Lect2. New probes and new reality

Eun-Ah Kim

Cornell University

Lect2. New probes and new reality

probing possible QPT in the presence of disorder

Eun-Ah Kim

Cornell University

Lect2. New probes and new reality

probing possible QPT in the presence of disorder with scanning probes

Eun-Ah Kim
Cornell University

- Effect of disorder on QPT's
- Cuprates, a case study: got nematic?
- Look out

Đffects of disorder on QPT's

- Disorder is quenched
-perfectly correlated along the τ direction
-correlations increase the disorder effect (harder to average out fluctuation)

Disorder generically has stronger effects on QPT's than on classical transitions

Ref: T. Vojta, Journal of Phys. A, 39, 143

Effects of disorder on Phase Transitions

- Defects, impurities are always present
- Random field v.s T_{c} : different effects on the classical Ising PT. (Imry-Ma, v.s. Harris)

Harris Criterion (random T_{c})

- Variation of average local T_{c} in volume ξ^{d}

10
$1 \quad 1 \quad 10$
1-p
1101

If true, inhomogeneity vanish at large length scales

Harris Criterion (random T_{c})

- Variation of average local T_{c} in volume ξ^{d}

If true, inhomogeneity vanish at large length scales

Harris Criterion (random T_{c})

- Variation of average local T_{c} in volume ξ^{d}

$$
\Delta\left\langle T_{c}(x)\right\rangle \sim \xi^{-d / 2}
$$

If true, inhomogeneity vanish at large length scales

Harris Criterion (random T_{c})

- Variation of average local T_{c} in volume ξ^{d}

$$
\Delta\left\langle T_{c}(x)\right\rangle \sim \xi^{-d / 2}
$$

- "Distance" from global T_{c} in volume ξ^{d}

$$
t \sim \xi^{-1 / \nu}
$$

If true, inhomogeneity vanish at large length scales

Harris Criterion (random T_{c})

- Variation of average local T_{c} in volume ξ^{d}

$$
\Delta\left\langle T_{c}(x)\right\rangle \sim \xi^{-d / 2}
$$

- "Distance" from global T_{c} in volume ξ^{d}

$$
t \sim \xi^{-1 / \nu}
$$

- Harris criterion
$\Delta\left\langle T_{c}(x)\right\rangle<t \Leftrightarrow d \nu>2$
If true, inhomogeneity vanish at large length scales

Harris Criterion (random T_{c})

- Variation of average local T_{c} in volume ξ^{d}

$$
\Delta\left\langle T_{c}(x)\right\rangle \sim \xi^{-d / 2}
$$

- "Distance" from global T_{c} in volume ξ^{d}

$$
t \sim \xi^{-1 / \nu}
$$

- Harris criterion
$\Delta\left\langle T_{c}(x)\right\rangle<t \Leftrightarrow d \nu>2$ about clean CP.
If true, inhomogeneity vanish at large length scales

Imry-Ma argument (random field)

- Random field breaks the order parameter symmetry
- Domains are pinned by the local fields
- Transition is rounded for $d \leqslant 2$
- At d=2 (lower critical dimension), domains are exponentially large

Know your OP and the types of disorder

Nematic QPT in cuprates?

Nematic QCP, license to exist?

PHYSICAL REVIEW B 77, 184514 (2008)

Theory of the nodal nematic quantum phase transition in superconductors
Eun-Ah Kim, ${ }^{1}$ Michael J. Lawler, ${ }^{2}$ Paul Oreto, ${ }^{1}$ Subir Sachdev, ${ }^{3}$ Eduardo Fradkin, ${ }^{3}$ and Steven A. Kivelson ${ }^{1}$
${ }^{1}$ Department of Physics, Stanford University, Stanford, California 94305, USA
${ }^{2}$ Department of Physics, University of Toronto, Toronto, Ontario, Canada
${ }^{3}$ Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA (Received 15 February 2008; published 22 May 2008)

- Nodal nematic QCP deep inside d-wave SC

Nematic QCP, license to exist?

PHYSICAL REVIEW B 77, 184514 (2008)

Theory of the nodal nematic quantum phase transition in superconductors
Eun-Ah Kim, ${ }^{1}$ Michael J. Lawler, ${ }^{2}$ Paul Oreto, ${ }^{1}$ Subir Sachdev, ${ }^{3}$ Eduardo Fradkin, ${ }^{3}$ and Steven A. Kivelson ${ }^{1}$
${ }^{1}$ Department of Physics, Stanford University, Stanford, California 94305, USA
${ }^{2}$ Department of Physics, University of Toronto, Toronto, Ontario, Canada
${ }^{3}$ Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA (Received 15 February 2008; published 22 May 2008)

- Nodal nematic QCP deep inside d-wave SC

nematic QCP inside SC phase?

Nematic QCP, license to exist?

PHYSICAL REVIEW B 77, 184514 (2008)

Theory of the nodal nematic quantum phase transition in superconductors
Eun-Ah Kim, ${ }^{1}$ Michael J. Lawler, ${ }^{2}$ Paul Oreto, ${ }^{1}$ Subir Sachdev, ${ }^{3}$ Eduardo Fradkin, ${ }^{3}$ and Steven A. Kivelson ${ }^{1}$
${ }^{1}$ Department of Physics, Stanford University, Stanford, California 94305, USA
${ }^{2}$ Department of Physics, University of Toronto, Toronto, Ontario, Canada
${ }^{3}$ Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA (Received 15 February 2008; published 22 May 2008)

- Nodal nematic QCP deep inside d-wave SC
- Nematic d-SC: d-SC + small s-component $\Delta_{d}\left(\cos k_{x}-\cos k_{y}\right)+(\lambda \phi)$

nematic QCP inside SC phase?

Looking for nematic critical fluctuations

- Self energy $\hat{\Sigma}(\vec{q}, \omega)$ due to fluctuation :k-selective decoherence

Interference of nematic quantum critical quasiparticles: a route to the octet model
Eun-Ah Kim ${ }^{1}$ and Michael J. Lawler ${ }^{2,1}$
${ }^{1}$ Department of Physics, Cornell University, Ithaca, NY 14853
${ }^{2}$ Department of Physics, Binghamton University, Binghamton NY 13902
(Dated: November 13, 2008)
arXiv:0811.2242

BSCCO, got nematic?

Acknowledgements

Prof. Michael Lawler Prof. James Sethna Binghamton, Cornell

Cornell

Dr. Andy Schmit Prof. Seamus Davis Cornell

Cornell, BNL

Local measure of broken symmetry?

dI/dV(ω)-map
McElroy et al, Nature 422, 592 (2003)
OD $\mathrm{T}_{\mathrm{c}}=86 \mathrm{~K}$ ($\mathrm{p}=$)

R-map
Kohsaka et al, Science 315, 1380 (2007)

$$
\text { UD } \mathrm{T}_{\mathrm{c}}=45 \mathrm{~K}(\mathrm{p}=0.08)
$$

0.69 1.8

Figure $\mathbf{S 7}$ a-f. A series of images displaying the real space conductance ratio Z as a function of energy rescaled to the local psuedogap value, $e=E / \Delta_{1}(\mathbf{r})$. Each pixel location was rescaled independently of the others. The common color scale illustrates that the bond centered pattern appears strongest in Z exactly at $E=\Delta_{1}(\mathbf{r})$.

Z-map(ω)

Kohsaka et al, Nature 454, 1072 (2008) UD $\mathrm{T}_{\mathrm{c}}=45 \mathrm{~K}$

Piet Mondrian, 1915. Says he is searching for hidden order in nature...

Local measure of broken symmetry?

HAMLET: Do you see yonder cloud that's almost in shape of a camel? POLONIUS: By th'mass, and 'tis like a camel indeed.
HAMLET: Methinks it is like a weasel.
POLONIUS: It is backed like a weasel.
--W. Shakespeare (S. Chakravarty's perspectives Science 08)

Local measure of broken symmetry?

HAMLET: Do you see yonder cloud that's almost in shape of a camel? POLONIUS: By th'mass, and 'tis like a camel indeed.
HAMLET: Methinks it is like a weasel.
POLONIUS: It is backed like a weasel.
--W. Shakespeare (S. Chakravarty's perspectives Science 08)

M. Lawler et al, in prep.

Challenge: An objective measure

Candidate broken symmetries

- Translational symmetry

$$
\hat{T}_{a}, \hat{T}_{b}
$$

- Rotational symmetry

$$
\hat{R}_{\pi / 2}
$$

Can we separately measure?
Need a \hat{T}_{a}, \hat{T}_{b} preserving order parameter

On the shoulder of

- Relating asymmetry to a quantitative measure

$$
Z(\mathrm{r}, \mathrm{w}) \quad R(\mathrm{r})
$$

P. Anderson, N.P. Ong
J. Phys. Chem. Solids, 67,1(1993)
M.B.J. Meinders, H. Eskes, G.A. Sawatzky Phys. Rev. B, 48, 3916 (1993)
M. Randeria et al, PRL 95, 137001 (2005)

- Fourier filtering to look for stripe

$$
N_{f}(\mathbf{r}, E)=\int d \mathbf{r}^{\prime} f\left(\mathbf{r}-\mathbf{r}^{\prime}\right) N\left(\mathbf{r}^{\prime}, E\right)
$$

$$
f(\mathbf{r}) \propto \Lambda^{2} e^{-r^{2} \Lambda^{2} / 2}[\cos (\pi x / 2 a)+\cos (\pi y / 2 a)]
$$

C. Howald et al,
S. Kivelson et al, PRB 67, 014533 (2003) RMP 75,1201 (2003)

Local measure of broken symmetry?

Local measure of broken symmetry?

Local measure of broken symmetry?

Listen to Bragg Peaks

- Bragg peak

$$
\begin{array}{r}
\tilde{Z}\left(\vec{Q}_{x}\right)=\frac{1}{\sqrt{N}} \sum_{\vec{R}+\vec{d}} Z(\vec{R}+\vec{d}) e^{-i \vec{Q}_{x} \cdot \vec{d}} \\
\vec{Q}_{x}=(2 \pi / a, 0)
\end{array}
$$

- Need O sites
$\tilde{Z}\left(\vec{Q}_{x}\right)=\bar{Z}_{\mathrm{Cu}}-\bar{Z}_{\mathrm{O}_{x}}+\bar{Z}_{\mathrm{O}_{y}}, \tilde{Z}\left(\vec{Q}_{y}\right)=\bar{Z}_{\mathrm{Cu}}+\bar{Z}_{\mathrm{O}_{x}}-\bar{Z}_{\mathrm{O}_{y}}$

$$
\mathcal{O}_{N} \propto\left(\bar{Z}_{O_{x}}-\bar{Z}_{O_{y}}\right)
$$

$\overrightarrow{Q_{1}} \operatorname{vs}^{\stackrel{\rightharpoonup}{Q_{2}^{2}}}$

- Bragg peak

$$
\begin{gathered}
\tilde{Z}\left(\vec{Q}_{x}\right)=\frac{1}{\sqrt{N}} \sum_{\vec{R}+\vec{d}} Z(\vec{R}+\vec{d}) e^{-i \vec{Q}_{x} \cdot \vec{d}} \\
\vec{Q}_{x}=(2 \pi / a, 0)
\end{gathered}
$$

- Need O sites
$\tilde{Z}\left(\vec{Q}_{x}\right)=\bar{Z}_{\mathrm{Cu}}-\bar{Z}_{\mathrm{O}_{x}}+\bar{Z}_{\mathrm{O}_{y}}, \tilde{Z}\left(\vec{Q}_{y}\right)=\bar{Z}_{\mathrm{Cu}}+\bar{Z}_{\mathrm{O}_{x}}-\bar{Z}_{\mathrm{O}_{y}}$

$$
\mathcal{O}_{N} \propto\left(\bar{Z}_{O_{x}}-\bar{Z}_{O_{y}}\right)
$$

$\overrightarrow{Q_{1}} \mathbf{v s} \stackrel{\rightharpoonup}{Q 2}$

- Bragg peak

$$
\begin{gathered}
\tilde{Z}\left(\vec{Q}_{x}\right)=\frac{1}{\sqrt{N}} \sum_{\vec{R}+\vec{d}} Z(\vec{R}+\vec{d}) e^{-i \vec{Q}_{x} \cdot \vec{d}} \vec{Q}_{x}=(2 \pi / a, 0)
\end{gathered}
$$

- Nematic OP

$$
\mathcal{O}_{N} \equiv \frac{\left[\tilde{Z}\left(\vec{Q}_{x}\right)-\tilde{Z}\left(\vec{Q}_{y}\right)+\tilde{Z}\left(-\vec{Q}_{x}\right)-\tilde{Z}\left(-\vec{Q}_{y}\right)\right]}{(\text { sum })}
$$

- Need O sites
$\tilde{Z}\left(\vec{Q}_{x}\right)=\bar{Z}_{\mathrm{Cu}}-\bar{Z}_{\mathrm{O}_{x}}+\bar{Z}_{\mathrm{O}_{y}}, \tilde{Z}\left(\vec{Q}_{y}\right)=\bar{Z}_{\mathrm{Cu}}+\bar{Z}_{\mathrm{O}_{x}}-\bar{Z}_{\mathrm{O}_{y}}$

$$
\mathcal{O}_{N} \propto\left(\bar{Z}_{O_{x}}-\bar{Z}_{O_{y}}\right)
$$

$\stackrel{\square}{Q_{1} v s \oplus}$

- Bragg peak

$$
\begin{gathered}
\tilde{Z}\left(\vec{Q}_{x}\right)=\frac{1}{\sqrt{N}} \sum_{\vec{R}+\vec{d}} Z(\vec{R}+\vec{d}) e^{-i \vec{Q}_{x} \cdot \vec{d}} \\
\vec{Q}_{x}=(2 \pi / a, 0)
\end{gathered}
$$

- Nematic OP

$$
\mathcal{O}_{N} \equiv \frac{\left[\tilde{Z}\left(\vec{Q}_{x}\right)-\tilde{Z}\left(\vec{Q}_{y}\right)+\tilde{Z}\left(-\vec{Q}_{x}\right)-\tilde{Z}\left(-\vec{Q}_{y}\right)\right]}{(\operatorname{sum})}
$$

\Rightarrow Measure C_{4} breaking

- Need O sites
$\tilde{Z}\left(\vec{Q}_{x}\right)=\bar{Z}_{\mathrm{Cu}}-\bar{Z}_{\mathrm{O}_{x}}+\bar{Z}_{\mathrm{O}_{y}}, \tilde{Z}\left(\vec{Q}_{y}\right)=\bar{Z}_{\mathrm{Cu}}+\bar{Z}_{\mathrm{O}_{x}}-\bar{Z}_{\mathrm{O}_{y}}$

$$
\mathcal{O}_{N} \propto\left(\bar{Z}_{O_{x}}-\bar{Z}_{O_{y}}\right)
$$

\bar{Q}

- Bragg peak

$$
\begin{gathered}
\tilde{Z}\left(\vec{Q}_{x}\right)=\frac{1}{\sqrt{N}} \sum_{\vec{R}+\vec{d}} Z(\vec{R}+\vec{d}) e^{-i \vec{Q}_{x} \cdot \vec{d}} \\
\vec{Q}_{x}=(2 \pi / a, 0)
\end{gathered}
$$

- Nematic OP

- 0 $\mathrm{O}_{\mathrm{x}}^{\square} \mathrm{Cu}$

$$
\begin{aligned}
\mathcal{O}_{N} & \equiv \frac{\left[\tilde{Z}\left(\vec{Q}_{x}\right)-\tilde{Z}\left(\vec{Q}_{y}\right)+\tilde{Z}\left(-\vec{Q}_{x}\right)-\tilde{Z}\left(-\vec{Q}_{y}\right)\right]}{(\text { sum })} \\
& \Rightarrow \text { Measure } \mathrm{C}_{4} \text { breaking }
\end{aligned}
$$

- Need O sites
$\tilde{Z}\left(\vec{Q}_{x}\right)=\bar{Z}_{\mathrm{Cu}}-\bar{Z}_{\mathrm{O}_{x}}+\bar{Z}_{\mathrm{O}_{y}}, \tilde{Z}\left(\vec{Q}_{y}\right)=\bar{Z}_{\mathrm{Cu}}+\bar{Z}_{\mathrm{O}_{x}}-\bar{Z}_{\mathrm{O}_{y}}$

$$
\mathcal{O}_{N} \propto\left(\bar{Z}_{O_{x}}-\bar{Z}_{O_{y}}\right)
$$

V. Emery, PRL 58, 2974 (198ヶ)

Kivelson, Fradkin, Geballe, PRB 69, 144505 (2004)

Nematic ordering in UD 45

Extracted from published data, T=4K
Kohsaka et al, Nature 454, 1072 (2008)

Domain size in Z-map

Nematic domains

- Shift Qx, Qy to origin ("tune to the channel")
- Low pass filter (long distance physics)

Nematic domains

- Shift Qx, Qy to origin ("tune to the channel")
- Low pass filter (long distance physics)

Listen to channel S

Oriented stripe domains

- Shift $\mathrm{S}_{\mathrm{x}}, \mathrm{S}_{\mathrm{y}}$ to origin ("tune to the channel")
- Low pass filter (long distance physics)

Hypothesis: longer ranged orientational ordering than stripe ordering?

Hypothesis: longer ranged orientational ordering than stripe ordering?

Weak Pinning and Hexatic Order in a Doped Two-Dimensional Charge-Density-Wave System
Hongjie Dai, Huifen Chen, and Charles M. Lieber

Hypothesis: longer ranged orientational ordering than stripe ordering?

Example:

Weak Pinning and Hexatic Order in a Doped Two-Dimensional Charge-Density-Wave System
Hongjie Dai, Huifen Chen, and Charles M. Lieber

Hypothesis: longer ranged orientational ordering than stripe ordering?

Example:

Weak Pinning and Hexatic Order in a Doped Two-Dimensional Charge-Density-Wave System
Hongjie Dai, Huifen Chen, and Charles M. Lieber
Departments of Chemistry and Applied Physics, Columbia University, New York, New York 10027
(Received 11 July 1990; revised manuscript received 25 February 1991)

Scanning-tunneling microscopy has been used to characterize the effects of Nb impurities on the incommensurate charge-density-wave (CDW) phase in $1 T$-TaS 2 . Real- and reciprocal-space data indicate that disorder in the CDW is due to dislocations and small random rotations of the CDW. The dislocations destroy translational order; however, calculations show that the orientational order is long range.

Hypothesis: longer ranged orientational ordering than stripe ordering?

Example:

Weak Pinning and Hexatic Order in a Doped Two-Dimensional Charge-Density-Wave System
Hongjie Dai, Huifen Chen, and Charles M. Lieber
Departments of Chemistry and Applied Physics, Columbia University, New York, New York 10027
(Received 11 July 1990; revised manuscript received 25 February 1991)

Scanning-tunneling microscopy has been used to characterize the effects of Nb impurities on the incommensurate charge-density-wave (CDW) phase in $1 T-\mathrm{TaS}_{2}$. Real- and reciprocal-space data indicate that disorder in the CDW is due to dislocations and small random rotations of the CDW. The dislocations destroy translational order; however, calculations show that the orientational order is long range.

Hypothesis: longer ranged orientational ordering than stripe ordering?

Example:

Weak Pinning and Hexatic Order in a Doped Two-Dimensional Charge-Density-Wave System
Hongjie Dai, Huifen Chen, and Charles M. Lieber
Departments of Chemistry and Applied Physics, Columbia University, New York, New York 10027
(Received 11 July 1990; revised manuscript received 25 February 1991)

Scanning-tunneling microscopy has been used to characterize the effects of Nb impurities on the incommensurate charge-density-wave (CDW) phase in $1 T-\mathrm{TaS}_{2}$. Real- and reciprocal-space data indicate that disorder in the CDW is due to dislocations and small random rotations of the CDW, The dislocations destroy translational order; however, calculations show that the orientational order is long range.

in the Nb -doped samples. These small rotations are readily observed by viewing the images at a glancing angle along the indicated lines. Analyses of atomic-

Hypothesis: longer ranged orientational ordering than stripe ordering?

Example:

Weak Pinning and Hexatic Order in a Doped Two-Dimensional Charge-Density-Wave System
Hongjie Dai, Huifen Chen, and Charles M. Lieber
Departments of Chemistry and Applied Physics, Columbia University, New York, New York 10027
(Received 11 July 1990; revised manuscript received 25 February 1991)

Scanning-tunneling microscopy has been used to characterize the effects of Nb impurities on the incommensurate charge-density-wave (CDW) phase in $1 T-\mathrm{TaS}_{2}$. Real- and reciprocal-space data indicate that disorder in the CDW is due to dislocations and small random rotations of the CDW, The dislocations destroy translational order; however, calculations show that the orientational order is long range.

in the Nb -doped samples. These small rotations are readily observed by viewing the images at a glancing angle along the indicated lines. Analyses of atomic-

Electronic Nematic in Cuprates?

Looking ahead

- Doping dependence?
- Temperature dependence?
- Diffraction measurements?

- Phenomenological model
- Why would cuprates do that?

Is it useful for superconductivity?

