural
 - Lattice match
 - \rightarrow A₂B₂O₇
 - No orphan bonds

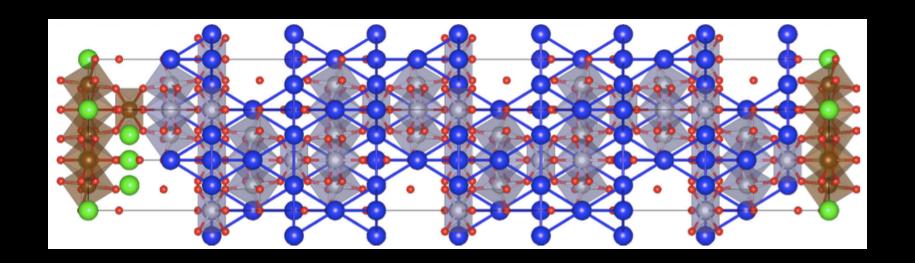
- Electronic
 - Simple isotropicFermi surface
 - Wave function penetration
 - Odd-# FS around high symmetry points

$Pr_2Zr_2O_7/Y_2Sn_{2-x}Sb_xO_7$ (111)



$Pr_2Zr_2O_7/Y_2Sn_{2-x}Sb_xO_7$ (111)

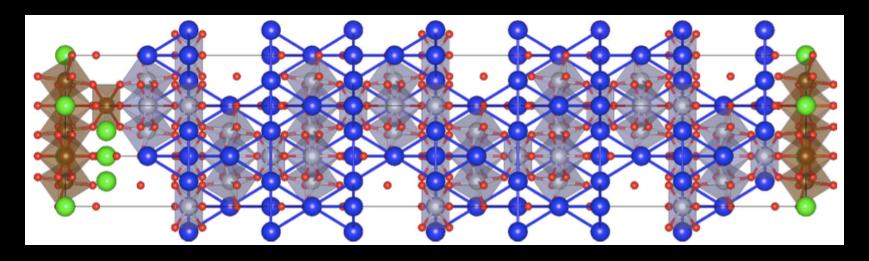
Non-magnetic



$Pr_2Zr_2O_7/Y_2Sn_{2-x}Sb_xO_7$ (111)

Non-magnetic

s-electrons: large overlap, isotropic FS.



Band structure for the Proposal

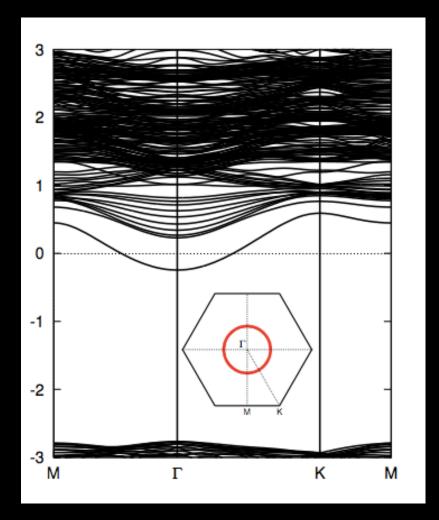
 $Pr_2Zr_2O_7/Y_2Sn_{2-x}Sb_xO_7$ (111)

x = 0.2

Band structure for the Proposal

 $Pr_2Zr_2O_7/Y_2Sn_{2-x}Sb_xO_7$ (111)

x = 0.2

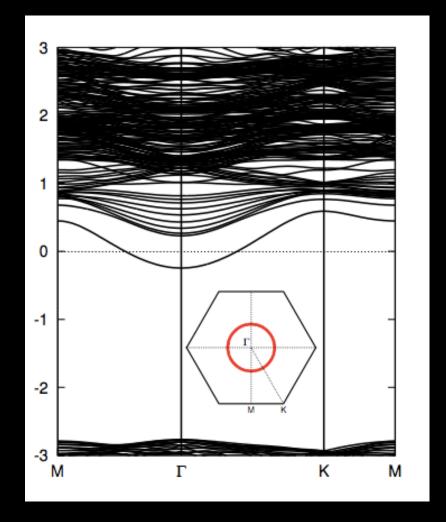


Band structure for the Proposal

$$Pr_2Zr_2O_7/Y_2Sn_{2-x}Sb_xO_7$$
 (111)

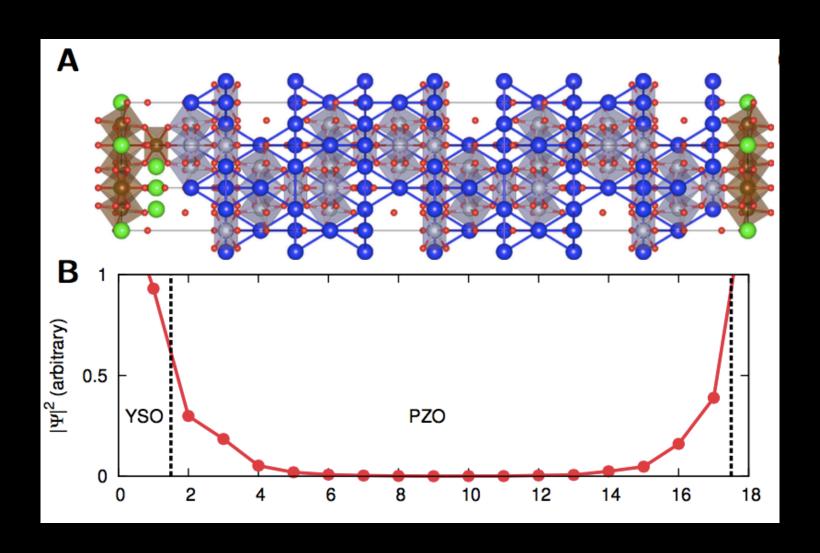
$$x = 0.2$$

• Isotropic single pocket centered at Γ-point



Wave function penetration

Wave function penetration



Metal

Semi-conductor

Metal

Semi-conductor

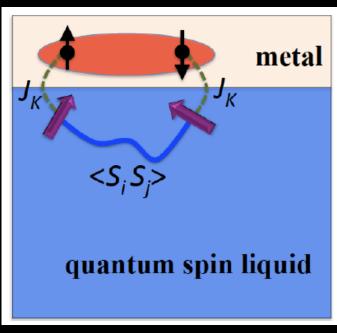
Unstable against exchange.

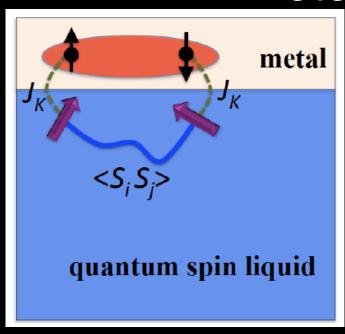
Metal

Semi-conductor

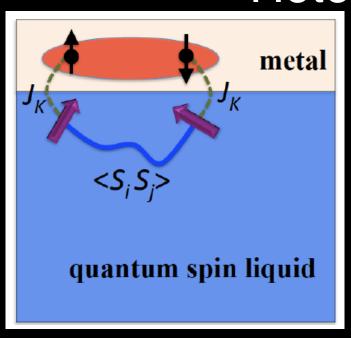
- Unstable against exchange.
- Intrinsically s-wave.

Little (64), Ginzburg (70), Bardeen (73)

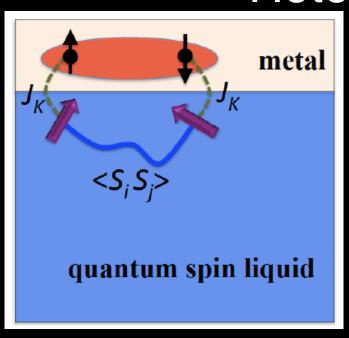




 Topological superconductor riding on QSL

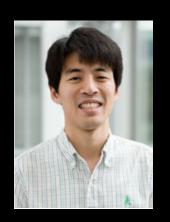


- Topological superconductor riding on QSL
- Selection Rule Dictated Intrinsic Topo SC.



- Topological superconductor riding on QSL
- Selection Rule Dictated Intrinsic Topo SC.
- Substantial phase space.

Acknowledgements



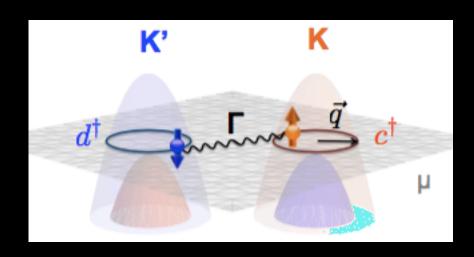
Jian-huang She Choonghyun KimCriag Fennie Michael Lawler

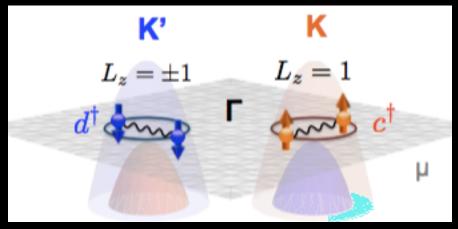
Funding: DOE, CCMR (NSF)

Strategy II

Manipulate the band structure

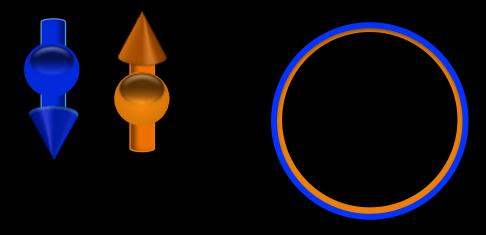
Topological superconductivity in group-VI TMDs



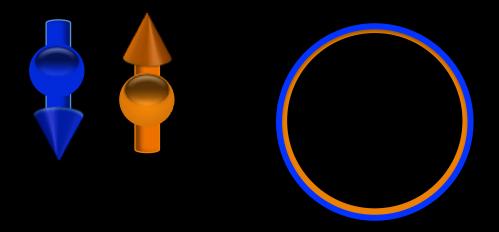


Yi-Ting Hsu, Abolhassan Vaezi, E-AK (in preparation)

Spin-degenerate Fermi surface

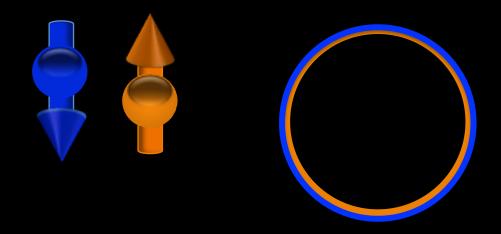


Spin-degenerate Fermi surface



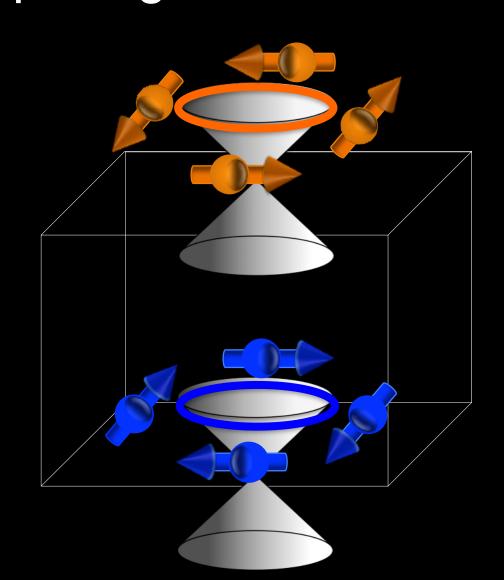
Singlet superconductor

Spin-degenerate Fermi surface

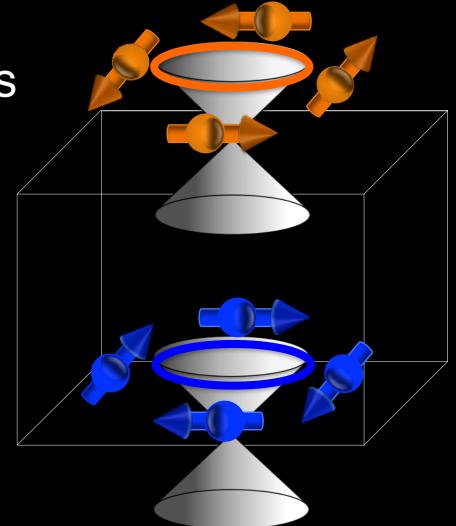


Singlet superconductor

Q. What if the band structure is spin-split?

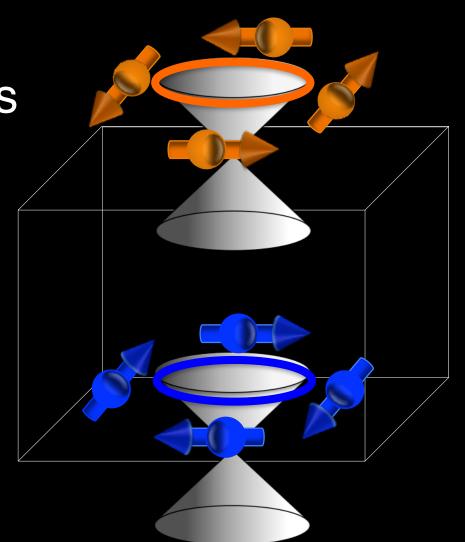


TI surface states



TI surface states

Proximity induce topoSC



TI surface states

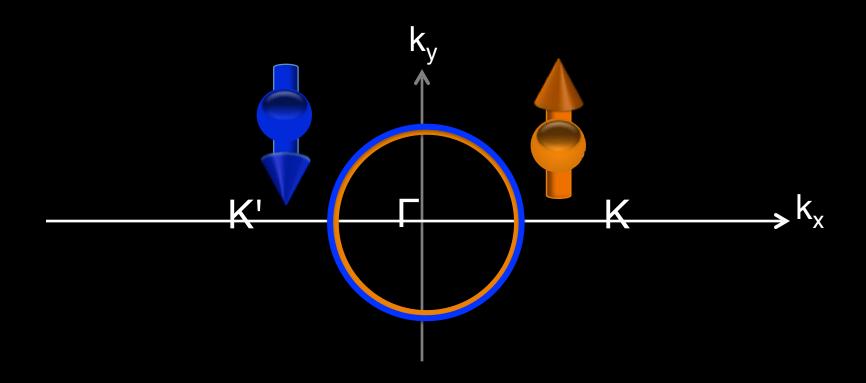
Proximity induce topoSC

Fu & Kane, PRL (2008)

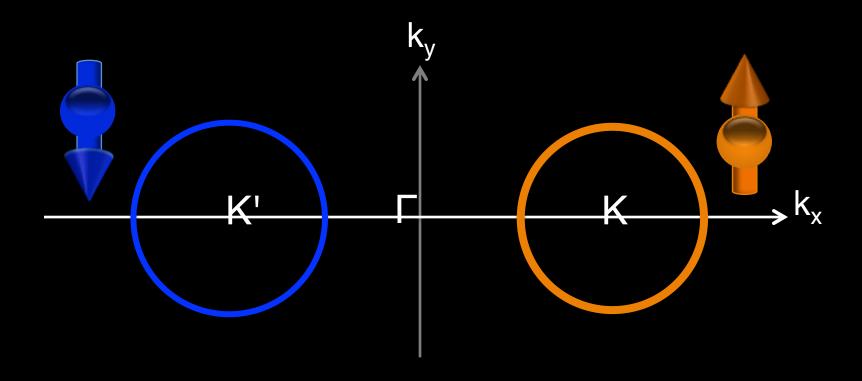
Experiments: Wang et al Science 336, 52 (2012)

Xu et al, Nat. Phys 10, 943 (2014)

Spinless fermion via k-space splitting?

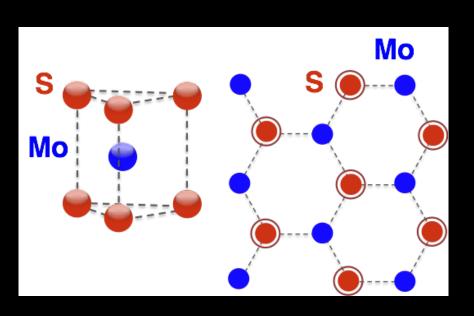


Spinless fermion via k-space splitting?

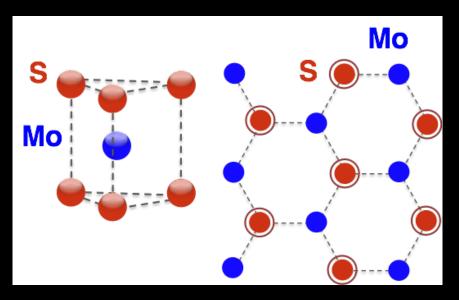


MoS₂, WS₂, MoSe₂, WSe₂

MoS₂, WS₂, MoSe₂, WSe₂

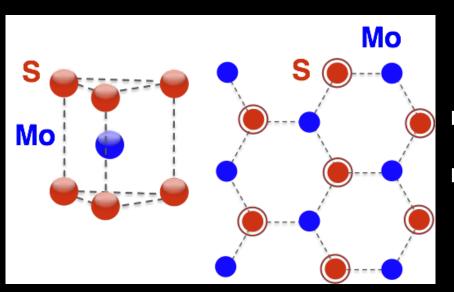


MoS₂, WS₂, MoSe₂, WSe₂



Non-centro symmetr

MoS₂, WS₂, MoSe₂, WSe₂



- Non-centro symmetr
- → Direct Gap ~2eV
- Dresselhaus spin-orb

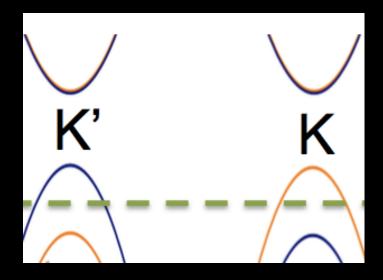
Partially filled crystal-field-split d-bands

- Partially filled crystal-field-split d-bands
 - Conduction band $|d_{z^2}\rangle: l_z=0$

- Partially filled crystal-field-split d-bands
 - Conduction band $|d_{z^2}\rangle$: l_z =0
 - Valence band $\frac{1}{\sqrt{2}}(|d_{x^2-y^2}\rangle \mp i|d_{xy}\rangle): l_{\rm z}=\mp 1$

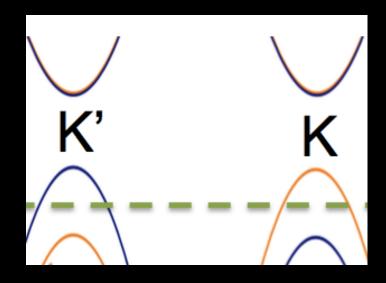
- Partially filled crystal-field-split d-bands
 - Conduction band $|d_{z^2}\rangle$: l_z =0
 - Valence band $\frac{1}{\sqrt{2}}(|d_{x^2-y^2}\rangle \mp i|d_{xy}\rangle)$: l_z = ∓ 1
- Spin-orbit coupling $\vec{L} \cdot \vec{S}$

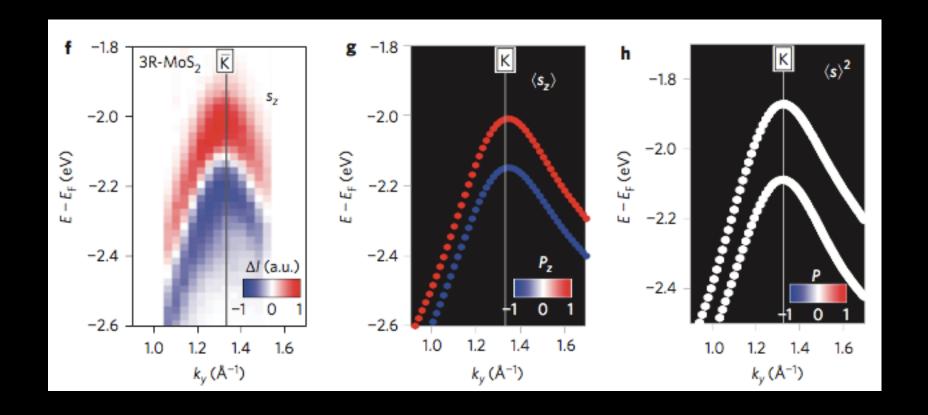
- Partially filled crystal-field-split d-bands
 - Conduction band $|d_{z^2}\rangle$: l_z =0
 - Valence band $\frac{1}{\sqrt{2}}(|d_{x^2-y^2}\rangle \mp i|d_{xy}\rangle): l_{\mathbf{z}} = \mp 1$
- Spin-orbit coupling $\vec{L} \cdot \vec{S}$



- Partially filled crystal-field-split d-bands
 - Conduction band $|d_{z^2}\rangle$: l_z =0
 - Valence band $\frac{1}{\sqrt{2}}(|d_{x^2-y^2}\rangle \mp i|d_{xy}\rangle): l_{\mathbf{z}}=\mp 1$
- Spin-orbit coupling $\vec{L} \cdot \vec{S}$

150~460meV

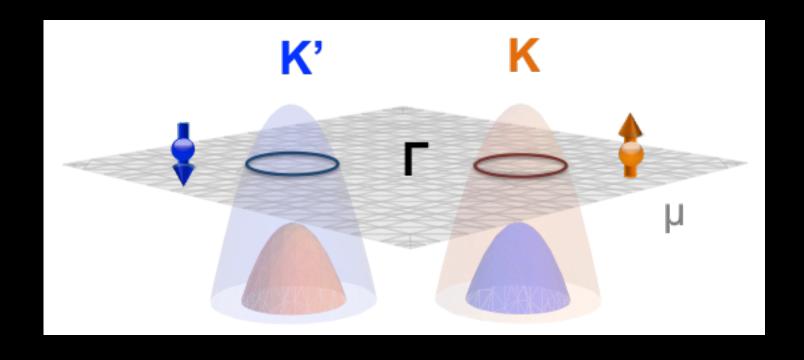




Iwasa group N. Nano (2014)

k-space spin-split FS?

k-space spin-split FS? p-doped group VI- TMD!



Juice for superconductivity?

Juice for superconductivity?

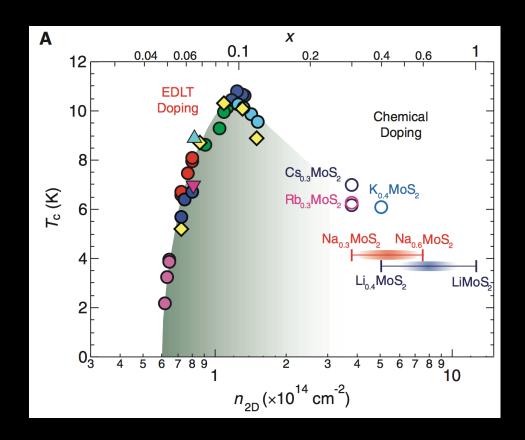
d electrons => expect correlation effects

Juice for superconductivity?

d electrons => expect correlation effects

n-doped

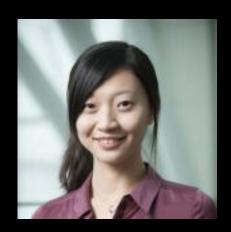
J.T.Ye et al. (Science 2012)



p-doped TMD k-space spin-split Fermi surfaces + Moderate correlation (d-electron)

p-doped TMD k-space spin-split Fermi surfaces H Moderate correlation (d-electron)

Topological SC?



Yi-Ting Hsu

Mark Fischer

Abolhassan Vaezi

Kinetic

$$H_0(\vec{q}) = at(\tau q_x \hat{\sigma_x} + q_y \hat{\sigma_y}) + \frac{\Delta}{2} \hat{\sigma_z} - \lambda \tau \hat{s_z} \otimes \frac{\hat{\sigma_z} - 1}{2}$$

$$H'(W) = \sum_{i} U n_{i,\uparrow} n_{i,\downarrow}$$

Kinetic

$$H_0(ec{q}) = at(au q_x \hat{\sigma_x} + q_y \hat{\sigma_y}) + rac{\Delta}{2} \hat{\sigma_z} - \lambda au \hat{s_z} \otimes rac{\hat{\sigma_z} - 1}{2}$$

$$H'(W) = \sum_{i} U n_{i,\uparrow} n_{i,\downarrow}$$

Kinetic

$$H_0(\vec{q}) = at(au q_x \hat{\sigma_x} + q_y \hat{\sigma_y}) + rac{\Delta}{2} \hat{\sigma_z} - \lambda au \hat{s_z} \otimes rac{\hat{\sigma_z} - 1}{2}$$

Band-basis

$$H'(W) = \sum_{i} U n_{i,\uparrow} n_{i,\downarrow}$$

Kinetic

$$H_0(ec{q}) = at(au q_x \hat{\sigma_x} + q_y \hat{\sigma_y}) + rac{\Delta}{2} \hat{\sigma_z} - \lambda \hat{\sigma_z} \otimes rac{\hat{\sigma_z} - 1}{2}$$

Band-basis

$$H'(W) = \sum_{i} U n_{i,\uparrow} n_{i,\downarrow}$$

Kinetic

$$H_0(\vec{q}) = at(\tau q_x \hat{\sigma_x} + q_y \hat{\sigma_y}) + \frac{\Delta}{2} \hat{\sigma_z} - \lambda \tau \hat{s_z} \otimes \frac{\hat{\sigma_z} - 1}{2}$$

Band-basis

Spin-basis

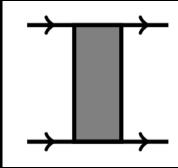
$$H'(W) = \sum_{i} U n_{i,\uparrow} n_{i,\downarrow}$$

Superconductivity out of repulsive interaction?

• Kohn-Luttiger: singularity in scattering amplitude $\Gamma(\vec{q})$

• Kohn-Luttiger: singularity in scattering

amplitude $\Gamma(\vec{q})$



(Kohn &Luttinger 1969)

Kohn-Luttiger: singularity in scattering

amplitude $\Gamma(\vec{q})$

→Non-s wave

Kohn-Luttiger: singularity in scattering

amplitude $\Gamma(\vec{q})$

(Kohn &Luttinger 1969)

→Non-s wave

- Two-step RG formulation
 - : Fe-based SC, doped graphene, SrRu

Kohn-Luttiger: singularity in scattering

amplitude $\Pi(\vec{q})$

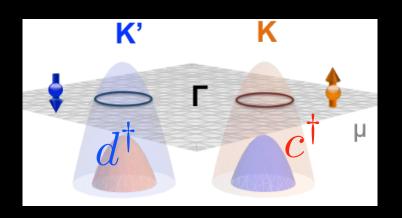
(Kohn &Luttinger 1969)

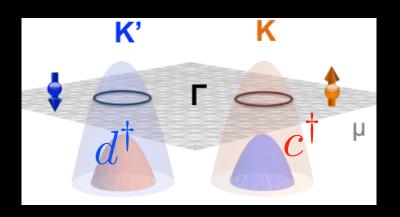
→Non-s wave

- Two-step RG formulation
 - : Fe-based SC, doped graphene, SrRu

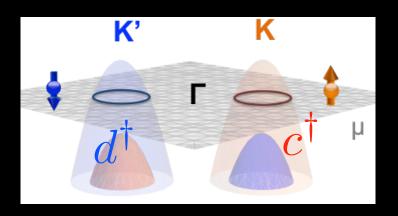
Chubukov & Nandkishore, Raghu & Kivelson (2008 - 2012)

Two-step RG on p-doped TMD

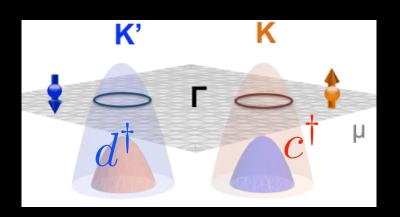




At scale W: Microscopic model

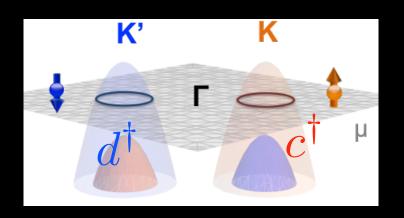


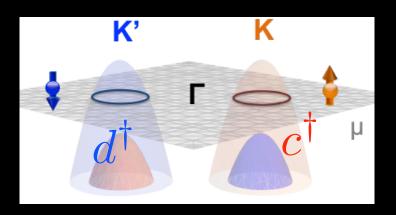
- At scale W: Microscopic model
- At scale Λ_0 : Effective model



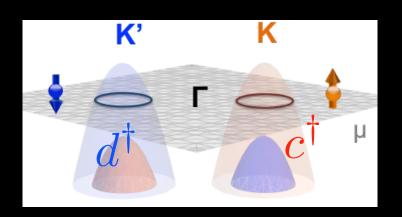
- At scale W: Microscopic model
- At scale Λ_0 : Effective model

$$egin{aligned} H_{eff}'(\Lambda_0) &= \sum_{ec{q},ec{q}'}^{\prime} g_{ ext{inter}}^{(0)}(ec{q},ec{q}') c_{ec{q}'}^{\dagger} d_{-ec{q}'}^{\dagger} d_{-ec{q}'}^{\dagger} d_{-ec{q}'} c_{ec{q}} \ &+ g_{ ext{intra}}^{(0)}(ec{q},ec{q}') d_{ec{q}'}^{\dagger} d_{-ec{q}'}^{\dagger} d_{-ec{q}'}^{\dagger} d_{-ec{q}'} d_{ec{q}} + (c \leftrightarrow d). \end{aligned}$$

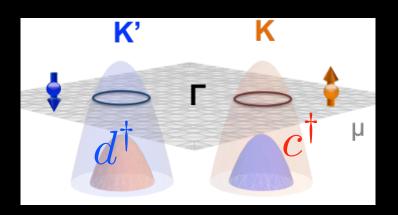




• gintra,0 and ginter,0 at two-loop

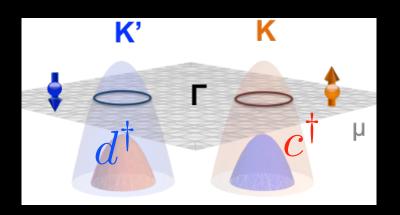


gintra,0 and ginter,0 at two-loop



gintra,0 and ginter,0 at two-loop

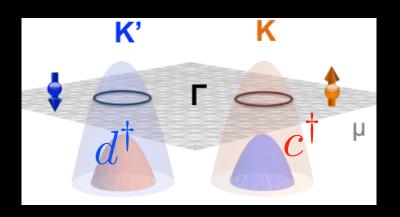
$$g_{inter}^{(0)}(\vec{q}, \vec{q}') = U + U^3 f_{inter}(\vec{q}, \vec{q}')$$



gintra,0 and ginter,0 at two-loop

$$g_{inter}^{(0)}(\vec{q}, \vec{q}') = U + U^3 f_{inter}(\vec{q}, \vec{q}')$$

$$g_{intra}^{(0)}(\vec{q}, \vec{q}') = U^3 f_{intra}(\vec{q}, \vec{q}')$$



gintra,0 and ginter,0 at two-loop

$$g_{inter}^{(0)}(\vec{q}, \vec{q}') = U + U^3 f_{inter}(\vec{q}, \vec{q}')$$

 $g_{intra}^{(0)}(\vec{q}, \vec{q}') = U^3 f_{intra}(\vec{q}, \vec{q}')$

• f's <0 -> $g^{(0)}$'s<0 in anisotropic channel

Step 2: $\Lambda_0 \rightarrow 0$

RG flow

Divergence if λ⁽⁰⁾ <0

Step 2: $\Lambda_0 \rightarrow 0$

• RG flow
$$\frac{d\lambda}{dy} = -\lambda^2$$

$$y \equiv \nu_0 \text{Log}(\Lambda_0/\text{E})$$

• Divergence if $\lambda^{(0)} < 0$

Step 2: $\Lambda_0 \rightarrow 0$

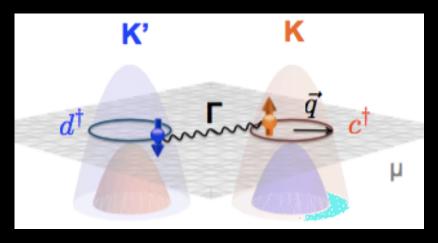
• RG flow
$$\frac{d\lambda}{dy} = -\lambda^2$$

$$\lambda(y) = \frac{\lambda^{(0)}}{1 + \lambda^{(0)}y}$$

$$y \equiv \nu_0 \text{Log}(\Lambda_0/\text{E})$$

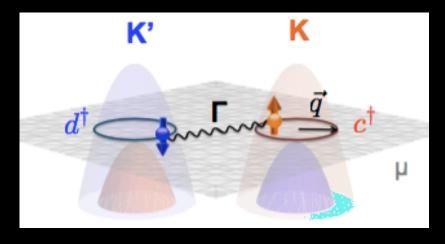
Divergence if λ⁽⁰⁾ <0

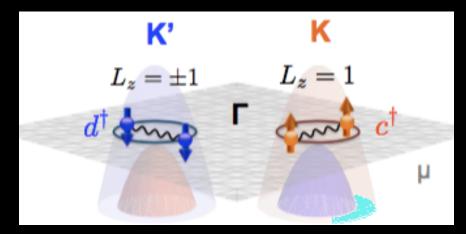
Intra-pocket p+ip



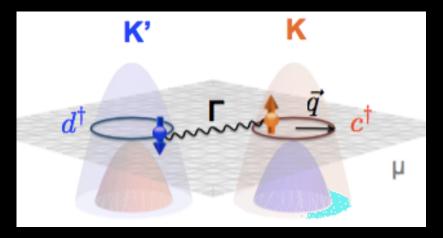
Intra-pocket p+ip

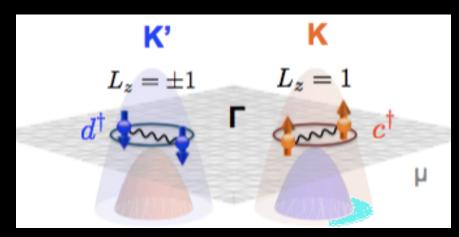
Inter-pocket p'wave





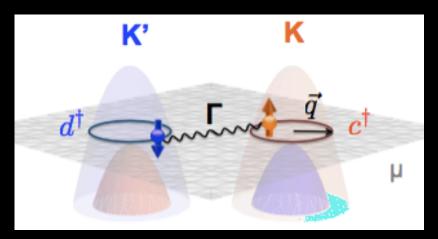
Intra-pocket p+ip



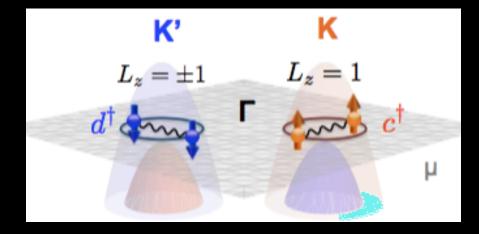


-T-breaking

Intra-pocket p+ip



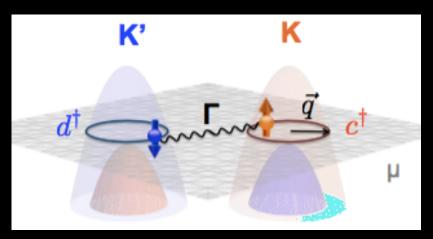
Inter-pocket p'wave



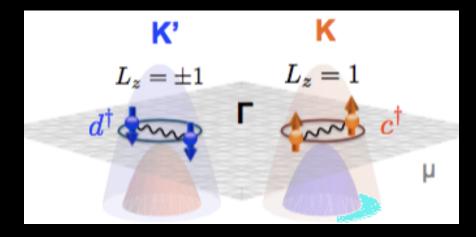
-T-breaking

-Modulated

Intra-pocket p+ip



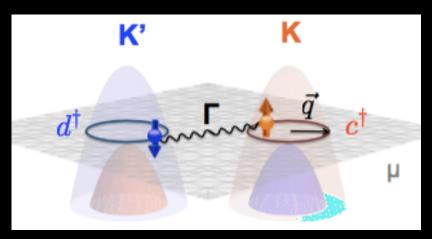
Inter-pocket p'wave



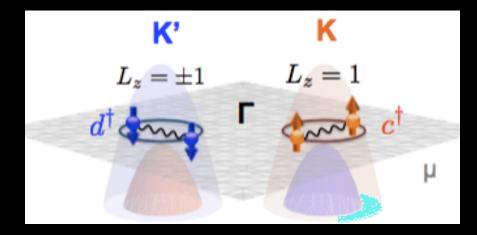
- -T-breaking
- C=2

-Modulated

Intra-pocket p+ip



Inter-pocket p'wave

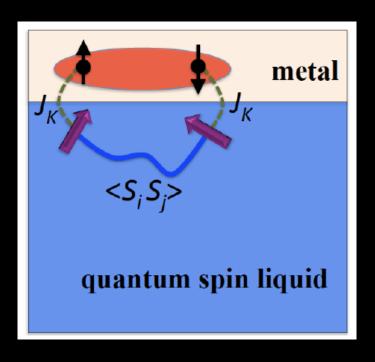


- -T-breaking
- C = 2

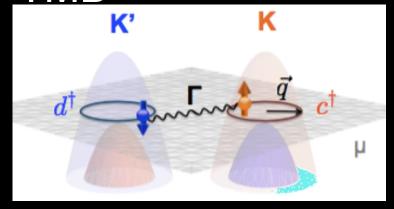
- -Modulated
- -C=\pm 1 per pocket

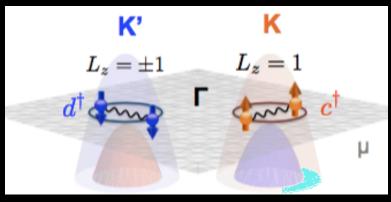
Designing 2D topological SC's

Control interaction



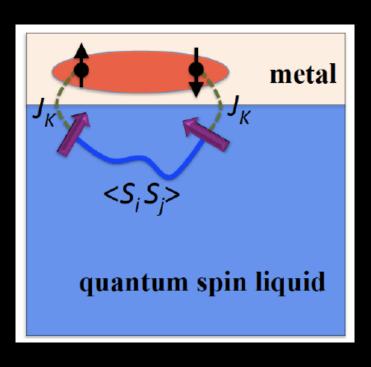
 k-space spin split TMD





Designing 2D topological SC's

Control interaction



 k-space spin split TMD

