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• Strategies:		
1)	interaction,		
2)	spinlessness



Strategy	I

• Manipulate	the	pairing	interaction:	
target	non-phononic	mechanism
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• Spin-fermion	model
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FIG. 1: (Color online) Phase diagrams for three di↵erent cases: (a) the Doniach phase diagram with J
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� 1. When C < (logB)2/B, phase
diagram (b) applies; when C > (logB)2/B, phase diagram (c) applies. The system consists of two components: conduction
electrons and local moments. Here | represents a phase where the two components coexist but are e↵ectively decoupled, and ⇥
represents a phase where the two components hybridize, forming Kondo singlets.

When the local moments form a lattice, the corresponding RKKY interactions are encoded in the Hamiltonian
HRKKY =

P
ij JRKKY(Ri � Rj)Si · Sj , which generically leads to magnetic ordering of the moments.

The competition of Jex, TK and JRKKY gives rise to a high dimensional phase diagram. We consider below repre-
sentative two dimensional cuts of such a high dimensional phase diagram in the plane expanded by the (normalized)
Kondo coupling JK and temperature T (see Fig.1). We consider three di↵erent cases here, as specified by the di↵erent
choices of the dominant energy scales.

When the spin exchange interaction is small, i.e. Jex ⌧ JRKKY and Jex ⌧ TK , we recover the original Doniach
phase diagram [6] (Fig.1a). At high temperatures, the local moments are incoherent, residing in a paramagnetic (PM)
state, decoupled from the conduction electrons which form a Fermi liquid (FL). Coherent many body states develop
as one lowers the temperature. In the parameter region where the Kondo coupling JK is small, one has JRKKY > TK ,
and the RKKY interaction dominates. The system develops long range magnetic order, e.g. antiferromagnetic (AFM)
order. We note that since the spin lattice is frustrated, RKKY interaction can also lead to more complicated magnetic
ordering patterns. In the parameter region where the Kondo coupling JK is large, one has TK > JRKKY, and the
Kondo e↵ect dominates. The conduction electrons and the local moments form Kondo singlets, and the system is in a
heavy Fermi liquid (HFL) state with a large Fermi surface, which counts both the conduction electrons and the local
moments.

Of more relevance to the present paper is the case where the RKKY interaction is never the dominant energy scale,
i.e. JRKKY < Jex for small JK and JRKKY < TK for large JK . The corresponding phase diagram has been studied
in [2,3] (see Fig.1b). At low temperatures, the phase diagram is determined by the competition between Jex and
TK . For large Kondo coupling JK , where TK is the dominant energy scale, the system is in the HFL state as in the
previous case. For JK small, where Jex is the dominant energy scale, the local moments are in a spin liquid (SL)
state, decoupled from the conduction electrons. Such a coexisting and decoupled FL and SL phase (hence named

Doniach	(1977)	
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When the local moments form a lattice, the corresponding RKKY interactions are encoded in the Hamiltonian
HRKKY =

P
ij JRKKY(Ri � Rj)Si · Sj , which generically leads to magnetic ordering of the moments.

The competition of Jex, TK and JRKKY gives rise to a high dimensional phase diagram. We consider below repre-
sentative two dimensional cuts of such a high dimensional phase diagram in the plane expanded by the (normalized)
Kondo coupling JK and temperature T (see Fig.1). We consider three di↵erent cases here, as specified by the di↵erent
choices of the dominant energy scales.

When the spin exchange interaction is small, i.e. Jex ⌧ JRKKY and Jex ⌧ TK , we recover the original Doniach
phase diagram [6] (Fig.1a). At high temperatures, the local moments are incoherent, residing in a paramagnetic (PM)
state, decoupled from the conduction electrons which form a Fermi liquid (FL). Coherent many body states develop
as one lowers the temperature. In the parameter region where the Kondo coupling JK is small, one has JRKKY > TK ,
and the RKKY interaction dominates. The system develops long range magnetic order, e.g. antiferromagnetic (AFM)
order. We note that since the spin lattice is frustrated, RKKY interaction can also lead to more complicated magnetic
ordering patterns. In the parameter region where the Kondo coupling JK is large, one has TK > JRKKY, and the
Kondo e↵ect dominates. The conduction electrons and the local moments form Kondo singlets, and the system is in a
heavy Fermi liquid (HFL) state with a large Fermi surface, which counts both the conduction electrons and the local
moments.

Of more relevance to the present paper is the case where the RKKY interaction is never the dominant energy scale,
i.e. JRKKY < Jex for small JK and JRKKY < TK for large JK . The corresponding phase diagram has been studied
in [2,3] (see Fig.1b). At low temperatures, the phase diagram is determined by the competition between Jex and
TK . For large Kondo coupling JK , where TK is the dominant energy scale, the system is in the HFL state as in the
previous case. For JK small, where Jex is the dominant energy scale, the local moments are in a spin liquid (SL)
state, decoupled from the conduction electrons. Such a coexisting and decoupled FL and SL phase (hence named
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represents a phase where the two components hybridize, forming Kondo singlets.

When the local moments form a lattice, the corresponding RKKY interactions are encoded in the Hamiltonian
HRKKY =

P
ij JRKKY(Ri � Rj)Si · Sj , which generically leads to magnetic ordering of the moments.

The competition of Jex, TK and JRKKY gives rise to a high dimensional phase diagram. We consider below repre-
sentative two dimensional cuts of such a high dimensional phase diagram in the plane expanded by the (normalized)
Kondo coupling JK and temperature T (see Fig.1). We consider three di↵erent cases here, as specified by the di↵erent
choices of the dominant energy scales.

When the spin exchange interaction is small, i.e. Jex ⌧ JRKKY and Jex ⌧ TK , we recover the original Doniach
phase diagram [6] (Fig.1a). At high temperatures, the local moments are incoherent, residing in a paramagnetic (PM)
state, decoupled from the conduction electrons which form a Fermi liquid (FL). Coherent many body states develop
as one lowers the temperature. In the parameter region where the Kondo coupling JK is small, one has JRKKY > TK ,
and the RKKY interaction dominates. The system develops long range magnetic order, e.g. antiferromagnetic (AFM)
order. We note that since the spin lattice is frustrated, RKKY interaction can also lead to more complicated magnetic
ordering patterns. In the parameter region where the Kondo coupling JK is large, one has TK > JRKKY, and the
Kondo e↵ect dominates. The conduction electrons and the local moments form Kondo singlets, and the system is in a
heavy Fermi liquid (HFL) state with a large Fermi surface, which counts both the conduction electrons and the local
moments.

Of more relevance to the present paper is the case where the RKKY interaction is never the dominant energy scale,
i.e. JRKKY < Jex for small JK and JRKKY < TK for large JK . The corresponding phase diagram has been studied
in [2,3] (see Fig.1b). At low temperatures, the phase diagram is determined by the competition between Jex and
TK . For large Kondo coupling JK , where TK is the dominant energy scale, the system is in the HFL state as in the
previous case. For JK small, where Jex is the dominant energy scale, the local moments are in a spin liquid (SL)
state, decoupled from the conduction electrons. Such a coexisting and decoupled FL and SL phase (hence named

Doniach	(1977)	

RKKY	interaction Kondo-Singlet
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When the local moments form a lattice, the corresponding RKKY interactions are encoded in the Hamiltonian
HRKKY =

P
ij JRKKY(Ri � Rj)Si · Sj , which generically leads to magnetic ordering of the moments.

The competition of Jex, TK and JRKKY gives rise to a high dimensional phase diagram. We consider below repre-
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phase diagram [6] (Fig.1a). At high temperatures, the local moments are incoherent, residing in a paramagnetic (PM)
state, decoupled from the conduction electrons which form a Fermi liquid (FL). Coherent many body states develop
as one lowers the temperature. In the parameter region where the Kondo coupling JK is small, one has JRKKY > TK ,
and the RKKY interaction dominates. The system develops long range magnetic order, e.g. antiferromagnetic (AFM)
order. We note that since the spin lattice is frustrated, RKKY interaction can also lead to more complicated magnetic
ordering patterns. In the parameter region where the Kondo coupling JK is large, one has TK > JRKKY, and the
Kondo e↵ect dominates. The conduction electrons and the local moments form Kondo singlets, and the system is in a
heavy Fermi liquid (HFL) state with a large Fermi surface, which counts both the conduction electrons and the local
moments.

Of more relevance to the present paper is the case where the RKKY interaction is never the dominant energy scale,
i.e. JRKKY < Jex for small JK and JRKKY < TK for large JK . The corresponding phase diagram has been studied
in [2,3] (see Fig.1b). At low temperatures, the phase diagram is determined by the competition between Jex and
TK . For large Kondo coupling JK , where TK is the dominant energy scale, the system is in the HFL state as in the
previous case. For JK small, where Jex is the dominant energy scale, the local moments are in a spin liquid (SL)
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When the local moments form a lattice, the corresponding RKKY interactions are encoded in the Hamiltonian
HRKKY =

P
ij JRKKY(Ri � Rj)Si · Sj , which generically leads to magnetic ordering of the moments.

The competition of Jex, TK and JRKKY gives rise to a high dimensional phase diagram. We consider below repre-
sentative two dimensional cuts of such a high dimensional phase diagram in the plane expanded by the (normalized)
Kondo coupling JK and temperature T (see Fig.1). We consider three di↵erent cases here, as specified by the di↵erent
choices of the dominant energy scales.

When the spin exchange interaction is small, i.e. Jex ⌧ JRKKY and Jex ⌧ TK , we recover the original Doniach
phase diagram [6] (Fig.1a). At high temperatures, the local moments are incoherent, residing in a paramagnetic (PM)
state, decoupled from the conduction electrons which form a Fermi liquid (FL). Coherent many body states develop
as one lowers the temperature. In the parameter region where the Kondo coupling JK is small, one has JRKKY > TK ,
and the RKKY interaction dominates. The system develops long range magnetic order, e.g. antiferromagnetic (AFM)
order. We note that since the spin lattice is frustrated, RKKY interaction can also lead to more complicated magnetic
ordering patterns. In the parameter region where the Kondo coupling JK is large, one has TK > JRKKY, and the
Kondo e↵ect dominates. The conduction electrons and the local moments form Kondo singlets, and the system is in a
heavy Fermi liquid (HFL) state with a large Fermi surface, which counts both the conduction electrons and the local
moments.

Of more relevance to the present paper is the case where the RKKY interaction is never the dominant energy scale,
i.e. JRKKY < Jex for small JK and JRKKY < TK for large JK . The corresponding phase diagram has been studied
in [2,3] (see Fig.1b). At low temperatures, the phase diagram is determined by the competition between Jex and
TK . For large Kondo coupling JK , where TK is the dominant energy scale, the system is in the HFL state as in the
previous case. For JK small, where Jex is the dominant energy scale, the local moments are in a spin liquid (SL)
state, decoupled from the conduction electrons. Such a coexisting and decoupled FL and SL phase (hence named

For	JRKKY~	JK2N(0)	<Jex	AFM	order	suppressed.
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represents a phase where the two components hybridize, forming Kondo singlets.

When the local moments form a lattice, the corresponding RKKY interactions are encoded in the Hamiltonian
HRKKY =

P
ij JRKKY(Ri � Rj)Si · Sj , which generically leads to magnetic ordering of the moments.

The competition of Jex, TK and JRKKY gives rise to a high dimensional phase diagram. We consider below repre-
sentative two dimensional cuts of such a high dimensional phase diagram in the plane expanded by the (normalized)
Kondo coupling JK and temperature T (see Fig.1). We consider three di↵erent cases here, as specified by the di↵erent
choices of the dominant energy scales.

When the spin exchange interaction is small, i.e. Jex ⌧ JRKKY and Jex ⌧ TK , we recover the original Doniach
phase diagram [6] (Fig.1a). At high temperatures, the local moments are incoherent, residing in a paramagnetic (PM)
state, decoupled from the conduction electrons which form a Fermi liquid (FL). Coherent many body states develop
as one lowers the temperature. In the parameter region where the Kondo coupling JK is small, one has JRKKY > TK ,
and the RKKY interaction dominates. The system develops long range magnetic order, e.g. antiferromagnetic (AFM)
order. We note that since the spin lattice is frustrated, RKKY interaction can also lead to more complicated magnetic
ordering patterns. In the parameter region where the Kondo coupling JK is large, one has TK > JRKKY, and the
Kondo e↵ect dominates. The conduction electrons and the local moments form Kondo singlets, and the system is in a
heavy Fermi liquid (HFL) state with a large Fermi surface, which counts both the conduction electrons and the local
moments.

Of more relevance to the present paper is the case where the RKKY interaction is never the dominant energy scale,
i.e. JRKKY < Jex for small JK and JRKKY < TK for large JK . The corresponding phase diagram has been studied
in [2,3] (see Fig.1b). At low temperatures, the phase diagram is determined by the competition between Jex and
TK . For large Kondo coupling JK , where TK is the dominant energy scale, the system is in the HFL state as in the
previous case. For JK small, where Jex is the dominant energy scale, the local moments are in a spin liquid (SL)
state, decoupled from the conduction electrons. Such a coexisting and decoupled FL and SL phase (hence named

Kondo-Singlet	+	RVB	singlet
+Cooper	pair	singlet

Coleman	&	Andrei	(XXXX)	
	Senthil,	Vojta,	Sachdev	(XXXX)

For	JRKKY~	JK2N(0)	<Jex	AFM	order	suppressed.
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Supplementary Figure S 4: Temperature (T ) dependent specific heat and entropy for
Pr2Zr2O7. (a) T dependence of the specific heat. Denote by CP , CL, and CCEF the total
specific heat, the lattice specific heat, and the crystalline electric field contribution to the spe-
cific heat, respectively. CMN is defined as CMN ≡ CM + CN = CP − CL − CCEF. CM is the
magnetic specific heat. CN is the Schottky-like specific heat that fits CMN below T ≈ 0.2 K
(supplementary note 4). (b) T dependence of the corresponding entropy obtained through inte-
gration from 70 mK. Shifted with respect to each other by the Pauling entropy, the two dashed
black lines denote ∆S for a two level system (R ln 2) and for spin ice.
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(supplementary note 4). (b) T dependence of the corresponding entropy obtained through inte-
gration from 70 mK. Shifted with respect to each other by the Pauling entropy, the two dashed
black lines denote ∆S for a two level system (R ln 2) and for spin ice.
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substrate in isolation should encodes the e↵ect of geometric frustrations and the exchange

energy scale J
ex

to account for the measured dynamic spin structure factor of the QSI.

If the wavefunction of the metallic electrons penetrates into the insulating substrate, the

dynamic degrees of freedom of each side will couple at the interface through the coupling

term H
K

. Although the well-known non-Kramers doublet nature of the moments on Pr3+19

gives rise to additional coupling between Pr quadrupole moments and conduction electron

density,26,27 we will focus on the Kondo-type coupling in this paper for simplicity as we found

the additional coupling to not a↵ect the results in a qualitative manner (see Supplementary

Material SMXXX). Specifically, we consider a uniform and isotropic Kondo-like coupling7

between coarse-grained operator S
a

(r, t) representing the density of the spin a-component

(a = x, y, z).28,29

H
K

= J
K

v
cell

X

a↵�

Z
d2r †

↵

(r)�a

↵�

 
�

(r)S
a

(r? = r, z = 0), (2)

where �a denotes the Pauli matrix with a = x, y, z, v
cell

the volume of the unit cell. Here

we set z = 0 at the interface. For the rest of this paper, we will focus on the weak-

coupling region of the phase space J
K

N(0) ⌧ 1 and the instability of FL|QSL phase against

superconductivity that would lead to the targeted SC|QSL phase of Fig.1 D (see also SM

Figure S1).

7 The leading e↵ect of the coupling (2) on the local moment physics in the regime

of interest is to induce the RKKY interaction that can drive ordering. However, for a

gapped spin liquid like Pr
2

Zr
2

O
7

, the QSL state would be stable as long as J
RKKY

< J
ex

.

Hence we can “integrate out” the local moments and focus on the e↵ect of the interaction

induced on the metallic layer. Upon integrating out the spin degree of freedom S
a

, new

e↵ective interactions between spin densities of the metallic layer that depends on the dynamic

correlation functions of the QSI substrate are generated. If hS
a

(r, t)i 6= 0, the leading e↵ect of

the coupling would have been to re-arrange the Fermi-surface of the metallic layer. However

since hS
a

(r, t)i = 0 for a QSL, the leading induced interaction is

H
int

(t) = �(J2

K

v2
cell

/2})
X

ab

Z
dt0

Z
d2rd2r0s

a

(r, t)hS
a

(r, 0, t)S
b

(r0, 0, t0)is
b

(r0, t0), (3)

where s
a

(r, t) =
P

↵�

 †
↵

(r, t)�a

↵�

 
�

(r, t) for a = x, y, z is the conduction electron spin

density. This induced e↵ective interaction with the characteristic energy scale V ⇠ J2

K

/J
ex

for the itinerant electrons can be viewed as the counterpart of RKKY interaction. Notice
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• Dimensionless	ratio:		

the dynamical entanglement between spins of QSI is imprinted on the e↵ective interaction

between itinerant electrons in Eq.(3). This implies that we can “manipulate” the interaction

between itinerant electrons through the choice of the QSL with its characteristic dynamic

spin-spin correlation function hS
a

(r, 0, t)S
b

(r0, 0, t0)i.

8 Now the low energy e↵ective theory defined by Eq.(1) and Eq.(3) describes an inter-

acting electron problem, which is generically hard to solve. To make the problem worse, the

e↵ective interaction Eq. (3) is highly structured as a result of the quantum entanglement

between spins of the QSI substrate. However, we can make non-trivial progress building on

the modern renormalization group based perspectives and the classic justification for the

mean-field theory treatment in the BCS theory. Firstly, we know from the renormalization

group theory that the only weak-coupling instability of a Fermi liquid in the absence of

Fermi-surface nesting is the superconducting instability.17 Secondly, armed with the separa-

tion of scale !
SF

/E
F

⌧ 1, we expect the mean-field theory treatment in the pairing channel

to yield a reliable prediction for the interacting fermion probelm when the interaction is

weak, i.e., � ⇠ N(0)V ⇠ J2

K

N(0)/J
ex

< 1. All together the problem at hand promises an

opportunity to predict an exotic superconductor whose pairing channel is determined by

momentum dependent interaction of Eq. (3), in a theoretically reliable approach.

9 Based on the above justifications, we investigate the problem of interfacial supercon-

ductivity in the proposed setting using mean-field theory in the pairing channel. Since

the electronic interaction inherited from the QSL is structured, we seek to determine the
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Dominant	Pairing	Channel

• Energy	integrated	spin	structure	factor	

1. SO(3)xSU(2)	reduced	to	U(1)
2. Quantum	#’s:	Jz=Lz+Sz	&	Parity
3. Resulting	interaction	suppresses	

even-parity	states	
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Criteria	for	Metal

• Structural	
‣ Lattice	match	

➡A2B2O7	

‣ No	orphan	bonds

• Electronic	
‣ Simple	isotropic	
Fermi	surface	

‣ Wave	function	
penetration	

‣ Odd-#	FS	around	high	
symmetry	points





Non-magnetic



Non-magnetic s-electrons:	
large	overlap,	
isotropic	FS.
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Band	structure	for	the	Proposal

x=0.2

• Isotropic	single	pocket	
centered	at	Γ-point
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Earlier	Proposal:	Excitonic	
mechanism

Little	(64),	Ginzburg	(70),	Bardeen	
(73)

Metal

Semi-conductor

• Unstable	against	
exchange.

• Intrinsically	s-wave.
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superconductor	riding	on	
QSL

Topological	Superconductivity	in	Metal/
Quantum-Spin-Ice	Heterostructures	

• First	T-inv	Topo	SC.

• Substantial	phase	space.
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Strategy	II

Manipulate	the	band	
structure



Topological	superconductivity	in	
group-VI	TMDs

Yi-Ting	Hsu,	Abolhassan	Vaezi,	E-AK	(in	preparation)
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Spinless	fermion	via	real	space	
splitting

• Proximity	
induce	topo	SC

Fu	&	Kane,	PRL	(2008)	
Experiments:	Wang	et	al	Science	336,	52	(2012)	
Xu	et	al,	Nat.Phys	10,	943	(2014)
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Band-selective	spin-splitting
•Partially	filled	crystal-field-split	d-bands

-	Conduction	band

-	Valence	band

: lz=0

: lz= ∓1

• Spin-orbit	coupling		

150~460meV



Confirmation	of	the	band	
structure

Iwasa	group	N.	Nano	(2014)
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k-space	spin-split	FS?

p-doped	group	VI-	TMD!
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Juice	for	superconductivity?

• n-doped	TMD's	
J.T.Ye	et	al.	(Science	2012)

• d	electrons	=>	expect	correlation	effects	



p-doped	TMD
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p-doped	TMD

Topological	SC?

Yi-Ting	Hsu Abolhassan	Vaezi

Moderate	correlation	(d-electron)

	k-space	spin-split	Fermi	surfaces
+

Mark	Fischer
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Model

•Kinetic	term

•Repulsive	interaction	term
Band-basis Spin-basis
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Superconductivity	out	of	
repulsive	interaction?	

•Kohn-Luttiger:	singularity	in	scattering	
amplitude	 �(~q)

•Two-step	RG	formulation
:	Fe-based	SC,	doped	graphene,	SrRuO

➡Non-s	wave
(Kohn	&Luttinger	1965)

Chubukov	&	Nandkishore,	Raghu	&	Kivelson		(2008	-	2012)



Two-step	RG	on	p-doped	TMD	
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Step	I:	W	->	Λ0
c†d†

•gintra,0	and	ginter,0	at	two-loop

g(0)inter(~q, ~q
0) = U + U3finter(~q, ~q

0)

g(0)intra(~q, ~q
0) = U3fintra(~q, ~q

0)

•f’s	<0	->	g(0)’s<0	in	anisotropic	channel
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Two	degenerate	possibilities

• Intra-pocket	p+ip • Inter-pocket	p’wave

-T-breaking

-Analogous	to	
Sr2RuO4	

-Modulated
-	C=1 -C=\pm	1	per	pocket
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