Nodal nematic quantum criticality and quasiparticle interference

Eun-Ah Kim Cornell University

References

E.-A. Kim et al., PRB 77, 184514 (2008) E.-A. Kim and M.J. Lawler, in preparation

Collaborators

M.J. Lawler(SUNY Binghamton, Cornell) P. Oreto(Stanford) S. Kivelson(Stanford) E.Fradkin(UIUC) S.Sachdev(Harvard) Nodal nematic quantum criticality and quasiparticle interference

- Introduction: electronic LC
- Nodal nematic quantum criticality
- Quasiparticle interference
- Outlook

Crystal

Т

Liquid

Liquid

Nematic

Smectic

Crystal

Reinitzer(1888)

Kivelson, Fradkin, Emery, Nature (1998)

Kivelson, Fradkin, Emery, Nature (1998)

Reinitzer(1888)

Kivelson, Fradkin, Emery, Nature (1998)

<u>2DEG under B</u>

Strongly correlated systems

AlGaAs

GaAs

----- 2DEG

Positive charge

75nm

-10nm

Conduction Band

Anisotropic phase in high Landau Levels: Quantum Hall nematic

Lilly et al, PRL 83, 824, (1999).

Anisotropic phase in high Landau Levels: Quantum Hall nematic

 $T_N = 100 \text{mK}$

Lilly et al, PRL 83, 824, (1999).

Anisotropic phase in an itinerant metamagnet Sr₃Ru₂O 7

Magnetoresistive anisotropy exposed by modest in-plane field Borzi et al, science 2007.

Anisotropy in magnetic $(\pi/a,\pi/b)$ neutron scattering peak

Pomeranchuk's instability

Pomeranchuk's instability

H.Yamase and W. Metzner, PRB (2006). L. Dell'Anna and W. Metzner, PRL (2007)

Pomeranchuk's instability

Pomeranchuk's instability

Pomeranchuk's instability

Pomeranchuk's instability

Fermi liquid breaks down

Pomeranchuk's instability

Fermi liquid breaks down some controversy over what is left

Cuprate: simplified life ?

The theory of nodal nematic quantum criticality

- Introduction: electronic nematic
- Nodal nematic quantum criticality
- Quasiparticle interference
- Outlook

Nematic QCP in the SC dome?

Hinkov et al, Science, 2008 ΤN **FWH**

Nematic QCP in the SC dome?

Nematic QCP in the SC dome?

• Nematic QPT deep inside d-wave SC

Nematic QPT deep inside d-wave SC

- Nematic QPT deep inside d-wave SC
- QPT of nodal qp's

- Nematic QPT deep inside d-wave SC
- QPT of nodal qp's
- Nematic d-SC: d-SC + small s-component $\Delta_d (\cos k_x - \cos k_y) + \lambda \phi$

nodal nematic QCP?

- Nematic QPT deep inside d-wave SC
- QPT of nodal qp's
- Nematic d-SC: d-SC + small s-component $\Delta_d (\cos k_x - \cos k_y) + \lambda \phi$

nodal nematic QCP?

Vojta, Zhang, Sachdev, PRL (2000)

• Nematic ordering: $C_{4v} \rightarrow C_{2v}$ \Leftrightarrow small s-wave component

- Nematic ordering: $C_{4v} \rightarrow C_{2v}$ \Leftrightarrow small s-wave component
- Shifts the nodes by $\lambda \phi / v_{\Delta}$

- Nematic ordering: $C_{4v} \rightarrow C_{2v}$ \Leftrightarrow small s-wave component
- Shifts the nodes by $\lambda \phi / v_{\Delta}$
- Ising symmetry

$$\mathcal{L}_{\phi} = \frac{1}{2}\phi^2 + \cdots$$

- Nematic ordering: $C_{4v} \rightarrow C_{2v}$ \Leftrightarrow small s-wave component
- Shifts the nodes by $\lambda \phi / v_{\Delta}$
- Ising symmetry

$$\mathcal{L}_{\phi} = \frac{1}{2}\phi^2 + \cdots$$

- Critical fluctuations
 - couple strongly to nodal fermions

•The nodal fermions

•The nodal fermions

$$\mathcal{L}_{\Psi} = \sum_{\alpha} \Psi_{1,\alpha}^{\dagger}(\vec{p}) \begin{pmatrix} -i\omega + v_F p_x & v_{\Delta} p_y \\ v_{\Delta} p_y & -i\omega - v_F p_x \end{pmatrix} \Psi_{1,\alpha}(\vec{p}) + (1 \leftrightarrow 2, \ p_x \leftrightarrow p_y)$$

•The $\phi - \Psi$ coupling $\mathcal{L}_{int} = \lambda \sum_{\alpha} \Psi_{1,\alpha}^{\dagger} \begin{pmatrix} 0 & \phi \\ \phi & 0 \end{pmatrix} \Psi_{1,\alpha} + (1 \leftrightarrow 2)$

•The nodal fermions

$$\mathcal{L}_{\Psi} = \sum_{\alpha} \Psi_{1,\alpha}^{\dagger}(\vec{p}) \begin{pmatrix} -i\omega + v_F p_x & v_{\Delta} p_y \\ v_{\Delta} p_y & -i\omega - v_F p_x \end{pmatrix} \Psi_{1,\alpha}(\vec{p}) + (1 \leftrightarrow 2, \ p_x \leftrightarrow p_y)$$

•The
$$\phi - \Psi$$
 coupling
 $\mathcal{L}_{int} = \lambda \sum_{\alpha} \Psi_{1,\alpha}^{\dagger} \begin{pmatrix} 0 & \phi \\ \phi & 0 \end{pmatrix} \Psi_{1,\alpha} + (1 \leftrightarrow 2)$

•The Ising nematic mode $\mathcal{L}_{\phi} = \frac{1}{2}\phi^2 + \cdots$

•The nodal fermions

$$\Psi = \sum_{\alpha} \Psi_{1,\alpha}^{\dagger}(\vec{p}) \begin{pmatrix} -i\omega + v_F p_x & v_A p_y \\ \hline v_A p_y & -i\omega - v_F p_x \end{pmatrix} \Psi_{1,\alpha}(\vec{p}) + (1 \leftrightarrow 2, \ p_x \leftrightarrow p_y)$$

•The $\phi - \Psi$ coupling $\mathcal{L}_{int} = \bigwedge_{\alpha} \sum_{\alpha} \Psi_{1,\alpha}^{\dagger} \begin{pmatrix} 0 & \phi \\ \phi & 0 \end{pmatrix} \Psi_{1,\alpha} + (1 \leftrightarrow 2)$

•The Ising nematic mode $\mathcal{L}_{\phi} = \frac{1}{2}\phi^2 + \cdots$

•The nodal fermions

$$\Psi = \sum_{\alpha} \Psi_{1,\alpha}^{\dagger}(\vec{p}) \begin{pmatrix} -i\omega + v_F p_x & v_A p_y \\ \hline v_A p_y & -i\omega - v_F p_x \end{pmatrix} \Psi_{1,\alpha}(\vec{p}) + (1 \leftrightarrow 2, \ p_x \leftrightarrow p_y)$$

•The $\phi - \Psi$ coupling $\mathcal{L}_{int} = \bigwedge_{\alpha} \sum_{\alpha} \Psi_{1,\alpha}^{\dagger} \begin{pmatrix} 0 & \phi \\ \phi & 0 \end{pmatrix} \Psi_{1,\alpha} + (1 \leftrightarrow 2)$

•The Ising nematic mode $\mathcal{L}_{\phi} = \frac{1}{2}\phi^2 + \cdots$

•Symmetry: $\Psi \rightarrow \hat{\tau}_2 \Psi$, $\vec{p} \rightarrow -\vec{p}$, $\phi \rightarrow -\phi$

$$\mathcal{L} = \frac{2N}{2}\varphi^2 + \sum_{\alpha}^{N} \Psi_{1,\alpha}^{\dagger} \left[-i\omega + \hat{\tau}_3 v_F p_x + \hat{\tau}_1 (v_\Delta p_y + g\varphi) \right] \Psi_{1,\alpha} + (1 \leftrightarrow 2, \ p_x \leftrightarrow p_y)$$

$$\mathcal{L} = \frac{2N}{2}\varphi^2 + \sum_{\alpha}^{N} \Psi_{1,\alpha}^{\dagger} \left[-i\omega + \hat{\tau}_3 v_F p_x + \hat{\tau}_1 (v_\Delta p_y + g\varphi) \right] \Psi_{1,\alpha} + (1 \leftrightarrow 2, \ p_x \leftrightarrow p_y)$$

The $\phi - \Psi$ coupling

: irrelevant in the massive (disordered) side

 $\mathcal{L} = \frac{2N}{2}\varphi^2 + \sum_{\alpha}^{N} \Psi_{1,\alpha}^{\dagger} \left[-i\omega + \hat{\tau}_3 v_F p_x + \hat{\tau}_1 (v_{\Delta} p_y + g\varphi) \right] \Psi_{1,\alpha} + (1 \leftrightarrow 2, \ p_x \leftrightarrow p_y)$ QCP at finite coupling?

$$\mathcal{L} = \frac{2N}{2} \varphi^2 + \sum_{\alpha}^{N} \Psi_{1,\alpha}^{\dagger} \left[-i\omega + \hat{\tau}_3 v_F p_x + \hat{\tau}_1 (v_\Delta p_y + g\varphi) \right] \Psi_{1,\alpha} \\ + (1 \leftrightarrow 2, \ p_x \leftrightarrow p_y)$$
QCP at finite coupling?

$$\mathcal{L} = \frac{2N}{2}\varphi^{2} + \sum_{\alpha}^{N} \Psi_{1,\alpha}^{\dagger} \left[-i\omega + \hat{\tau}_{3}v_{F}p_{x} + \hat{\tau}_{1}(\underline{v_{\Delta}p_{y} + g\varphi}) \right] \Psi_{1,\alpha} + (1 \leftrightarrow 2, \ p_{x} \leftrightarrow p_{y})$$

$$QCP \text{ at finite coupling?}$$

$$\mathcal{L} = \frac{2N}{2}\varphi^{2} + \sum_{\alpha}^{N} \Psi_{1,\alpha}^{\dagger} \left[-i\omega + \hat{\tau}_{3}v_{F}p_{x} + \hat{\tau}_{1}(\underline{v_{\Delta}p_{y} + g\varphi}) \right] \Psi_{1,\alpha}$$
$$+ (1 \leftrightarrow 2, \ p_{x} \leftrightarrow p_{y})$$
$$OCP at finite coupling?$$

Observed extreme velocity anisotropy?

$$\mathcal{L} = \frac{2N}{2}\varphi^{2} + \sum_{\alpha}^{N} \Psi_{1,\alpha}^{\dagger} \left[-i\omega + \hat{\tau}_{3}v_{F}p_{x} + \hat{\tau}_{1}(\underline{v_{\Delta}p_{y} + g\varphi}) \right] \Psi_{1,\alpha}$$
$$+ (1 \leftrightarrow 2, \ p_{x} \leftrightarrow p_{y})$$
$$QCP \text{ at finite coupling?}$$

Observed extreme velocity anisotropy?

(RG analysis confirmed the validity of this apporach Y. Huh and S. Sachdev (2008))

• Integrate out fermions

$$\mathcal{L}_{\text{eff}}[\varphi] = \frac{N}{2}\varphi^2 - \frac{N}{2}\int \frac{d\vec{p}d\omega}{(2\pi)^2} \log\left[\omega^2 + (v_F p_x)^2 + (v_\Delta p_y + g\varphi)^2\right] + (v_F \leftrightarrow v_\Delta)$$

• Integrate out fermions

 $\mathcal{L}_{\text{eff}}[\varphi] = \frac{N}{2}\varphi^2 \bigcirc \frac{N}{2} \int \frac{d\vec{p}d\omega}{(2\pi)^2} \log\left[\omega^2 + (v_F p_x)^2 + (v_\Delta p_y + \underline{g\varphi})^2\right] + (v_F \leftrightarrow v_\Delta)$

• Integrate out fermions

 $\mathcal{L}_{\text{eff}}[\varphi] = \frac{N}{2} \varphi^2 \Theta \frac{N}{2} \int \frac{d\vec{p}d\omega}{(2\pi)^2} \log\left[\omega^2 + (v_F p_x)^2 + (v_\Delta p_y + \underline{g\varphi})^2\right] + (v_F \leftrightarrow v_\Delta)$

• Saddle point solution

$$\left. \frac{d\mathcal{L}_{\text{eff}}}{d\varphi} \right|_{\varphi = \varphi_0} = 0$$

• Integrate out fermions

 $\mathcal{L}_{\text{eff}}[\varphi] = \frac{N}{2} \varphi^2 \Theta \frac{N}{2} \int \frac{d\vec{p}d\omega}{(2\pi)^2} \log\left[\omega^2 + (v_F p_x)^2 + (v_\Delta p_y + \underline{g\varphi})^2\right] + (v_F \leftrightarrow v_\Delta)$

• Saddle point solution $\frac{a}{a}$

$$\frac{\mathcal{L}_{\text{eff}}}{d\varphi}\bigg|_{\varphi=\varphi_0} = 0$$

Integrate out fermions

 $\mathcal{L}_{\text{eff}}[\varphi] = \frac{N}{2} \varphi^2 \Theta \frac{N}{2} \int \frac{d\vec{p}d\omega}{(2\pi)^2} \log\left[\omega^2 + (v_F p_x)^2 + (v_\Delta p_y + \underline{g}\varphi)^2\right] + (v_F \leftrightarrow v_\Delta)$

• Saddle point solution $\frac{a}{b}$

Saddle point solution
$$\left. \frac{d\mathcal{L}_{\text{eff}}}{d\varphi} \right|_{\varphi = \varphi_0} = 0$$

 $\Rightarrow 2nd \text{ order } QPT \text{ at } g = g_c$

Gaussian fluctuation

$$\Pi(\vec{q},\omega) = \sum_{m,\alpha} \quad \begin{array}{c} \Psi_{m,\alpha} \\ \tau_1 \\ & & \\ k-q \end{array} \\ \tau_1 \\ & \\ & \\ k-q \end{array}$$

• Fluctuations: non-analytic action

$$S^{(2)}[\varphi] = \int \frac{d^2 p d\omega}{(2\pi)^3} \frac{1}{2} \left[\gamma \sqrt{\omega^2 + E_1(\vec{p})} \left(1 - \frac{v_\Delta^2 p_y^2}{\omega^2 + E_1(\vec{p})} \right) + [p_x \leftrightarrow p_y] \right] |\varphi(p)|^2$$

 $E_1^2(\vec{p}) \equiv v_F^2 p_x^2 + v_\Delta^2 p_y^2, \ E_2^2(\vec{p}) \equiv v_F^2 p_y^2 + v_\Delta^2 p_x^2,$

• Fluctuations: non-analytic action

$$S^{(2)}[\varphi] = \int \frac{d^2 p d\omega}{(2\pi)^3} \frac{1}{2} \left[\gamma \sqrt{\omega^2 + E_1(\vec{p})} \left(1 - \frac{v_\Delta^2 p_y^2}{\omega^2 + E_1(\vec{p})} \right) + [p_x \leftrightarrow p_y] \right] |\varphi(p)|^2$$

 $E_1^2(\vec{p}) \equiv v_F^2 p_x^2 + v_\Delta^2 p_y^2, \ E_2^2(\vec{p}) \equiv v_F^2 p_y^2 + v_\Delta^2 p_x^2,$

• Exponents $\nu = 1, \ \eta = 1, \ z = 1$

• Fluctuations: non-analytic action

$$S^{(2)}[\varphi] = \int \frac{d^2 p d\omega}{(2\pi)^3} \frac{1}{2} \left[\gamma \sqrt{\omega^2 + E_1(\vec{p})} \left(1 - \frac{v_\Delta^2 p_y^2}{\omega^2 + E_1(\vec{p})} \right) + [p_x \leftrightarrow p_y] \right] |\varphi(p)|^2$$

 $E_1^2(\vec{p}) \equiv v_F^2 p_x^2 + v_\Delta^2 p_y^2, \ E_2^2(\vec{p}) \equiv v_F^2 p_y^2 + v_\Delta^2 p_x^2,$

• Exponents $\nu=1,\;\eta=1,\;z=1$

• Fluctuations: non-analytic action

$$S^{(2)}[\varphi] = \int \frac{d^2 p d\omega}{(2\pi)^3} \frac{1}{2} \left[\gamma \sqrt{\omega^2 + E_1(\vec{p})} \left(1 - \frac{v_\Delta^2 p_y^2}{\omega^2 + E_1(\vec{p})} \right) + [p_x \leftrightarrow p_y] \right] |\varphi(p)|^2$$

 $E_1^2(\vec{p}) \equiv v_F^2 p_x^2 + v_\Delta^2 p_y^2, \ E_2^2(\vec{p}) \equiv v_F^2 p_y^2 + v_\Delta^2 p_x^2,$

• Exponents $\nu = 1, \ \eta = 1, \ z = 1$

• Fluctuations: non-analytic action

$$S^{(2)}[\varphi] = \int \frac{d^2 p d\omega}{(2\pi)^3} \frac{1}{2} \left[\gamma \sqrt{\omega^2 + E_1(\vec{p})} \left(1 - \frac{v_\Delta^2 p_y^2}{\omega^2 + E_1(\vec{p})} \right) + [p_x \leftrightarrow p_y] \right] |\varphi(p)|^2$$

 $E_1^2(\vec{p}) \equiv v_F^2 p_x^2 + v_\Delta^2 p_y^2, \ E_2^2(\vec{p}) \equiv v_F^2 p_y^2 + v_\Delta^2 p_x^2,$

- Exponents $\nu = 1, \ \eta = 1, \ z = 1$
- Spectral function $B(\vec{p},\omega) = -2ImG(\vec{p},\omega)$ at $\vec{p} = (0.05, 0.15)\Lambda/v$

• Fluctuations: non-analytic action

$$S^{(2)}[\varphi] = \int \frac{d^2 p d\omega}{(2\pi)^3} \frac{1}{2} \left[\gamma \sqrt{\omega^2 + E_1(\vec{p})} \left(1 - \frac{v_\Delta^2 p_y^2}{\omega^2 + E_1(\vec{p})} \right) + [p_x \leftrightarrow p_y] \right] |\varphi(p)|^2$$

 $E_1^2(\vec{p}) \equiv v_F^2 p_x^2 + v_\Delta^2 p_y^2, \ E_2^2(\vec{p}) \equiv v_F^2 p_y^2 + v_\Delta^2 p_x^2,$

- Exponents $\nu = 1, \ \eta = 1, \ z = 1$
- Spectral function $B(\vec{p},\omega) = -2ImG(\vec{p},\omega)$ at $\vec{p} = (0.05, 0.15)\Lambda/v$

• Fluctuations: non-analytic action

$$S^{(2)}[\varphi] = \int \frac{d^2 p d\omega}{(2\pi)^3} \frac{1}{2} \left[\gamma \sqrt{\omega^2 + E_1(\vec{p})} \left(1 - \frac{v_\Delta^2 p_y^2}{\omega^2 + E_1(\vec{p})} \right) + [p_x \bigoplus p_y] \right] |\varphi(p)|^2$$

 $E_1^2(\vec{p}) \equiv v_F^2 p_x^2 + v_\Delta^2 p_y^2, \ E_2^2(\vec{p}) \equiv v_F^2 p_y^2 + \frac{B(\vec{p},\omega)}{1}$

• Exponents $u = 1, \ \eta = 1, \ z$

• Spectral function $B(\vec{p},\omega) = -2$

 ω/Λ

 $(0.05, 0.15)\Lambda/v$
The theory of nodal nematic quantum criticality

- Introduction: electronic nematic
- Nodal nematic quantum criticality
- Quasiparticle interference
- Outlook

 \bullet Probability of finding a fermion at given energy ω

 \bullet Probability of finding a fermion at given energy ω

-momentum space

 $A_{\vec{p},\omega} \equiv -2 \operatorname{sgn}(\omega) Im \mathcal{G}_{11}(\vec{p},\omega) \longrightarrow \mathsf{ARPES}$

- \bullet Probability of finding a fermion at given energy ω
 - -momentum space
 - $A_{\vec{p},\omega} \equiv -2\mathrm{sgn}(\omega)Im\mathcal{G}_{11}(\vec{p},\omega) \qquad \Longrightarrow \mathsf{ARPES}$
 - position space $n(\vec{r};\omega) \equiv -2\mathrm{sgn}(\omega)Im\mathcal{G}_{11}(\vec{r},\vec{r};\omega) \implies \mathsf{STM}$

 \bullet Probability of finding a fermion at given energy ω

-momentum space $A_{\vec{p},\omega} \equiv -2 \operatorname{sgn}(\omega) Im \mathcal{G}_{11}(\vec{p},\omega)$ $\rightarrow \text{ARPES}$ - position space $n(\vec{r};\omega) \equiv -2 \operatorname{sgn}(\omega) Im \mathcal{G}_{11}(\vec{r},\vec{r};\omega)$ $\rightarrow \text{STM}$

•Calculation?

ullet Probability of finding a fermion at given energy ω

-momentum space $A_{\vec{p},\omega} \equiv -2 \operatorname{sgn}(\omega) Im \mathcal{G}_{11}(\vec{p},\omega) \longrightarrow \text{ARPES}$ - position space $n(\vec{r};\omega) \equiv -2 \operatorname{sgn}(\omega) Im \mathcal{G}_{11}(\vec{r},\vec{r};\omega) \longrightarrow \text{STM}$

•Calculation? $\hat{\mathcal{G}}^{-1} = \hat{\mathcal{G}}_0^{-1} - \hat{\Sigma}$

- \bullet Probability of finding a fermion at given energy ω
 - -momentum space $A_{\vec{p},\omega} \equiv -2 \operatorname{sgn}(\omega) Im \mathcal{G}_{11}(\vec{p},\omega) \longrightarrow \text{ARPES}$ - position space $n(\vec{r};\omega) \equiv -2 \operatorname{sgn}(\omega) Im \mathcal{G}_{11}(\vec{r},\vec{r};\omega) \longrightarrow \text{STM}$
- Calculation? $\hat{\mathcal{G}}^{-1} = \hat{\mathcal{G}}_0^{-1} \hat{\Sigma}$ $\hat{\mathcal{G}}_0(\vec{p}, \omega) = \frac{1}{\omega \mathbb{I} - v_F p_x \tau_3 - v_\Delta p_y \tau_1}$

Momentum Distribution

MDC at $\omega = 9meV, v_F/v_{\Delta} = 19.5$

Momentum Distribution

MDC at $\omega = 9meV, v_F/v_{\Delta} = 19.5$

MDC line cuts

Momentum Distribution

Momentum space: ARPES

$$A(\vec{q},\omega) = -2Im \left[\frac{(\omega - \Sigma^{(0)}) + (v_F q_x - \Sigma^{(1)})}{(\omega - \Sigma^{(0)})^2 - [(v_F q_x - \Sigma^{(1)})^2 + (v_\Delta q_y + \Sigma^{(2)})^2]} \right]$$

•Modulation in LDOS due to impurity $n(\vec{r};\omega) \equiv -2 \operatorname{sgn}(\omega) Im [\mathcal{G}_{11}(\vec{r},\vec{r};\omega)]$

• Modulation in LDOS due to impurity $n(\vec{r};\omega) \equiv -2 \operatorname{sgn}(\omega) Im \left[\mathcal{G}_{11}(\vec{r},\vec{r};\omega)\right]$

• Modulation in LDOS due to impurity $n(\vec{r};\omega) \equiv -2 \operatorname{sgn}(\omega) Im \left[\mathcal{G}_{11}(\vec{r},\vec{r};\omega)\right]$

LDOS modulation of nematic QC fermions?

Modulation in LDOS due to single impurity

 $n(\vec{r};\omega) \equiv -2\mathrm{sgn}(\omega)Im\left[\mathcal{G}_{11}(\vec{r},\vec{r};\omega)\right]$

LDOS modulation of nematic QC fermions?

•Modulation in LDOS due to single impurity $n(\vec{r};\omega) \equiv -2\mathrm{sgn}(\omega)Im\left[\mathcal{G}_{11}(\vec{r},\vec{r};\omega)\right]$ $= n_0(\omega) - 2\mathrm{sgn}(\omega)Im\left[\hat{\mathcal{G}}(\vec{r},0;\omega)\ \widehat{\mathbf{T}}\ \hat{\mathcal{G}}(0,\vec{r};\omega)\right]_{11}$

LDOS modulation of nematic QC fermions?

$$n(\vec{q};\omega) = -2\mathrm{sgn}(\omega) \int d\vec{k} Im \left[\hat{\mathcal{G}}(\vec{k}+\vec{q};\omega)\hat{T}\hat{\mathcal{G}}(\vec{k};\omega)\right]_{11}$$

$$n(\vec{q};\omega) = -2\mathrm{sgn}(\omega) \int d\vec{k} Im \left[\hat{\mathcal{G}}(\vec{k}+\vec{q};\omega)\hat{T}\hat{\mathcal{G}}(\vec{k};\omega)\right]_{11}$$

• qp interference: well defined octet points

FT - STS

• qp interference: well defined octet points

• qp interference: well defined octet points

McElroy et al., Nature 2003

• qp interference: well defined octet points

• qp interference: well defined octet points

QPI intensity map (charge impurity)

Nodal nematic qp

QPI linecuts (charge impurity)

Free BdG qp

Nematic critical qp

T. Hanaguri group's field dependence study

Courtesy of T. Hanaguri (RIKEN)

T. Hanaguri et al (unpublished)

Na-CCOC $V_{\text{sample}} = -0.1 \text{ V}, I_{\text{t}} = 0.1 \text{ nA}$ FT map 4.4 meV

Nematic critical QPI linecuts

Charge impurity

Magnetic impurity Sign preserving

Sign reversing

Nematic critical QPI linecuts

Summary and Outlook

•Coexistence of ELC with SC can allow insight into ELC physics.

Nodal nematic quantum criticality:
A new QCP

-Nematic fluctuation effect enhances QPI

-QPI field dependence agrees with experiment

•Growing number of cases for electronic liquid crystalline states in strongly correlated systems.

Glassiness revealed at high energy

Kohsaka et al, Science, 2007