Lect2. New probes and new reality

Eun-Ah Kim
Cornell University
Lect2. New probes and new reality

probing possible QPT in the presence of disorder

Eun-Ah Kim
Cornell University
Lect2. New probes and new reality

probing possible QPT in the presence of disorder with scanning probes

Eun-Ah Kim
Cornell University
$O_N(x)$ map at $E = 6.0 \text{meV}$
$O_N(x)$ map at $E = 6.0\text{meV}$

$O_N(x)$ map at $E = 102.0\text{meV}$
New probes and new reality

• Effect of disorder on QPT’s

• Cuprates, a case study: got nematic?

• Look out
Effects of disorder on QPT’s

• Disorder is quenched
 - perfectly correlated along the τ direction
 - correlations increase the disorder effect (harder to average out fluctuation)

Disorder generically has stronger effects on QPT’s than on classical transitions

Effects of disorder on Phase Transitions

- Defects, impurities are always present
- Random field v.s T_c: different effects on the classical Ising PT. (Imry-Ma, v.s. Harris)
Harris Criterion (random T_c)

- Variation of average local T_c in volume ξ^d

If true, inhomogeneity vanish at large length scales
Harris Criterion (random T_c)

- Variation of average local T_c in volume ξ^d

If true, inhomogeneity vanish at large length scales
Harris Criterion (random T_c)

- Variation of average local T_c in volume ξ^d

$$\Delta \langle T_c(x) \rangle \sim \xi^{-d/2}$$

If true, inhomogeneity vanish at large length scales
Harris Criterion (random T_c)

- Variation of average local T_c in volume ξ^d
 \[\Delta \langle T_c(x) \rangle \sim \xi^{-d/2} \]

- "Distance" from global T_c in volume ξ^d
 \[t \sim \xi^{-1/\nu} \]

If true, inhomogeneity vanish at large length scales
Harris Criterion (random T_c)

- Variation of average local T_c in volume ξ^d
 \[\Delta \langle T_c(x) \rangle \sim \xi^{-d/2} \]

- "Distance" from global T_c in volume ξ^d
 \[t \sim \xi^{-1/\nu} \]

- Harris criterion
 \[\Delta \langle T_c(x) \rangle < t \iff d\nu > 2 \]
 If true, inhomogeneity vanish at large length scales
Harris Criterion (random T_c)

- Variation of average local T_c in volume ξ^d
 \[\Delta \langle T_c(x) \rangle \sim \xi^{-d/2} \]

- “Distance” from global T_c in volume ξ^d
 \[t \sim \xi^{-1/\nu} \]

- Harris criterion
 \[\Delta \langle T_c(x) \rangle < t \quad \Leftrightarrow \quad d\nu > 2 \quad \text{about clean CP.} \]
 If true, inhomogeneity vanish at large length scales.
Imry-Ma argument (random field)

- Random field breaks the order parameter symmetry
- Domains are pinned by the local fields
- Transition is rounded for $d \leq 2$
- At $d=2$ (lower critical dimension), domains are exponentially large
Know your OP and the types of disorder
Nematic QPT in cuprates?
Theory of the nodal nematic quantum phase transition in superconductors

Eun-Ah Kim,1 Michael J. Lawler,2 Paul Oreto,1 Subir Sachdev,3 Eduardo Fradkin,3 and Steven A. Kivelson1

1Department of Physics, Stanford University, Stanford, California 94305, USA
2Department of Physics, University of Toronto, Toronto, Ontario, Canada
3Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA

(Received 15 February 2008; published 22 May 2008)

Nodal nematic QCP
deep inside d-wave SC
Nematic QCP, license to exist?

Theory of the nodal nematic quantum phase transition in superconductors

Eun-Ah Kim,1 Michael J. Lawler,2 Paul Oreto,1 Subir Sachdev,3 Eduardo Fradkin,3 and Steven A. Kivelson1
1Department of Physics, Stanford University, Stanford, California 94305, USA
2Department of Physics, University of Toronto, Toronto, Ontario, Canada
3Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA
(Received 15 February 2008; published 22 May 2008)

• Nodal nematic QCP deep inside d-wave SC

nematic QCP inside SC phase?
Nodal nematic QCP, license to exist?

Physical Review B 77, 184514 (2008)

Theory of the nodal nematic quantum phase transition in superconductors

Eun-Ah Kim,1 Michael J. Lawler,2 Paul Oreto,1 Subir Sachdev,3 Eduardo Fradkin,3 and Steven A. Kivelson1
1Department of Physics, Stanford University, Stanford, California 94305, USA
2Department of Physics, University of Toronto, Toronto, Ontario, Canada
3Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA

(Received 15 February 2008; published 22 May 2008)

- **Nodal nematic QCP** deep inside d-wave SC
- **Nematic d-SC:**
 - d-SC + small s-component
 \[\Delta_d (\cos k_x - \cos k_y) + \lambda \phi \]
- Nematic QCP inside SC phase?
Looking for nematic critical fluctuations

- **Self energy** $\Sigma(\vec{q}, \omega)$ **due to fluctuation**

 k-selective decoherence

Interference of nematic quantum critical quasiparticles: a route to the octet model

Eun-Ah Kim1 and Michael J. Lawler2,1

1Department of Physics, Cornell University, Ithaca, NY 14853

2Department of Physics, Binghamton University, Binghamton NY 13902

(Dated: November 13, 2008)

arXiv:0811.2242

$\Sigma\psi_i(\vec{q}, \omega) = \tau_1 \quad k \quad k-q \quad \tau_1$

QPI peaks
BSCCO, got nematic?
Acknowledgements

Prof. Michael Lawler
Binghamton, Cornell

Prof. James Sethna
Cornell

Dr. Andy Schmit
Cornell

Prof. Seamus Davis
Cornell, BNL
Local measure of broken symmetry?

dI/dV(ω)-map
0D T_c=86K (p=)

R-map
UD T_c=45K (p=0.08)

Z-map(ω)
UD T_c=45K

Figure S7 a-f. A series of images displaying the real space conductance ratio Z as a function of energy rescaled to the local psuedogap value, e = E/Δ_i(r). Each pixel location was rescaled independently of the others. The common color scale illustrates that the bond centered pattern appears strongest in Z exactly at E = Δ_i(r).
Piet Mondrian, 1915. Says he is searching for hidden order in nature...
Local measure of broken symmetry?

HAMLET: Do you see yonder cloud that's almost in shape of a camel?
POLONIUS: By th'mass, and 'tis like a camel indeed.
HAMLET: Methinks it is like a weasel.
POLONIUS: It is backed like a weasel.

--W. Shakespeare (S. Chakravarty’s perspectives Science 08)

Challenge: An objective measure

UD $T_c=45K$ (p=0.08) Kohsaka et al, Nature 454, 1072 (2008)
Local measure of broken symmetry?

HAMLET: Do you see yonder cloud that's almost in shape of a camel?
POLONIUS: By th'mass, and 'tis like a camel indeed.
HAMLET: Methinks it is like a weasel.
POLONIUS: It is backed like a weasel.

--W. Shakespeare (S. Chakravarty’s perspectives Science 08)

M. Lawler et al, in prep.

Challenge: An objective measure
Candidate broken symmetries

- Translational symmetry
 \(\hat{T}_a, \hat{T}_b \)
- Rotational symmetry
 \(\hat{R}_{\pi/2} \)

Can we separately measure?

Need a \(\hat{T}_a, \hat{T}_b \) preserving order parameter
On the shoulder of

- Relating asymmetry to a quantitative measure
 \[Z(r, w) R(r) \]

 P. Anderson, N.P. Ong
 M.B.J. Meinders, H. Eskes, G.A. Sawatzky
 M. Randeria et al,
 PRL 95, 137001 (2005)

- Fourier filtering to look for stripe

 \[N_f(r, E) = \int dr' f(r - r') N(r', E), \]
 \[f(r) \propto \Lambda^2 e^{-r^2/\Lambda^2} \left[\cos(\pi x/2a) + \cos(\pi y/2a) \right]. \]

 S. Kivelson et al,
 RMP 75, 1201 (2003)
Local measure of broken symmetry?

Z-map intensity at E = 150.0meV
Local measure of broken symmetry?

Z-map intensity at $E = 150.0\text{meV}$

Q_x vs Q_y?

S_x vs S_y
Listen to Bragg Peaks
• Bragg peak

\[\tilde{Z}(\tilde{Q}_x) = \frac{1}{\sqrt{N}} \sum_{\tilde{R}+\tilde{d}} Z(\tilde{R} + \tilde{d}) e^{-i\tilde{Q}_x \cdot \tilde{d}} \]

\[\tilde{Q}_x = (2\pi/a, 0) \]

• Need O sites

\[\tilde{Z}(\tilde{Q}_x) = \tilde{Z}_{Cu} - \tilde{Z}_{Ox} + \tilde{Z}_{Oy}, \quad \tilde{Z}(\tilde{Q}_y) = \tilde{Z}_{Cu} + \tilde{Z}_{Ox} - \tilde{Z}_{Oy} \]

\[\mathcal{O}_N \propto (\tilde{Z}_{Ox} - \tilde{Z}_{Oy}) \]
• Bragg peak

\[\tilde{Z}(\tilde{Q}_x) = \frac{1}{\sqrt{N}} \sum_{\tilde{R}+\tilde{d}} Z(\tilde{R} + \tilde{d}) e^{-i\tilde{Q}_x \cdot \tilde{d}} \]

\[\tilde{Q}_x = (2\pi/a, 0) \]

• Need O sites

\[\tilde{Z}(\tilde{Q}_x) = \tilde{Z}_{Cu} - \tilde{Z}_{Ox} + \tilde{Z}_{Oy}, \quad \tilde{Z}(\tilde{Q}_y) = \tilde{Z}_{Cu} + \tilde{Z}_{Ox} - \tilde{Z}_{Oy} \]

\[\mathcal{O}_N \propto (\tilde{Z}_{Ox} - \tilde{Z}_{Oy}) \]
Q_1 vs Q_2

- **Bragg peak**
 \[\tilde{Z}(\tilde{Q}_x) = \frac{1}{\sqrt{N}} \sum_{\tilde{R} + \tilde{d}} Z(\tilde{R} + \tilde{d}) e^{-i\tilde{Q}_x \cdot \tilde{d}} \]
 \[\tilde{Q}_x = (2\pi/a, 0) \]

- **Nematic OP**
 \[O_N \equiv \frac{[\tilde{Z}(\tilde{Q}_x) - \tilde{Z}(\tilde{Q}_y) + \tilde{Z}(-\tilde{Q}_x) - \tilde{Z}(-\tilde{Q}_y)]}{(\text{sum})} \]

- **Need O sites**
 \[\tilde{Z}(\tilde{Q}_x) = \tilde{Z}_{Cu} - \tilde{Z}_{Ox} + \tilde{Z}_{Oy}, \quad \tilde{Z}(\tilde{Q}_y) = \tilde{Z}_{Cu} + \tilde{Z}_{Ox} - \tilde{Z}_{Oy} \]
 \[O_N \propto (\tilde{Z}_{Ox} - \tilde{Z}_{Oy}) \]
Q₁ vs Q₂

- **Bragg peak**
 \[
 \tilde{Z}(\vec{Q}_x) = \frac{1}{\sqrt{N}} \sum_{\vec{R} + \vec{d}} Z(\vec{R} + \vec{d})e^{-i\vec{Q}_x \cdot \vec{d}}
 \]
 \[
 \vec{Q}_x = (2\pi/a, 0)
 \]

- **Nematic OP**
 \[
 O_N \equiv \frac{[\tilde{Z}(\vec{Q}_x) - \tilde{Z}(\vec{Q}_y) + \tilde{Z}(\vec{Q}_x) - \tilde{Z}(\vec{Q}_y)]}{(\text{sum})}
 \]

 \(\Rightarrow\) **Measure C₄ breaking**

- **Need O sites**
 \[
 \tilde{Z}(\vec{Q}_x) = \tilde{Z}_{Cu} - \tilde{Z}_{Ox} + \tilde{Z}_{Oy}, \quad \tilde{Z}(\vec{Q}_y) = \tilde{Z}_{Cu} + \tilde{Z}_{Ox} - \tilde{Z}_{Oy}
 \]
 \[
 O_N \propto (\tilde{Z}_{Ox} - \tilde{Z}_{Oy})
 \]
\[\tilde{Z}(\tilde{Q}_x) = \frac{1}{\sqrt{N}} \sum_{\tilde{R} + \tilde{d}} Z(\tilde{R} + \tilde{d}) e^{-i\tilde{Q}_x \cdot \tilde{d}} \]
\[\tilde{Q}_x = (2\pi/a, 0) \]

- Bragg peak

\[O_N \equiv \frac{[\tilde{Z}(\tilde{Q}_x) - \tilde{Z}(\tilde{Q}_y) + \tilde{Z}(-\tilde{Q}_x) - \tilde{Z}(-\tilde{Q}_y)]}{(sum)} \]

\[\Rightarrow \text{Measure C}_4 \text{ breaking} \]

- Nematic OP

\[\tilde{Z}(\tilde{Q}_x) = \tilde{Z}_{Cu} - \tilde{Z}_{O_x} + \tilde{Z}_{O_y}, \quad \tilde{Z}(\tilde{Q}_y) = \tilde{Z}_{Cu} + \tilde{Z}_{O_x} - \tilde{Z}_{O_y} \]

\[O_N \propto (\tilde{Z}_{O_x} - \tilde{Z}_{O_y}) \]

V. Emery, PRL 58, 2974 (1987)
Nematic ordering in UD 45

\[O_N \equiv \left[\tilde{Z}(Q_x) - \tilde{Z}(Q_y) + \tilde{Z}(-Q_x) - \tilde{Z}(-Q_y) \right] / \text{sum} \]

Extracted from published data, T=4K

Domain size in Z-map
Domain size in Z-map

Z-map intensity at $E = 6.0\,\text{meV}$
Nematic domains

- Shift Q_x, Q_y to origin ("tune to the channel")
- Low pass filter (long distance physics)
Nematic domains

- Shift Q_x, Q_y to origin ("tune to the channel")

- Low pass filter (long distance physics)
Listen to channel S
Oriented stripe domains

- Shift S_x, S_y to origin ("tune to the channel")

- Low pass filter (long distance physics)
Hypothesis: longer ranged orientational ordering than stripe ordering?
Hypothesis: longer ranged orientational ordering than stripe ordering?
Hypothesis: longer ranged orientational ordering than stripe ordering?

Example:

Weak Pinning and Hexatic Order in a Doped Two-Dimensional Charge-Density-Wave System

Hongjie Dai, Huifen Chen, and Charles M. Lieber

Departments of Chemistry and Applied Physics, Columbia University, New York, New York 10027

(Received 11 July 1990; revised manuscript received 25 February 1991)
Hypothesis: longer ranged orientational ordering than stripe ordering?

Example:

Weak Pinning and Hexatic Order in a Doped Two-Dimensional Charge-Density-Wave System

Hongjie Dai, Huifen Chen, and Charles M. Lieber

Departments of Chemistry and Applied Physics, Columbia University, New York, New York 10027

(Received 11 July 1990; revised manuscript received 25 February 1991)

Scanning-tunneling microscopy has been used to characterize the effects of Nb impurities on the in-commensurate charge-density-wave (CDW) phase in 1T-TaS₂. Real- and reciprocal-space data indicate that disorder in the CDW is due to dislocations and small random rotations of the CDW. The dislocations destroy translational order; however, calculations show that the orientational order is long range.
Hypothesis: longer ranged orientational ordering than stripe ordering?

Example:

Weak Pinning and Hexatic Order in a Doped Two-Dimensional Charge-Density-Wave System

Hongjie Dai, Huifen Chen, and Charles M. Lieber
Departments of Chemistry and Applied Physics, Columbia University, New York, New York 10027
(Received 11 July 1990; revised manuscript received 25 February 1991)

Scanning-tunneling microscopy has been used to characterize the effects of Nb impurities on the incommensurate charge-density-wave (CDW) phase in 1T-TaS₂. Real- and reciprocal-space data indicate that disorder in the CDW is due to dislocations and small random rotations of the CDW. The dislocations destroy translational order; however, calculations show that the orientational order is long range.
Hypothesis: longer ranged orientational ordering than stripe ordering?

Example:

Weak Pinning and Hexatic Order in a Doped Two-Dimensional Charge-Density-Wave System

Hongjie Dai, Huifen Chen, and Charles M. Lieber

Departments of Chemistry and Applied Physics, Columbia University, New York, New York 10027

(Received 11 July 1990; revised manuscript received 25 February 1991)

Scanning-tunneling microscopy has been used to characterize the effects of Nb impurities on the incommensurate charge-density-wave (CDW) phase in 1T-TaS_2. Real- and reciprocal-space data indicate that disorder in the CDW is due to dislocations and small random rotations of the CDW. The dislocations destroy translational order; however, calculations show that the orientational order is long range in the Nb-doped samples. These small rotations are readily observed by viewing the images at a glancing angle along the indicated lines. Analyses of atomic-
Hypothesis: longer ranged orientational ordering than stripe ordering?

Example:

Scanning-tunneling microscopy has been used to characterize the effects of Nb impurities on the incommensurate charge-density-wave (CDW) phase in $1T$-TaS$_2$. Real- and reciprocal-space data indicate that disorder in the CDW is due to dislocations and small random rotations of the CDW. The dislocations destroy translational order; however, calculations show that the orientational order is long range in the Nb-doped samples. These small rotations are readily observed by viewing the images at a glancing angle along the indicated lines. Analyses of atomic-
Electronic Nematic in Cuprates?

Looking ahead

• Doping dependence?
• Temperature dependence?
• Diffraction measurements?

‣ Phenomenological model

‣ Why would cuprates do that?

‣ Is it useful for superconductivity?