## Lect2. New probes and new reality

Eun-Ah Kim

Cornell University

### Lect2. New probes and new reality

#### probing possible QPT in the presence of disorder

Eun-Ah Kim

Cornell University

### Lect2. New probes and new reality

## probing possible QPT in the presence of disorder with scanning probes

Eun-Ah Kim

Cornell University





### New probes and new reality

- Effect of disorder on QPT's
- Cuprates, a case study: got nematic?
- Look out

#### Effects of disorder on QPT's

Disorder is quenched
perfectly correlated along the τ direction
correlations increase the disorder effect (harder to average out fluctuation)



Disorder generically has stronger effects on QPT's than on classical transitions

Ref: T. Vojta, Journal of Phys. A, 39, 143

#### **Effects of disorder on Phase Transitions**

- Defects, impurities are always present
- Random field v.s T<sub>c</sub>: different effects on the classical Ising PT. (Imry-Ma, v.s. Harris)



- Variation of average local  $T_c$  in volume  $\xi^d$ 



• Variation of average local  $T_c$  in volume  $\xi^d$ 



• Variation of average local  $T_c$  in volume  $\xi^d$ 

 $\Delta \langle T_c(x) \rangle \sim \xi^{-d/2}$ 



• Variation of average local  $T_c$  in volume  $\xi^d$ 

 $\Delta \langle T_c(x) \rangle \sim \xi^{-d/2}$ 

 $t \sim \xi^{-1/\nu}$ 

- "Distance" from global  $T_c$  in volume  $\xi^d$ 



• Variation of average local  $T_c$  in volume  $\xi^d$ 

 $\Delta \langle T_c(x) \rangle \sim \xi^{-d/2}$ 

- "Distance" from global  $T_c$  in volume  $\xi^d$ 

 $t \sim \xi^{-1/\nu}$ 

• Harris criterion

 $\Delta \langle T_c(x) \rangle < t \quad \Longleftrightarrow \quad d\nu > 2$ 



• Variation of average local  $T_c$  in volume  $\xi^d$ 

 $\Delta \langle T_c(x) \rangle \sim \xi^{-d/2}$ 

- "Distance" from global  $T_c$  in volume  $\xi^d$ 



• Harris criterion

 $\Delta \langle T_c(x) \rangle < t \iff d\nu > 2$  about clean CP. If true, inhomogeneity vanish at large length scales



### Imry-Ma argument (random field)

- Random field breaks the order parameter symmetry
- Domains are pinned by the local fields
- Transition is rounded for d≤2
- At d=2 (lower critical dimension), domains are exponentially large



Know your OP and the types of disorder Nematic QPT in cuprates?

### Nematic QCP, license to exist?

PHYSICAL REVIEW B 77, 184514 (2008)

#### Theory of the nodal nematic quantum phase transition in superconductors

 Eun-Ah Kim,<sup>1</sup> Michael J. Lawler,<sup>2</sup> Paul Oreto,<sup>1</sup> Subir Sachdev,<sup>3</sup> Eduardo Fradkin,<sup>3</sup> and Steven A. Kivelson<sup>1</sup>
 <sup>1</sup>Department of Physics, Stanford University, Stanford, California 94305, USA
 <sup>2</sup>Department of Physics, University of Toronto, Toronto, Ontario, Canada
 <sup>3</sup>Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA (Received 15 February 2008; published 22 May 2008)

• Nodal nematic QCP deep inside d-wave SC

### Nematic QCP, license to exist?

PHYSICAL REVIEW B 77, 184514 (2008)

#### Theory of the nodal nematic quantum phase transition in superconductors

 Eun-Ah Kim,<sup>1</sup> Michael J. Lawler,<sup>2</sup> Paul Oreto,<sup>1</sup> Subir Sachdev,<sup>3</sup> Eduardo Fradkin,<sup>3</sup> and Steven A. Kivelson<sup>1</sup>
 <sup>1</sup>Department of Physics, Stanford University, Stanford, California 94305, USA
 <sup>2</sup>Department of Physics, University of Toronto, Toronto, Ontario, Canada
 <sup>3</sup>Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA (Received 15 February 2008; published 22 May 2008)

• Nodal nematic QCP deep inside d-wave SC



nematic QCP inside SC phase?

### Nematic QCP, license to exist?

PHYSICAL REVIEW B 77, 184514 (2008)

#### Theory of the nodal nematic quantum phase transition in superconductors

 Eun-Ah Kim,<sup>1</sup> Michael J. Lawler,<sup>2</sup> Paul Oreto,<sup>1</sup> Subir Sachdev,<sup>3</sup> Eduardo Fradkin,<sup>3</sup> and Steven A. Kivelson<sup>1</sup>
 <sup>1</sup>Department of Physics, Stanford University, Stanford, California 94305, USA
 <sup>2</sup>Department of Physics, University of Toronto, Toronto, Ontario, Canada
 <sup>3</sup>Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA (Received 15 February 2008; published 22 May 2008)

• Nodal nematic QCP deep inside d-wave SC

• Nematic d-SC: d-SC + small s-component  $\Delta_d (\cos k_x - \cos k_y) + \lambda \phi$ 



### nematic QCP inside SC phase?

### Looking for nematic critical fluctuations

## •Self energy $\hat{\Sigma}(\vec{q}, \omega)$ due to fluctuation :k-selective decoherence



Interference of nematic quantum critical quasiparticles: a route to the octet model

Eun-Ah  $\operatorname{Kim}^1$  and Michael J. Lawler<sup>2, 1</sup>

<sup>1</sup>Department of Physics, Cornell University, Ithaca, NY 14853 <sup>2</sup>Department of Physics, Binghamton University, Binghamton NY 13902 (Dated: November 13, 2008)

#### arXiv:0811.2242



→ QPI peaks



# BSCCO, got nematic?

## Acknowledgements









Prof. Michael LawlerProf. James Sethna<br/>CornellDr. Andy SchmitProf. Seamus DavisBinghamton, CornellCornellCornellCornell, BNL



# $\begin{array}{c} dI/dV(\omega)\text{-map}\\ \text{McElroy et al, Nature 422, 592 (2003)}\\ \text{OD }T_c\text{=}86\text{K}\ (\text{p=}\ ) \end{array}$



 $\begin{array}{c} \mbox{R-map} \\ \mbox{Kohsaka et al, Science 315, 1380 (2007)} \\ \mbox{UD }T_c = 45 \mbox{K (p=0.08)} \end{array}$ 

a. e=0.4 **b.** *e*=0.6

0.69

**Figure S7 a-f.** A series of images displaying the real space conductance ratio *Z* as a function of energy rescaled to the local psuedogap value,  $e = E/\Delta_1(\mathbf{r})$ . Each pixel location was rescaled independently of the others. The common color scale illustrates that the bond centered pattern appears strongest in *Z* exactly at  $E = \Delta_1(\mathbf{r})$ .

1.8

Z-map( $\omega$ ) Kohsaka et al, Nature 454, 1072 (2008) UD T<sub>c</sub>=45K



Piet Mondrian, 1915. Says he is searching for hidden order in nature...

HAMLET: Do you see yonder cloud that's almost in shape of a camel?

POLONIUS: By th'mass, and 'tis like a camel indeed.

HAMLET: Methinks it is like a weasel.

POLONIUS: It is backed like a weasel.

--W. Shakespeare (S. Chakravarty's perspectives Science 08)



HAMLET: Do you see yonder cloud that's almost in shape of a camel?

POLONIUS: By th'mass, and 'tis like a camel indeed.

HAMLET: Methinks it is like a weasel.

POLONIUS: It is backed like a weasel.

--W. Shakespeare (S. Chakravarty's perspectives Science 08)



M. Lawler et al, in prep. Challenge: An objective measure

#### Candidate broken symmetries

2.7

0.9

0.6

Z-map intensity at E = 150.0 meV



• Translational symmetry  $\hat{T}_a, \hat{T}_b$ • Rotational symmetry  $\hat{R}_{\pi/2}$ 

Can we separately measure?

Need a  $\hat{T}_a, \hat{T}_b$  preserving order parameter

## On the shoulder of

• Relating asymmetry to a quantitative measure  $Z(\mathbf{r}, \mathbf{w}) = R(\mathbf{r})$ 

P. Anderson, N.P. Ong J. Phys. Chem. Solids, **67**,1(1993)

M.B.J. Meinders, H. Eskes, G.A. Sawatzky Phys. Rev. B, **48**, 3916 (1993)

M. Randeria et al, PRL **95**, 137001 (2005)

• Fourier filtering to look for stripe

$$N_f(\mathbf{r}, E) = \int d\mathbf{r}' f(\mathbf{r} - \mathbf{r}') N(\mathbf{r}', E),$$

$$f(\mathbf{r}) \propto \Lambda^2 e^{-r^2 \Lambda^2/2} [\cos(\pi x/2a) + \cos(\pi y/2a)].$$

C. Howald et al, S. Kivelson et al, PRB **67**, 014533 (2003) RMP **75**, 1201 (2003)













# Listen to Bragg Peaks



# • Bragg peak $\tilde{Z}(\vec{Q}_x) = \frac{1}{\sqrt{N}} \sum_{\vec{R}+\vec{d}} Z(\vec{R}+\vec{d})e^{-i\vec{Q}_x \cdot \vec{d}}$ $\vec{Q}_x = (2\pi/a, 0)$

# • Need O sites $\tilde{Z}(\vec{Q}_x) = \bar{Z}_{Cu} - \bar{Z}_{O_x} + \bar{Z}_{O_y}, \quad \tilde{Z}(\vec{Q}_y) = \bar{Z}_{Cu} + \bar{Z}_{O_x} - \bar{Z}_{O_y}$ $\mathcal{O}_N \propto (\bar{Z}_{O_x} - \bar{Z}_{O_y})$





# • Need O sites $\tilde{Z}(\vec{Q}_x) = \bar{Z}_{Cu} - \bar{Z}_{O_x} + \bar{Z}_{O_y}, \quad \tilde{Z}(\vec{Q}_y) = \bar{Z}_{Cu} + \bar{Z}_{O_x} - \bar{Z}_{O_y}$ $\mathcal{O}_N \propto (\bar{Z}_{O_x} - \bar{Z}_{O_y})$





# • Need O sites $\tilde{Z}(\vec{Q}_x) = \bar{Z}_{Cu} - \bar{Z}_{O_x} + \bar{Z}_{O_y}, \quad \tilde{Z}(\vec{Q}_y) = \bar{Z}_{Cu} + \bar{Z}_{O_x} - \bar{Z}_{O_y}$ $\mathcal{O}_N \propto (\bar{Z}_{O_x} - \bar{Z}_{O_y})$









### Nematic ordering in UD 45

Qy O

 $Q_X$ 



#### Extracted from published data, T=4K

Kohsaka et al, Nature 454, 1072 (2008)

### Domain size in Z-map

#### Domain size in Z-map



#### Nematic domains

• Shift Q<sub>x</sub>, Q<sub>y</sub> to origin ("tune to the channel")

 $\rightarrow$ 

• Low pass filter (long distance physics)



#### Nematic domains

• Shift Q<sub>x</sub>, Q<sub>y</sub> to origin ("tune to the channel")

Qy

Sy

# • Low pass filter (long distance physics)



# Listen to channel S

### Oriented stripe domains

• Shift S<sub>x</sub>, S<sub>y</sub> to origin ("tune to the channel")

**Q**y

Qx

# • Low pass filter (long distance physics)



VOLUME 66, NUMBER 24

PHYSICAL REVIEW LETTERS

17 JUNE 1991

#### Weak Pinning and Hexatic Order in a Doped Two-Dimensional Charge-Density-Wave System

Hongjie Dai, Huifen Chen, and Charles M. Lieber Departments of Chemistry and Applied Physics, Columbia University, New York, New York 10027 (Received 11 July 1990; revised manuscript received 25 February 1991)

Example: VOLUME 66, NUMBER 24

PHYSICAL REVIEW LETTERS

17 JUNE 1991

#### Weak Pinning and Hexatic Order in a Doped Two-Dimensional Charge-Density-Wave System

Hongjie Dai, Huifen Chen, and Charles M. Lieber Departments of Chemistry and Applied Physics, Columbia University, New York, New York 10027 (Received 11 July 1990; revised manuscript received 25 February 1991)

Example: VOLUME 66, NUMBER 24

PHYSICAL REVIEW LETTERS

17 JUNE 1991

#### Weak Pinning and Hexatic Order in a Doped Two-Dimensional Charge-Density-Wave System

Hongjie Dai, Huifen Chen, and Charles M. Lieber

Departments of Chemistry and Applied Physics, Columbia University, New York, New York 10027 (Received 11 July 1990; revised manuscript received 25 February 1991)

Scanning-tunneling microscopy has been used to characterize the effects of Nb impurities on the incommensurate charge-density-wave (CDW) phase in 1T-TaS<sub>2</sub>. Real- and reciprocal-space data indicate that disorder in the CDW is due to dislocations and small random rotations of the CDW The dislocations destroy translational order; however, calculations show that the orientational order is long range.

Example: VOLUME 66, NUMBER 24

PHYSICAL REVIEW LETTERS

17 JUNE 1991

#### Weak Pinning and Hexatic Order in a Doped Two-Dimensional Charge-Density-Wave System

Hongjie Dai, Huifen Chen, and Charles M. Lieber

Departments of Chemistry and Applied Physics, Columbia University, New York, New York 10027 (Received 11 July 1990; revised manuscript received 25 February 1991)

Scanning-tunneling microscopy has been used to characterize the effects of Nb impurities on the incommensurate charge-density-wave (CDW) phase in 1T-TaS<sub>2</sub>. Real- and reciprocal-space data indicate that disorder in the CDW is due to dislocations and small random rotations of the CDW The dislocations destroy translational order; however, calculations show that the orientational order is long range.



Example: VOLUME 66, NUMBER 24

PHYSICAL REVIEW LETTERS

17 JUNE 1991

#### Weak Pinning and Hexatic Order in a Doped Two-Dimensional Charge-Density-Wave System

Hongjie Dai, Huifen Chen, and Charles M. Lieber

Departments of Chemistry and Applied Physics, Columbia University, New York, New York 10027 (Received 11 July 1990; revised manuscript received 25 February 1991)

Scanning-tunneling microscopy has been used to characterize the effects of Nb impurities on the incommensurate charge-density-wave (CDW) phase in 1T-TaS<sub>2</sub>. Real- and reciprocal-space data indicate that disorder in the CDW is due to dislocations and small random rotations of the CDW The dislocations destroy translational order; however, calculations show that the orientational order is long range.



in the Nb-doped samples. These small rotations are readily observed by viewing the images at a glancing angle along the indicated lines. Analyses of atomic-

Example: VOLUME 66, NUMBER 24

PHYSICAL REVIEW LETTERS

17 JUNE 1991

#### Weak Pinning and Hexatic Order in a Doped Two-Dimensional Charge-Density-Wave System

Hongjie Dai, Huifen Chen, and Charles M. Lieber

Departments of Chemistry and Applied Physics, Columbia University, New York, New York 10027 (Received 11 July 1990; revised manuscript received 25 February 1991)

Scanning-tunneling microscopy has been used to characterize the effects of Nb impurities on the incommensurate charge-density-wave (CDW) phase in 1T-TaS<sub>2</sub>. Real- and reciprocal-space data indicate that disorder in the CDW is due to dislocations and small random rotations of the CDW The dislocations destroy translational order; however, calculations show that the orientational order is long range.



in the Nb-doped samples. These small rotations are readily observed by viewing the images at a glancing angle along the indicated lines. Analyses of atomicElectronic Nematic in Cuprates? Looking ahead

- Doping dependence?
- Temperature dependence?
- Diffraction measurements?



Phenomenological model

Why would cuprates do that?

Is it useful for superconductivity?