Eun-Ah Kim

Penn State, Oct 2, 2014

The Phase Diagram

The Phase Diagram

The Mechanism

Please STOP ME and ASK QUESTIONS

CONVENTIONAL SUPERCONDUCTIVITY

Heike Kamerlingh Onnes

Liquefied Helium in 1908

Superconductivity 1911

Verslagen van de Afdeeling Natuur-kunde der Kon. Acad. van Wetenschappen te Amsterdam, pp. 1479, 28 April 1911.

BCS, Phys Rev 108, 1175 (1957)

Bogoliubov, Nuovo Cimento 7, 794 (1958)

Normal State (Metal)

BCS, Phys Rev 108, 1175 (1957)

Bogoliubov, Nuovo Cimento 7, 794 (1958)

Normal State (Metal)

BCS, Phys Rev 108, 1175 (1957)

Bogoliubov, Nuovo Cimento 7, 794 (1958)

Normal State (Metal)

Weak coupling instability

BCS, Phys Rev 108, 1175 (1957)

Normal State (Metal)

Bogoliubov, Nuovo Cimento 7, 794 (1958)

Low T- Superconducting

Weak coupling instability Ground/Excited States Kγ K Degenerate Electrons interacting with ~free electron gas Lattice Vibration Mode

BCS, Phys Rev 108, 1175 (1957)

Bogoliubov, Nuovo Cimento 7, 794 (1958)

Normal State (Metal)

Weak coupling instability

Low T- Superconducting Ground/Excited States

Correlated (High-T_c) Superconductivity

The Phase Diagram?

The Phase Diagram?

The Mechanism?

The Challenge of Strong (Intermediate) Coupling

Liquid

 $\overline{V_{int}} \ll \overline{E_{kin}}$

Weak interactionK-space

Crystal

 $\overline{V_{int}} \gg \overline{E_{kin}}$

Strong interactionReal space

 $V_{int} \ll E_{kin}$

Weak interactionK-space

Crystal

 $\overline{V_{int}} \gg \overline{E_{kin}}$

Strong interactionReal space

Liquid

 $V_{int} \ll E_{kin}$

Weak interactionK-space

Freezing

Landau Fermi Liquid (1956)

 $V_{int} \ll E_{kin}$

Weak interactionK-space

Landau Fermi Liquid (1956)

 $V_{int} \ll E_{kin}$

Weak interactionK-space

 $V_{int} \gg E_{kin}$

Strong interactionReal space

Landau Fermi Liquid (1956)

 $V_{int} \ll E_{kin}$

Weak interactionK-space

Wigner Crystal (1930)

 $V_{int} \gg E_{kin}$

Strong interactionReal space

Landau Fermi Liquid (1956)

 $V_{int} \ll E_{kin}$

Weak interactionK-space

Wigner Crystal (1930) Mott Insulator (1937)

 $V_{int} \gg E_{kin}$

Strong interactionReal space

Landau Fermi Liquid (1956)

 $V_{int} \ll E_{kin}$

Weak interactionK-space

The Phase Diagram?

The Mechanism?

The Phase Diagram?

The Mechanism?

New Physics in the Intermediate Regime!

Recent Advances in Materials

Recent Advances in Materials Discovery of Fe-pnictide

Iron-pnictide
(s±-wave?)

Recent Advances in High Res. Probes

20)nm	X	20)nm

Y. Li "Unusual magnetic order in HgBa2CuO41d"	"Unusual magnetic order in the pseudogap region of the superconductor d"				
	Nature	455	372	2008	
ng Xia, "Polar Kerr-Effect Measurements of YBa2Cu306 x Superconductor: Evidence for roken Symmetry near the Pseudogap Temperature"					
	PRL	100	127002	2008	
M. J. Lawler "Intra-unit-cell electronic nem states"	naticity of the h	igh-Tc copper-o	oxide pseudog	ар	
	Nature	466	347	2010	
R. Daou "Broken rotational symmetry in th	ne pseudogap	phase of a hig	h-Tc supercond	luctor"	
	Nature	463	519	2010	
S. De Almeida-Didry Evidence for intra-unit PHYSICAL RE	t-cell magnetic VIEW B	order in Bi2Sr 86 020504(F	2CaCu2O8 ≀)	2012	
Гао Wu,"Magnetic-field-induced charge-str /Ba2Cu3Oy"	ipe order in the	e high-tempera	ature supercon	ductor	
G. Ghiringhelli, "Long-Range Incommensu	Nature rate Charge Flu	477 uctuations in (\	191 (,Nd)Ba2Cu30	2011 6+x"	
	Science	337	821	2012	
I. Chang, "Direct observation of competit wave order in YBa2Cu306:67"	ion between sı	uperconductivi	ty and charge	density	

Nature Physics 8

871

2012

Recent Advances in Theory
• New numerical approaches: Functional Renormalization Group

- New numerical approaches: Functional Renormalization Group
- A handle on order parameter symmetry
 - : Weak coupling RG for superconductivity driven by purely repulsive interaction

- New numerical approaches: Functional Renormalization Group
- A handle on order parameter symmetry
 - : Weak coupling RG for superconductivity driven by purely repulsive interaction
- A new perspective of intertwined order

- New numerical approaches: Functional Renormalization Group
- A handle on order parameter symmetry
 - : Weak coupling RG for superconductivity driven by purely repulsive interaction
- A new perspective of intertwined order
- Insight into the minimal model: the role of oxygen sites

Top-down:

Top-down:

Middle-down/up:

Symmetry Principles

Bottom-up:

Neutron Scattering

Key Questions in High-T_c Superconductivity:

The Phase Diagram?

The Mechanism?

Key Questions in High-T_c Superconductivity:

The Mechanism? The Phase Diagram? ⁴00 strange metal 300 temperature (K) 200 antiferromagne pseudogap 100 Fermi liquid superconductor 0.2 0.3 0.1 0 hole doping

Complex PD of high $T_c SC$

Complex PD of high $T_c SC$

• Phases in between FL & MI

Simple PD of conventional SC

Complex PD of high T_c SC

Phases in between FL & MI
Multiple "phases" at similar T

Simple PD of conventional SC

Complex PD of high T_c SC

- Phases in between FL & MI
- Multiple "phases" at similar T
- Unidentifiable regions

Simple PD of conventional SC

Complex PD of high T_c SC

- Phases in between FL & MI
- Multiple "phases" at similar T
- Unidentifiable regions

Cross-over or Phase transition?

Cross-over or Phase transition? Symmetry breaking?

Cross-over or Phase transition?
Symmetry breaking?
What are broken symmetries?

Cross-over or Phase transition? Symmetry breaking? What are broken symmetries? Challenge: 1) Define and detect order parameter

Cross-over or Phase transition? Symmetry breaking? What are broken symmetries? Challenge: 1) Define and detect order parameter

AF: Antiferromagnet SC: Superconductor PG: Pseudogap HTS: Hight temperature Superconductor

Cross-over or Phase transition? Symmetry breaking? What are broken symmetries? \rightarrow Challenge: 1) Define and detect order parameter 2) Locate the Quantum Critical Point (QCP)

Riddles of Sphinx

		Y. Li "Unusual magnetic order in HgBa2CuO41d"	n the pseudoga	ap region of th	ie supercondu	ictor	
			Nature	455	372	2008	
400)6 x Supercon	ductor: Evider	nce for			
8-	strange metal		PRL	100	127002	2008	
re (K) 3		M. J. Lawler "Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states"					
200	U C		Nature	466	347	2010	
tempe 00	pseudogap Ecriticuid	R. Daou "Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor"					
÷			Nature	463	519	2010	
6.535	superconductor	S. De Almeida-Didry Evidence for intra-unit-cell magnetic order in Bi2Sr2CaCu2O8					
0	0.1 0.2 0.3			80 020304	.(11)	2012	
	hole doping	Tao Wu,"Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy"					
			Nature	477	191	2011	
		G. Ghiringheili, "Long-Range incommensurate Charge Fluctuations in (Y,Nd)Ba2Cu3O6+x"					
			Science	337	821	2012	
		J. Chang, "Direct observation of competition between superconductivity and charge density wave order in YBa2Cu306:67"					

Nature Physics 88712012

	Y. Li "Unusual magnetic order in HgBa2CuO41d"	n the pseudoga	ap region of tl	he supercondu	uctor	
		Nature	455	372	2008	
<u>6</u> 4-	Jing Xia, "Polar Kerr-Effect Measurements of YBa2Cu306 x Superconductor: Evidence for Broken Symmetry near the Pseudogap Temperature"					
S- strange metal		PRL	100	127002	2008	
(K)	M. J. Lawler "Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states"					
stati		Nature	466	347	2010	
QCP 8-E pseudogap Fermi liquid	R. Daou "Broken rotational symmetry in	the pseudogar	o phase of a h	nigh-Tc superco	onductor"	
		Nature	463	519	2010	
a superconductor	S. De Almeida-Didry Evidence for intra-ur PHYSICAL R	nit-cell magnet EVIEW B	ic order in Bi2 86 020504	2Sr2CaCu208 4(R)	2012	
0 0.1 0.2 0.3						
hole doping	Tao Wu,"Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy"					
	G. Ghiringhelli, "Long-Range Incommensu	Nature Irate Charge Fl	477 uctuations in	191 (Y,Nd)Ba2Cu3(2011 06+x"	
		Science	337	821	2012	
	J. Chang, "Direct observation of competition between superconductivity and charge density wave order in YBa2Cu306:67"					

Nature Physics 8 871 2012

K. Fujita et al, submitted to Science (2014)

Visualize Broken-Symmetry States

Science 315, 1380 (2007)

 $Bi_{2.2}Sr_{1.8}(Ca,Dy)Cu_2O_y$

Not due to surface /crystal symmetry / dopant disorder etc

Science 315, 1380 (2007)

 $Ca_{1.90}Na_{0.10}CuO_2Cl_2$

 $\mathrm{Bi}_{2.2}\mathrm{Sr}_{1.8}\mathrm{Ca}_{0.8}\mathrm{Dy}_{0.2}\mathrm{Cu}_{2}\mathrm{O}_{y}$
Analogy different phases of rod-like polymers

Analogy different phases of rod-like polymers

 $\hat{T}_a, \hat{T}_b, \hat{R}$

Analogy different phases of rod-like polymers

Analogy different phases of rod-like polymers

Electronic Analogue ?

Electronic Analogue ?

Separate Broken Symmetries?: Use distinct Fourier Components

Separate Broken Symmetries?: Use distinct Fourier Components

Fourier space

2nm

Position space

Separate Broken Symmetries?: Use distinct Fourier Components

Fourier space

2nm

Position space

IUC order: Qx & Qy? \hat{T}_a, \hat{T}_b breaking: $S_x \& S_y?$

- For any local map $M(\vec{r})$
- Bragg peak $\tilde{M}(\vec{Q}_x) = \frac{1}{\sqrt{N}} \sum_{\vec{R}, \vec{d}} M(\vec{R} + \vec{d}) e^{-i\vec{Q}_x \cdot \vec{d}}$ $\vec{Q}_x = (2\pi/a, 0)$

M.J. Lawler et al Nature 2010

- For any local map $M(\vec{r})$
- Bragg peak $\tilde{M}(\vec{Q}_x) = \frac{1}{\sqrt{N}} \sum_{\vec{R}, \vec{d}} M(\vec{R} + \vec{d}) e^{-i\vec{Q}_x \cdot \vec{d}}$ $\vec{Q}_x = (2\pi/a, 0)$

• Nematic OP

- $\mathcal{O}_{N}[M] = \frac{1}{2} \left[\tilde{M}(\vec{Q}_{y}) \tilde{M}(\vec{Q}_{x}) + \tilde{M}(-\vec{Q}_{y}) \tilde{M}(-\vec{Q}_{x}) \right]$ = $\operatorname{Re} \tilde{M}(\vec{Q}_{y}) - \operatorname{Re} \tilde{M}(\vec{Q}_{x})$ Measures C₄ breaking
 - Preserves lattice translation

M.J. Lawler et al Nature 2010

Bragg Peaks

IUC Nematic in BSCCO

Bragg Peaks

IUC Nematic in BSCCO

\mathcal{O}_N intra-unit-cell structure

\mathcal{O}_N intra-unit-cell structure

 $\tilde{Z}(\vec{Q}_x) = \bar{Z}_{\mathrm{Cu}} - \bar{Z}_{\mathrm{O}_x} + \bar{Z}_{\mathrm{O}_y} \quad \tilde{Z}(\vec{Q}_y) = \bar{Z}_{\mathrm{Cu}} + \bar{Z}_{\mathrm{O}_x} - \bar{Z}_{\mathrm{O}_y}$ ${\cal O}_N \propto (ar{Z}_{O_x} - ar{Z}_{O_y})\,$ M.J. Lawler et al, Nature 2010

\mathcal{O}_N intra-unit-cell structure

 $\tilde{Z}(\vec{Q}_x) = \bar{Z}_{Cu} - \bar{Z}_{O_x} + \bar{Z}_{O_y} \tilde{Z}(\vec{Q}_y) = \bar{Z}_{Cu} + \bar{Z}_{O_x} - \bar{Z}_{O_y}$ ${\cal O}_N \propto (ar{Z}_{O_x} - ar{Z}_{O_y})\,$ M.J. Lawler et al, Nature 2010

Intra-unitcell pattern including O sites

Intra unitcell Nematic: $C_4 \implies C_2$

CuO₂ plane

• How strongly do each point \vec{x} contribute to a Q space peak $\tilde{M}(\vec{Q})$?

• How strongly do each point to a Q space peak $\tilde{M}(\vec{Q})$? $\tilde{M}(\vec{Q}, \vec{x}) = \text{low pass}_{\Lambda} \left[M(\vec{x})e^{i\vec{Q}\cdot\vec{x}} \right]$

• How strongly do each point to a Q space peak $\tilde{M}(\vec{Q})$? $\tilde{M}(\vec{Q}, \vec{x}) = \log \operatorname{pass}_{\Lambda} \left[M(\vec{x}) e^{i \vec{Q} \cdot \vec{x}} \right]$

• Local order parameter: $\mathcal{O}_N[M](\vec{x}) = \frac{1}{2} \left[\tilde{M}(\vec{Q}_y, \vec{y}) - \tilde{M}(\vec{Q}_x, \vec{x}) + \tilde{M}(-\vec{Q}_y, \vec{x}) - \tilde{M}(-\vec{Q}_x, \vec{x}) \right]$

• How strongly do each point to a Q space peak $\tilde{M}(\vec{Q})$? $\tilde{M}(\vec{Q}, \vec{x}) = \log \operatorname{pass}_{\Lambda} \left[M(\vec{x}) e^{i \vec{Q} \cdot \vec{x}} \right]$

• Local order parameter: $\mathcal{O}_N[M](\vec{x}) = \frac{1}{2} \left[\tilde{M}(\vec{Q}_y, \vec{y}) - \tilde{M}(\vec{Q}_x, \vec{x}) + \tilde{M}(-\vec{Q}_y, \vec{x}) - \tilde{M}(-\vec{Q}_x, \vec{x}) \right]$

• ala TEM on graphene [Huang et al, Nature 2011]

$\vec{\mathbf{Q}} = 0$ Nematic Order

• Shift Q_x , Q_y to origin

• Low pass filter (long distance physics)

Lawler, Fujita et al, Nature 2010

$\vec{\mathbf{Q}} = 0$ Nematic Order

• Shift Q_x , Q_y to origin

• Low pass filter (long distance physics)

Lawler, Fujita et al, Nature 2010

$\vec{\mathbf{Q}} = 0$ Nematic Order

• Shift Q_x , Q_y to origin

• Low pass filter (long distance physics)

Orders near pseudogap energy scale

Lawler, Fujita et al, Nature 2010

$\vec{\mathbf{Q}} \neq 0$ Smectic domains

• Shift S_x, S_y to origin ("tune to the channel") • Low pass filter (long distance physics)

Lawler, Fujita et al, Nature 2010

$\vec{\mathbf{Q}} \neq 0$ Smectic domains

• Shift S_x, S_y to origin ("tune to the channel") • Low pass filter (long distance physics)

Lawler, Fujita et al, Nature 2010

$\vec{\mathbf{Q}} \neq 0$ Smectic domains

• Shift S_x, S_y to origin ("tune to the channel") • Low pass filter (long distance physics)

Lawler, Fujita et al, Nature 2010

Severely fluctuating in space at all energies :Consistent with previous studies Howald et al (2003) Kohsaka et al (2008) Robertson et. al. (2006) Del Meastro et. al. (2006)

DOPING DEPENDENCE OF Q=0 SYMMETRY BREAKING

K. Fujita *et al* (2013)

Doping Dependence of Q=0 IUC Nematic

K. Fujita et al, Science (2014)

Doping Dependence of Q=0 IUC Nematic

K. Fujita et al, Science (2014)

Doping Dependence of Q=0 and Q≠0 Symmetry Breaking

K. Fujita et al, Science (2014)

Earlier study of Nematic quantum criticality

Kim et. al., PRB 77, 184514 (2008)

The Phase Diagram, summary

Lawler et al, Nature 2010 Fujita et al, Science 2014

The Phase Diagram, summary

• Long-range IUC symmetry breaking in STM data of pseudogap states

Lawler et al, Nature 2010 Fujita et al, Science 2014

The Phase Diagram, summary

• Long-range IUC symmetry breaking in STM data of pseudogap states

$$\mathcal{O}_N[M] \propto \bar{M}_{O_x} - \bar{M}_{O_y}$$

Lawler et al, Nature 2010 Fujita et al, Science 2014
• Long-range IUC symmetry breaking in STM data of pseudogap states

Analysis scheme: Bragg peak

$$\mathcal{O}_N[M] \propto \bar{M}_{O_x} - \bar{M}_{O_y}$$

- Long-range IUC symmetry breaking in STM data of pseudogap states
 - Analysis scheme: Bragg peak
 - Pseudogap phase breaks C4

$$\mathcal{O}_N[M] \propto \bar{M}_{O_x} - \bar{M}_{O_y}$$

- Long-range IUC symmetry breaking in STM data of pseudogap states
 - Analysis scheme: Bragg peak
 - Pseudogap phase breaks C4
 - → Nematic QCP

- Long-range IUC symmetry breaking in STM data of pseudogap states
 - Analysis scheme: Bragg peak
 - Pseudogap phase breaks C4
 - → Nematic QCP

Key Questions in High-T_c Superconductivity:

The Phase Diagram?

The Mechanism?

Key Questions in High-T_c Superconductivity:

Pairing Mechanism of FeSC?

Wang & Lee, 2011

Structural / magnetic transition near SC
 ⇒ Is it boson-mediated superconductivity?

Iron-pnictide
(s±-wave?)

1. Identify suspects

Identify suspects
 Gather evidence

Identify suspects
 Gather evidence
 Match evidence to a suspect

LiFeAs

• Neutral cleave plane

- Neutral cleave plane
- Detailed knowledge of electronic structure

- Neutral cleave plane
- Detailed knowledge of electronic structure

ARPES Knolle *et al.* 2012

- Neutral cleave plane
- Detailed knowledge of electronic structure

ARPES Knolle *et al.* 2012

STM Allan & Rost *et al.* 2012

- Neutral cleave plane
- Detailed knowledge of electronic structure

ARPES Knolle *et al.* 2012

STM Allan & Rost *et al.* 2012

Umezawa et al. 2012

- Neutral cleave plane
- Detailed knowledge of electronic structure

ARPES Knolle *et al.* 2012

STM Allan & Rost *et al.* 2012

- Neutral cleave plane
- Detailed knowledge of electronic structure

ARPES Knolle *et al.* 2012

STM Allan & Rost *et al.* 2012

Umezawa et al. 2012

- Large hole pocket (γ) with a single orbital character d_{xy}

1. Identify suspects

Bosons suspects in LiFeAs

- Fe E_g optical phonon
 - argued to induce orbital fluctuation
 - Ω =15meV (Raman, DFT)

Bosons suspects in LiFeAs Phonons

Raman Um *et al.* 2012

- Fe E_g optical phonon
 - argued to induce orbital fluctuation
 - Ω =15meV (Raman, DFT)

Bosons suspects in LiFeAs Phonons Spin Fluctuation

Raman Um *et al.* 2012

- Fe E_g optical phonon
 - argued to induce orbital fluctuation
 - Ω =15meV (Raman, DFT)

Bosons suspects in LiFeAs Phonons Spin Fluctuation

Raman Um *et al.* 2012

- Fe E_g optical phonon
 - argued to induce orbital fluctuation
 - Ω =15meV (Raman, DFT)

Inelastic Neutron Taylor *et al.* 2011

Bosons suspects in LiFeAs Phonons Spin Fluctuation

30

25

20

15

10

5

Energy (meV)

Raman Um *et al.* 2012 0 0.5 1 Q(A⁻¹) 1.5 2 Q(A⁻¹) Inelastic Neutron

Taylor *et al.* 2011

Intensity (mb sr⁻¹ meV⁻¹ f.u.⁻¹)

1.5

0.5

- Fe E_g optical phonon
 - argued to induce orbital fluctuation
 - Ω =15meV (Raman, DFT)
- Resonant mode centered at $Q=(\pi, \pi)$ (AFSF) $- \Omega=6meV$
2. Gather evidence

Scanning Tunneling Spectroscopy Quasiparticle Interference

2. Gather evidence

Scanning Tunneling Spectroscopy Quasiparticle Interference

Milan P. Allan

Andreas W. Rost

Freek Massee

J.C. Davis

Scanning Tunneling Spectroscopy

$$g(\mathbf{r}, \omega = eV) \equiv \frac{\mathrm{d}I}{\mathrm{d}V}(\mathbf{r}, V)$$

Quasiparticle Interference

3. Match evidence to a suspect

Electron Self Energy

Mark Fischer

Self-Energy

• Self energy captures electron-boson coupling

$$\hat{G}^{-1}(\mathbf{k},\omega) = \hat{G}_0^{-1}(\mathbf{k},\omega) - \hat{\Sigma}(\mathbf{k},\omega)$$

- ReΣ : change in dispersion
- ImΣ: broadening

• Self energy captures electron-boson coupling

$$\hat{G}^{-1}(\mathbf{k},\omega) = \hat{G}_0^{-1}(\mathbf{k},\omega) - \hat{\Sigma}(\mathbf{k},\omega)$$

- $\text{Re}\Sigma$: change in dispersion
- $Im\Sigma$: broadening

Three moving parts

• Self energy captures electron-boson coupling

$$\hat{G}^{-1}(\mathbf{k},\omega) = \hat{G}_0^{-1}(\mathbf{k},\omega) - \hat{\Sigma}(\mathbf{k},\omega)$$

- $\text{Re}\Sigma$: change in dispersion
- ImΣ: broadening

Three moving parts

Fermion propagator =>=

• Self energy captures electron-boson coupling

$$\hat{G}^{-1}(\mathbf{k},\omega) = \hat{G}_0^{-1}(\mathbf{k},\omega) - \hat{\Sigma}(\mathbf{k},\omega)$$

- $\text{Re}\Sigma$: change in dispersion
- ImΣ: broadening

Three moving parts

- Fermion propagator =>=
- Boson propagator

• Self energy captures electron-boson coupling

$$\hat{G}^{-1}(\mathbf{k},\omega) = \hat{G}_0^{-1}(\mathbf{k},\omega) - \hat{\Sigma}(\mathbf{k},\omega)$$

- $\text{Re}\Sigma$: change in dispersion
- ImΣ: broadening

Three moving parts

- Fermion propagator =>=
- Boson propagator
- Coupling vertex

- Tunneling experiment
 - Superconducting Pb
 - Signature of electronphonon coupling

Migdal-Eliashberg,

- Tunneling experiment
 - Superconducting Pb
 - Signature of electronphonon coupling

- Tunneling experiment
 - Superconducting Pb
 - Signature of electronphonon coupling

- Tunneling experiment
 Superconducting Pb
 - Signature of electronphonon coupling

Migdal-Eliashberg,

Q,

 Start from Fermi liquid
 Compute self energy to all orders, ignoring vertex correction

→ Boson coupling produces <u>both</u> SC and high energy fingerprint

Challenges

- No separation of scales for spin fluctuation
 Vertex correction cannot be ignored
- Multiple bands (5 Fe3d-orbitals)

- 1. Start from experimentally measured gap (BdG)
- 2. Compute lowest order self energy
- → Boson coupling produces high energy fingerprint

- Tunneling
 - Superconducting Pb
 - Signature of electronphonon coupling

- Tunneling
 - Superconducting Pb
 - Signature of electronphonon coupling

- BdG + perturbative S.E.
 - Circular FS + S-wave Δ
 - Einstein phonon Ω
 - Reproduces deviation from BCS (mean field)

- Tunneling
 - Superconducting Pb
 - Signature of electronphonon coupling
- BdG + perturbative S.E.
 - Circular FS + S-wave Δ
 - Einstein phonon Ω
 - Reproduces deviation from BCS (mean field)

What about cuprate?

PHYSICAL REVIEW B 69, 094523 (2004)

Effect of an electron-phonon interaction on the one-electron spectral weight of a *d*-wave superconductor

A. W. Sandvik,^{1,2,*} D. J. Scalapino,^{2,†} and N. E. Bickers^{3,‡}

¹Department of Physics, Åbo Akademi University, Porthansgatan 3, FIN-20500 Turku, Finland ²Department of Physics, University of California, Santa Barbara, California 93106-9530, USA ³Department of Physics, University of Southern California, Los Angeles, California 90089-0484, USA (Received 5 September 2003; published 30 March 2004)

Effect of an electron-phonon interaction on the one-electron spectral weight of a *d*-wave superconductor

A. W. Sandvik,^{1,2,*} D. J. Scalapino,^{2,†} and N. E. Bickers^{3,‡}

 ¹Department of Physics, Åbo Akademi University, Porthansgatan 3, FIN-20500 Turku, Finland
 ²Department of Physics, University of California, Santa Barbara, California 93106-9530, USA
 ³Department of Physics, University of Southern California, Los Angeles, California 90089-0484, USA (Received 5 September 2003; published 30 March 2004)

Effect of an electron-phonon interaction on the one-electron spectral weight of a *d*-wave superconductor

A. W. Sandvik,^{1,2,*} D. J. Scalapino,^{2,†} and N. E. Bickers^{3,‡}

¹Department of Physics, Åbo Akademi University, Porthansgatan 3, FIN-20500 Turku, Finland ²Department of Physics, University of California, Santa Barbara, California 93106-9530, USA ³Department of Physics, University of Southern California, Los Angeles, California 90089-0484, USA (Received 5 September 2003; published 30 March 2004)

Model Electronic Structure of LiFeAs

- Three band model
 - Electron pockets (β_1, β_2) around M
 - Large hole pocket (γ) around Γ with uniform orbital character (d_{xy})

Model Electronic Structure of LiFeAs

- Three band model
 - Electron pockets (β_1, β_2) around M
 - Large hole pocket (γ) around Γ with uniform orbital character (d_{xy})
- Experimentally measured Superconducting gap

Model for AF Spin Fluctuation

• Peaked at $Q = (\pi, \pi)$ with energy $\Omega = 6 \text{meV}$

Model for AF Spin Fluctuation

- Peaked at $Q = (\pi, \pi)$ with energy $\Omega = 6$ meV
- Gaussian with $\xi = 6a$ (FWHM: ~12% of π/a)

Eg (Fe) phonon

Ω =15meV

coupling vertex orbital dependent
 → effective momentum
 dependence

Eg (Fe) phonon

0

$\Omega = 15 \text{meV}$

→ effective momentum
 → dependence

Holstein Eg phonon was shown to induce orbital fluctuations

[Kontani & Onari, PRL 2010]

QPI Calculation with self-energy dressed Greens function

QPI Calculation with self-energy dressed Greens function

$$\hat{G}^{-1}(\mathbf{k},\omega) = \hat{G}_0^{-1}(\mathbf{k},\omega) - \hat{\Sigma}(\mathbf{k},\omega)$$
$\hat{G}^{-1}(\mathbf{k},\omega) = \hat{G}_0^{-1}(\mathbf{k},\omega) - \hat{\Sigma}(\mathbf{k},\omega)$

 $g(\mathbf{q},\omega) \propto \operatorname{Im} \sum_{\mathbf{k}} \left[\hat{G}(\mathbf{k},\omega) \hat{T} \hat{G}(\mathbf{k}+\mathbf{q},\omega) \right]^{11}$

$$\hat{G}^{-1}(\mathbf{k},\omega) = \hat{G}_0^{-1}(\mathbf{k},\omega) - \hat{\Sigma}(\mathbf{k},\omega)$$

$$g(\mathbf{q},\omega) \propto \operatorname{Im} \sum_{\mathbf{k}} \left[\hat{G}(\mathbf{k},\omega) \hat{T} \hat{G}(\mathbf{k}+\mathbf{q},\omega) \right]^{T}$$

 $\hat{G}^{-1}(\mathbf{k},\omega) = \hat{G}_0^{-1}(\mathbf{k},\omega) - \hat{\Sigma}(\mathbf{k},\omega)$

$$g(\mathbf{q},\omega) \propto \mathrm{Im} \sum_{\mathbf{k}} \left[\hat{G}(\mathbf{k},\omega) \hat{T} \hat{G}(\mathbf{k}+\mathbf{q},\omega) \right]^{\mathrm{I}}$$

 $g(\mathbf{q}, \omega)$ (T-matrix)

 $\hat{G}^{-1}(\mathbf{k},\omega) = \hat{G}_0^{-1}(\mathbf{k},\omega) - \hat{\Sigma}(\mathbf{k},\omega)$

$$g(\mathbf{q},\omega) \propto \operatorname{Im} \sum_{\mathbf{k}} \left[\hat{G}(\mathbf{k},\omega) \hat{T} \hat{G}(\mathbf{k}+\mathbf{q},\omega) \right]^{T}$$

Comparison of Theory and Experiment

Self-energy due to AFSF

Ľ

γ

 β_1, β_2

M

Ľ

γ

 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2$

M

Ľ

γ

 β_1, β_2

M

Energy Dependent Anisotropy Ľ β_1, β_2 γ M Theory STS Energy (1/2,1/2)²/_{a0} $(1/2, 1/2)^{2\pi}/a_{0}$ E-B coupling FeF high high Δ_{max} FeA S Δ_{\min} 3 meV 3 meV low low 0

Energy Dependent Anisotropy β_1, β_2 γ M STS Theory Energy (1/2,1/2)²/_{a0} (1/2,1/2)²¹¹/a E-B coupling FeF high high Δ_{max} FeA S Δ_{\min} 3 meV 3 meV low low 0

Low energy anisotropy due to gap anisotropy

Ľ

γ

 β_1, β_2

Ľ

γ

High energy self-energy effect Intensity suppressed along Fe-Fe

Insight from Kinematics

Insight from Kinematics

 AFSF centered at (Q, Ω)
 Strong self energy effect when satisfying

 $\omega_{\mathbf{k}}^{\gamma} = \omega_{\mathbf{k}-\mathbf{Q}}^{\beta} + \Omega$

- AFSF couples γ pocket to β_1 and β_2
- Energy dependent anisotropy

Insight from Kinematics

 AFSF centered at (Q, Ω)
 Strong self energy effect when satisfying

 $\omega_{\mathbf{k}}^{\gamma} = \omega_{\mathbf{k}-\mathbf{Q}}^{\beta} + \Omega$

- AFSF couples γ pocket to β_1 and β_2
- Energy dependent anisotropy

• STS

3

 β_1, β_2

M

γ

Energy Dependent Anisotropy • Theory (AFSF) • STS

Self-energy due to Eg phonon

• Fe E_g optical phonon

• Fe E_g optical phonon – induces orbital fluctuation

- Fe E_g optical phonon
 - induces orbital fluctuation
 - Ω =15meV (Raman, DFT)

- Fe E_g optical phonon
 - induces orbital fluctuation
 - Ω =15meV (Raman, DFT)
 - coupling vertex orbital dependent

 \rightarrow effective momentum dependence

- Fe E_g optical phonon
 - induces orbital fluctuation
 - $\Omega = 15 \text{meV} (\text{Raman, DFT})$
 - coupling vertex orbital dependent

→ effective momentum dependence

• Isotropic self energy on γ

- Fe E_g optical phonon
 - induces orbital fluctuation
 - $\Omega = 15 \text{meV} (\text{Raman, DFT})$
 - coupling vertex orbital dependent

→ effective momentum dependence

• Isotropic self energy on γ

- Fe E_g optical phonon
 - induces orbital fluctuation
 - $\Omega = 15 \text{meV} (\text{Raman, DFT})$
 - coupling vertex orbital dependent

→ effective momentum dependence

• Isotropic self energy on γ

- Fe E_g optical phonon
 - induces orbital fluctuation
 - $\Omega = 15 \text{meV} (\text{Raman, DFT})$
 - coupling vertex orbital dependent

→ effective momentum dependence

Isotropic self energy on γ
 uniform orbital character (d_{xy})

- Fe E_g optical phonon
 - induces orbital fluctuation
 - $\Omega = 15 \text{meV} (\text{Raman, DFT})$
 - − coupling vertex orbital dependent
 → effective momentum

dependence

- Isotropic self energy on γ

 uniform orbital character (d_{xv})
 - kinematics predicts no anisotropy

• Lowest order self-energy due to electronboson coupling

- Lowest order self-energy due to electronboson coupling
- Predict SF coupling self-energy $\Sigma(k,\omega)$ effects in QPI n(q,E)

- Lowest order self-energy due to electronboson coupling
- Predict SF coupling self-energy $\Sigma(k,\omega)$ effects in QPI n(q,E)
 - Sensitive to bare band-structure

- Lowest order self-energy due to electronboson coupling
- Predict SF coupling self-energy $\Sigma(k,\omega)$ effects in QPI n(q,E)
 - Sensitive to bare band-structure
 - Strongly q-dependent: anisotropic

- Lowest order self-energy due to electronboson coupling
- Predict SF coupling self-energy $\Sigma(k,\omega)$ effects in QPI n(q,E)
 - Sensitive to bare band-structure
 - Strongly q-dependent: anisotropic

Mechanism:Summary Allan, Lee etal, arXiv:1402.3714, to appear in Nat. Phys.

- Fingerprint of electronboson coupling in LiFeAs
 :energy selective anisotropic self-energy
- Mode at finite Q→ anisotropic self energy

Collaborators

Experimentalists

J.C. Davis (Cornell, BNL) H. Eisaki (AIST) K. Fujita (Cornell) ChungKoo Kim (Cornell) Y. Kohsaka (RIKEN) Jihnhwan Lee (KAIST) K. Shen (Cornell) A. Schmit (Berkeley) S. Uchida (U-Tokyo)

Theorists

M. Lawler (SUNY Binghamton) A. Mesaros (Cornell, Leiden) J. Sethna (Cornell) S. Sachdev (Harvard) J. Zaanen (Leiden) Kyungmin Lee (Cornell) Mark Fischer (Cornell) Arun Paramekanti (U Toronto)

References Kim et. al., PRB **77**, 184514 (2008) Lawler, Fujita, et. al., Nature **466**, 347 (2010) Mesaros, Fujita, et. al, Science **333**, 426 (2011) Fischer and Kim, PRB **84**, 144502 (2011) Fujita, et. al., Science (2014) Allan, Lee et. al., to appear in Nature Physics (2014) Fischer, et. al., to appear in NJP (2014)