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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with !q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
!q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T ! 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx ! 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. !
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Figure 3 Schematic view of the local stripe order in the various phases discussed

in the text. Here, we have assumed that the stripes maintain their integrity

throughout, although in reality they must certainly become less and less well

defined as the system becomes increasingly quantum, until eventually they are

not the correct variables for describing the important correlations in the system.

Heavy lines represent liquid-like stripes, along which the electrons can flow,

whereas the filled circles represent pinned, density-wave order along the stripes.

The stripes are shown executing more or less harmonic oscillations in the

smectic phase. Two dislocations, which play an essential role in the smectic-to-

nematic phase transition, are shown in the view of the nematic phase.
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with !q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
!q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T ! 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx ! 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. !
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with !q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
!q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T ! 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx ! 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. !
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with !q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
!q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T ! 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx ! 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. !
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with !q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
!q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T ! 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx ! 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. !
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with !q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
!q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T ! 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx ! 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. !
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with !q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
!q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T ! 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx ! 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. !
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Figure 3 Schematic view of the local stripe order in the various phases discussed

in the text. Here, we have assumed that the stripes maintain their integrity

throughout, although in reality they must certainly become less and less well

defined as the system becomes increasingly quantum, until eventually they are

not the correct variables for describing the important correlations in the system.

Heavy lines represent liquid-like stripes, along which the electrons can flow,

whereas the filled circles represent pinned, density-wave order along the stripes.

The stripes are shown executing more or less harmonic oscillations in the

smectic phase. Two dislocations, which play an essential role in the smectic-to-

nematic phase transition, are shown in the view of the nematic phase.
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with !q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
!q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T ! 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx ! 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. !
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with !q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
!q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T ! 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx ! 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. !
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with !q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
!q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T ! 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx ! 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. !

Received 21 July 1997; accepted 31 March 1998.

1. Kivelson, S. A. & Emery, V. J. Topological doping. Synth. Met. 80, 151–158 (1996).
2. Zaanen, J. & Gunnarsson, O. Charged magnetic domain lines and the magnetism of high Tc oxides.

Phys. Rev. B 40, 7391–7394 (1989).
3. Schulz, H. J. Incommensurate antiferromagnetism in the 2-dimensional hubbard model. Phys. Rev.

Lett. 64, 1445–1448 (1990).
4. Kivelson, S. A. & Emery, V. J. in Strongly Correlated Electron Materials: The Los Alamos Symposium

1993 (eds Bedell, K. S., Wang, Z., Meltzer, D. E., Balatsky, A. V. & Abrahams, E.) 619–650 (Addison-
Wesley, Redwood City, 1994).

5. Nayak, C. & Wilczek, F. Populated domain walls. Phys. Rev. Lett. 78, 2465–2468 (1997).
6. Castro-Neto, A. H. Superconducting phase coherence in striped cuprates. Phys. Rev. Lett. 78, 3931–

3934 (1997).
7. Devreese, J. T., Evrard, R. P. & van Doren, V. E. (eds) Highly Conducting One-Dimensional Solids

(Plenum, New York, 1979).
8. Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press,

1995).
9. Emery, V. J., Kivelson, S. A. & Zachar, O. Spin-gap proximity effect mechanism of high-temperature

superconductivity. Phys. Rev. B 56, 6120–6147 (1997).
10. Emery, V. J. in Highly Conducting One-Dimensional Solids (eds Devreese, J. T., Evrard, R. P. & van

Doren, V. E.) 247–303 (Plenum, New York, 1979).
11. Tranquada, J. M. et al. Evidence for stripe correlations of spins and holes in copper oxide

superconductors. Nature 375, 561–563 (1995).
12. Tranquada, J. M. et al. Coexistence of, and competition between, superconductivity and charge-stripe

order in La1!xNd0.4SrxCuO4. Phys. Rev. Lett. 78, 338–341 (1997).
13. Cheong, S-W. et al. Incommensurate magnetic fluctuations in La1!xSrxCuO4. Phys. Rev. Lett.

67, 1791–1794 (1991).
14. Mason, T. E., Aeppli, G. & Mook, H. A. Magnetic dynamics of superconducting La1.86Sr0.14CuO4. Phys.

Rev. Lett. 68, 1414–1417 (1992).
15. Thurston, T. R. et al. Low-energy incommensurate spin excitations in superconducting La1.85Sr0.15-

CuO4. Phys. Rev. B 46, 9128–9131 (1992).
16. Yamada, K. et al. Direct observation of a magnetic gap in superconducting La1.85Sr0.15CuO4

(Tc ¼ 37:3 K). Phys. Rev. Lett. 75, 1626–1629 (1995).
17. Pokrovsky, V. L., Talapov, A. L. & Bak, P. in Solitons (eds Trullinger, S. E., Zakharov, V. E. & Pokrovsky,

V. L.) 71–127 (North Holland, Amsterdam, 1986).
18. Abanov, Ar. et al. Phase diagram of ultrathin ferromagnetic films with perpendicular anisotropy. Phys.

Rev. B 51, 1023–1038 (1995).
19. Tranquada, J. M. Charge stripes and spin correlations in copper oxide superconductors. Physica C

282–287, 166–169 (1997).
20. Dai, P., Mook, H. A. & Dogan, F. Incommensurate magnetic fluctuations in YBa2Cu3O6.6. Phys. Rev.

Lett. 80, 1738–1741 (1998).

Acknowledgements. We thank J. Tranquada for discussions and V. Pokrovskii for comments. This work
was supported in part by the NSF at UCLA, UIUC and ITP-UCSB; and in part by the Division of Materials
Science, US DOE, at Brookhaven. Two of us (E.F. and S.K.) were participants at the ITP Program on
Quantum Field Theory in Low Dimensions.

Correspondence and requests for materials should be addressed to V.J.E. (e-mail: emery@cmth.phy.bnl.gov).

Nematic

IsotropicSmectic

Crystal

Figure 3 Schematic view of the local stripe order in the various phases discussed

in the text. Here, we have assumed that the stripes maintain their integrity

throughout, although in reality they must certainly become less and less well

defined as the system becomes increasingly quantum, until eventually they are

not the correct variables for describing the important correlations in the system.

Heavy lines represent liquid-like stripes, along which the electrons can flow,

whereas the filled circles represent pinned, density-wave order along the stripes.

The stripes are shown executing more or less harmonic oscillations in the

smectic phase. Two dislocations, which play an essential role in the smectic-to-

nematic phase transition, are shown in the view of the nematic phase.

Nature © Macmillan Publishers Ltd 1998

8

letters to nature

NATURE | VOL 393 | 11 JUNE 1998 553

transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with !q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
!q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T ! 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx ! 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. !
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with !q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
!q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T ! 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx ! 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. !
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with !q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
!q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T ! 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx ! 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. !
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with !q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
!q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T ! 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx ! 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. !
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with !q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
!q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T ! 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx ! 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. !
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with !q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
!q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T ! 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx ! 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. !
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We study the character of an Ising nematic quantum phase transition deep inside a d-wave superconducting
state with nodal quasiparticles in a two-dimensional tetragonal crystal. We find that, within a 1 /N expansion,
the transition is continuous. To leading order in 1 /N, quantum fluctuations enhance the dispersion anisotropy
of the nodal excitations and cause strong scattering, which critically broadens the quasiparticle !qp" peaks in
the spectral function, except in a narrow wedge in momentum space near the Fermi surface where the qps
remain sharp. We also consider the possible existence of a nematic glass phase in the presence of weak
disorder. Some possible implications for cuprate physics are also discussed.
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I. INTRODUCTION

In this paper, we study the nematic to isotropic quantum
phase transition !QPT" deep within the d-wave supercon-
ducting phase of a quasi-two-dimensional tetragonal crystal.
“Nematic” refers to a broken symmetry phase in which the
fourfold rotational symmetry of the crystal is broken down to
a twofold symmetry. More specifically, it is an “Ising nem-
atic,” which spontaneously breaks the discrete rotational
symmetry of the tetragonal crystal to an orthorhombic sub-
group, C4v→C2v, while retaining translational symmetry.
The superconducting order opens a gap in the quasiparticle
excitation spectrum, except at four gapless nodal points, but
these nodal quasiparticles !qps" strongly couple to the nem-
atic order parameter fluctuations. In the nematic phase, these
nodes are displaced from the relevant symmetry directions
by an amount proportional to the nematic order parameter, as
shown in Fig. 1. We derive a phenomenological theory to
describe this “nodal nematic QPT” consisting of a nematic
mode coupled to the nodal qps of the d-wave supercon-
ductor.

Our motivation to investigate this problem is twofold:
First, there is now considerable experimental evidence that a
nodal nematic phase occurs in at least some “underdoped”
cuprate superconductors, so this study has potential rel-
evance to the transition from this state to the isotropic state
in these materials. The best evidence of this comes from
measurements1 of strongly temperature dependent transport
anisotropies in underdoped YBa2Cu3O6+" and more recent
!and more direct" neutron scattering experiments in under-
doped YBa2Cu3O6.45 !YBCO".2 Specifically, the spontaneous
onset of one-dimensional incommensurate spin modulations
in the neutron experiments is clear evidence of an isotropic-
to-nematic transition with transition temperature TN
#150 K. For "=0.45, TN is greater than the superconducting
Tc=35 K. However, at a higher O concentration, "#0.7,
both neutron scattering and transport experiments see no evi-
dence of a transition to a nematic phase down to the lowest
temperatures.1,3–6 It is thus reasonable to assume that TN!""
→0 for a critical value, 0.45$"c$0.7, with a QPT at "
="c inside the SC phase.5–11 The extent to which nematic

phases are generic to the cuprates is a question that is beyond
the scope of the present study. However, Matsuda et al.12

recently reported that the “fluctuating stripe” phase of under-
doped !diagonal" La2−xSrxCuO4 !with x=0.04" is actually a
nematic phase. Moreover, scanning tunneling microscopy
!STM" studies by Howald et al.13 and Kohsaka et al.14 have
revealed a glassy phase with nematic domains in underdoped
Bi2Sr2CaCu2O8+".

Second, the topic of quantum critical points !QCPs" in
two-dimensional !2D" systems with itinerant fermions has
been and continues to be a topic of broad interest. Here, we
study a new QCP in a 2D itinerant fermion system. In gen-
eral, the presence of gapless fermions at the Fermi surface
makes the study of this topic theoretically challenging. Since
gapless fermions interact with massless bosons associated
with order parameter fluctuations, this interaction affects
both low energy degrees of freedom, making it difficult to
obtain a correct description of the critical physics. Simplifi-
cations occur when one considers nodal fermions that are
gapless only at four nodal points of the underlying Fermi
surface in a d-wave superconductor. The limited phase space
for the gapless fermions restricts the possibilities for scatter-
ing mechanisms, permitting a controlled analysis.
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FIG. 1. !Color online" Quantum critical point at %=%c, separat-
ing the nodal nematic phase for %−1$%c

−1 from the symmetric
phase, and its quantum critical fan. Tc and Tn are the superconduct-
ing and nematic critical temperatures and the !purple" wedge corre-
sponds to the thermal critical regime.
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by an amount proportional to the nematic order parameter, as
shown in Fig. 1. We derive a phenomenological theory to
describe this “nodal nematic QPT” consisting of a nematic
mode coupled to the nodal qps of the d-wave supercon-
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Our motivation to investigate this problem is twofold:
First, there is now considerable experimental evidence that a
nodal nematic phase occurs in at least some “underdoped”
cuprate superconductors, so this study has potential rel-
evance to the transition from this state to the isotropic state
in these materials. The best evidence of this comes from
measurements1 of strongly temperature dependent transport
anisotropies in underdoped YBa2Cu3O6+" and more recent
!and more direct" neutron scattering experiments in under-
doped YBa2Cu3O6.45 !YBCO".2 Specifically, the spontaneous
onset of one-dimensional incommensurate spin modulations
in the neutron experiments is clear evidence of an isotropic-
to-nematic transition with transition temperature TN
#150 K. For "=0.45, TN is greater than the superconducting
Tc=35 K. However, at a higher O concentration, "#0.7,
both neutron scattering and transport experiments see no evi-
dence of a transition to a nematic phase down to the lowest
temperatures.1,3–6 It is thus reasonable to assume that TN!""
→0 for a critical value, 0.45$"c$0.7, with a QPT at "
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phases are generic to the cuprates is a question that is beyond
the scope of the present study. However, Matsuda et al.12

recently reported that the “fluctuating stripe” phase of under-
doped !diagonal" La2−xSrxCuO4 !with x=0.04" is actually a
nematic phase. Moreover, scanning tunneling microscopy
!STM" studies by Howald et al.13 and Kohsaka et al.14 have
revealed a glassy phase with nematic domains in underdoped
Bi2Sr2CaCu2O8+".

Second, the topic of quantum critical points !QCPs" in
two-dimensional !2D" systems with itinerant fermions has
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study a new QCP in a 2D itinerant fermion system. In gen-
eral, the presence of gapless fermions at the Fermi surface
makes the study of this topic theoretically challenging. Since
gapless fermions interact with massless bosons associated
with order parameter fluctuations, this interaction affects
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these nodal quasiparticles !qps" strongly couple to the nem-
atic order parameter fluctuations. In the nematic phase, these
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by an amount proportional to the nematic order parameter, as
shown in Fig. 1. We derive a phenomenological theory to
describe this “nodal nematic QPT” consisting of a nematic
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Looking for nematic critical fluctuations

Interference of nematic quantum critical quasiparticles: a route to the octet model
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Repeated observations of inhomogeneity in cuperate superconductors[1, 2, 3, 4, 5] make one
immediately question the existance of coherent quasiparticles(qp’s) and the applicability of a mo-
mentum space picture. Yet, obversations of interference effects[6, 7, 8, 9] suggest that the qp’s
maintain a remarkable coherence under special circumstances. In particular, quasi-particle inter-
ference (QPI) imaging using scanning tunneling spectroscopy revealed a highly unusual form of
coherence: accumulation of coherence only at special points in momentum space with a particular
energy dispersion[5, 6, 7]. Here we show that nematic quantum critical fluctuations[10], combined
with the known extreme velocity anisotropy[11] provide a natural mechanism for the accumulation
of coherence at those special points. Our results raise the intriguing question of whether the nematic
fluctuations provide the unique mechanism for such a phenomenon.

The capability of QPI studies in inferring momentum
space electronic structure from real space local density
of states(LDOS) images is surprising given the strong
presence of glassiness and nanoscale inhomogenaity in
cuprate superconductors. The simplicity of the QPI im-
age, a set of well defined dispersing peaks, is particularly
striking considering the complexity of the real space im-
age. McElroy et al. [6] made an insightful observation:
the peak positions are determined by the eight tips of
the “banana” shaped qp equal energy contours. How-
ever, a key question remains of this “octet model” —
what makes the qp’s at the tips especially coherent to
the extent that only interference among qp’s at the tips
remain visible.

Underlying the QPI interpretation of the Fourier trans-
form of the LDOS map N(!r,ω), is the assumption that
the modulated contribution Ñimp(!q, ω) results from co-
herent qp’s scattering off sparcely distributed impurities.
For conventional metals where these assumptions hold,
the modulations in LDOS can be understood in terms
of interference among single particle wave functions[12].
Naturally, there has been much effort towards interpret-
ing the QPI in cuprates also in terms of free (Bogoliubov)
qp pictures [13, 14, 15]. Surprisingly, these free QPI pat-
terns are far more intricate than the set of simple dispers-
ing peaks observed in the experiment. Hence one might
view this as a rare circumstance in which an experimen-
tal message is much simpler than that provided by the
simplest theory.

What is necessary to explain QPI in the cuprates, given
these free theory results, is to introduce scattering among
the electrons in such a way that only the banana tip
qp’s remain coherent. Recently, toegether with our col-
laborators, we have shown[10] that such a phenomenon
naturally occurs at the nodal nematic quantum critical
point (QCP) of a d-wave superconductor. “Nematic”
here refers to a broken symmetry phase in which the four-
fold rotational symmetry of the crystal is broken down to
a twofold symmetry (see Fig. 1(a)). In a d-wave super-

conductor, such additional symmetry breaking results in
a shifting of the nodal positions away from their fourfold
symmetric locations[16]. At the nodal nematic QCP, we
found[10] that the softening of the nodal positions in-
troduces strongly !k dependent decoherence that brings
in stark contrast between the tips of the banana, where
qp’s remain coherent with long lifetime, and the rest of
the equal energy contour, where qp’s get severely damped
(see Fig. 1(b) and (c)).

Here we show that !k dependent decoherence due to
nematic fluctuations leads to the very simplification ob-
served in QPI experiments: peaks in fourier transform
LDOS. We further argue for the uniqueness of this route
based on the severely restricted qp scattering mechanisms
in a d-wave superconductor due to their limited phase
space[16] combined with the following experimental ev-
idence supporting the existence of nematic ordering in
underdoped cuprates. Hinkov et al. [17] found direct ev-
idence for nematic ordering in YBa2Cu3O6.45. Further-
more, both the glassy nematic behavior in underdoped
Bi2Sr2CaCu2O8+δ[5] and the doping dependent flatten-
ing of the near-node gap slope Bi2Sr2CaCu2O8+δ[7, 18,
19] can be naturally explained by an increasing degree of
nematicity upon underdoping.

In a many-body setting, a crisp way to capture the
modulation of LDOS resulting from isolated impurities is
to use the T-matrix formalism (see for example Ref. [15])
which expresses the energy resolved LDOS Ñimp(!q, ω) at
wave vector !q as

Ñimp(!q, ω) = −2sgn(ω)Im
∫

d!k
[
Ĝ(!k + !q, ω)T̂ Ĝ(!k,ω)

]

11

(1)
where Ĝ(!k, ω) is the (2×2) single particle Nambu matrix
propagator in a superconducting state without impurity
scattering and T̂ is the impurity potential in the weak
(perturbative) impurity limit. Here T̂ depends on the
type of impurity. For a charge impurity which is anti-
symmetric in Nambu space, T̂ = Vcσ̂3, while T̂ = VmI

ar
X

iv
:0

8
1

1
.2

2
4

2
v

1
  

[c
o

n
d

-m
at

.s
u

p
r-

co
n

] 
 1

3
 N

o
v

 2
0

0
8

arXiv:0811.2242
2

FIG. 1: The electron spectral distribution at the nodal nematic quantum critical point in the linearized approximation (taken
from Ref. [10]). (a) proposed phase diagram inside the superconducting dome, where x is a tuning parameter. Note the change
in location of the nodes through the phase transition. (b) Equal energy contour at ω =3meV and the connecting "q-vectors of

the banana tips. The "qi are colored blue and red depending on whether they connect "k points with the same or opposite sign
of the d-wave gap ∆!k. (c) blowup of the momentum distribution A("k, ω = 3meV) of the spectral function near one node. Note
the sharpness of the momentum distribution at the banana tip shown in the inset.

for a magnetic impurity and T̂ = V∆σ̂1 for a supercon-
ducting gap impurity, both of which are symmetric in
Nambu space (σ̂i are Pauli matrices acting on Nambu
spinor).

Equation(1) shows that Ñimp("q, ω) is the amplitude
modulation associated with the overlap between two qp
states with wave vector "k and "k + "q scattering off the
impurity. Hence Ñimp("q, ω) will show high intensity at a
special vector "q, if it connects two coherent (long lived)
qp states with the same energy ω constructively. McElroy
et al. [6] and Wang and Lee [13] noticed that the den-
sity of state ImĜ is accumulated at the "k points at the
eight tips of the “banana” contours. In fact, a compari-
son between auto-correlation analysis of ARPES spectra
and the QPI study of the same system showed remarkable
similarity demonstrating this principle[21]. However, this
similarity is not reproduced by calculations of relevant
quantities. Hence peaks observed in QPI requires a mech-
anism that goes beyond accumulation of states and makes
the tips especially coherent. Such mechanism has been a
theoretical mystery.

The nature of the propagating single qp states is en-
coded in the Nambu matrix propagator Ĝ entering equa-
tion(1). If, in between impurity scattering events, the
qp’s experience collisions with critical nematic collective
modes, a self energy Σ̂ is induced (see e.g., Ref. [22])

Ĝ−1 = Ĝ−1
0 − Σ̂. (2)

Here Ĝ0 is the free Bogoliubov qp propagator of a BCS
superconductor. In order to capture the nematic critical
fluctuations, we use the self-energy obtained in Ref.[10].

In the context of the cuprates, Ĝ0("k, ω) takes the form

Ĝ−1
0 = (ω + iδ)I− ε!kσ3 −∆!kσ1 (3)

where ε!k is the dispersion of normal state qp’s and
∆!k = ∆0(cos kxa− cos kya) is the d-wave pairing ampli-
tude. In the low energy long wavelength limit, we can ap-
proximate this Ĝ0 by linearizing around the four gapless

nodal points "k ≈ "K where the qp energy ξ!k =
√

ε2
!k

+ ∆2
!k

vanishes:

G−1
0

∣∣∣∣
near node !K

= (ω+iδ)I−vF

(
kx−Kx

)
σ̂3−v∆

(
ky−Ky

)
σ̂1.

(4)
Linearzing ε!k and ∆!k given in Ref.[23] based on photoe-
mission data, we find vF = 0.508 and v∆ = 0.025 in units
of eV (a/π). (Note that the resulting anisotropy ratio
vF /v∆ = 20.3 is large and consistent with the value of 19
inferred from thermal conductivity measurements[11].)

The effect of nematic critical fluctuations in the QPI
intensity is evident when compared with free linearized
Bogoliubov qp’s. In Fig.2(a), we plot the QPI inten-
sity Ñimp("q, ω = 9meV ) for the free qp’s with Ĝ = Ĝ0

induced by charge impurities T̂ = Vcσ̂3. Most notice-
able features in Fig.2 (a) are the extended and broad line
shaped segments and the less extended but faint patterns.
The vectors "qi connecting the tips of bananas shown in
Fig. 1(b) are overlaid on the intensity plot in Fig.2(b)
and (c). Clearly, "q3, "q4 and "q7 land on the broad line
shaped segments but the rest of "qi vectors point to very
faint features. This is inconsistent with the experiments
showing well defined peaks at all "qi vectors albeit with
varying intensities.

The most dramatic change that nematic quantum crit-
ical fluctuations introduces in the QPI intensity, is the
octet peak structure. Comparing the QPI intensity plot
of Fig. 2(b) for nematic quantum critical qp’s in the
presence of charge impurities to that of Fig. 2(a) for free
Bogoliubov qp’s , nematic quantum critical qp’s allow for
unambiguous identification of all "qi vectors. (Note that
the intensity is higher for sign reversing scattering vec-
tors "q2, "q3, "q6, and "q7 when the QPI is due to charge
impurities. This is consistent with the trend observed
in superconducting Bi2Sr2CaCu2O8+δ[5, 6, 7, 20].) Such
contrast between free qp’s and nematic quantum criti-
cal qp’s are more quantitatively displayed in line cuts in

3

(a) (b) (c)

FIG. 2: (a) QPI Fourier amplitudes |N(qx, qy, ω = 9meV)| for free Bogoliubov qp’s with linearized dispersion. (b) QPI Fourier
amplitudes at the nematic QCP in the presence of scalar (non-magnetic) impurities ("qi, i = {2, 3, 6, 7} label the constructively
interfering peaks) (c) QPI Fourier amplitudes at the nematic QCP in the presence of magnetic impurities ("qi, i = {1, 4, 5} label
the constructively interfering peaks). The "qi vectors, defined in Fig. 1(b) are precisely those specified in the octet model of
Ref. 6 . Note that at all "qi the QPI Fourier amplitudes are dramatically enhanced at the Nematic QCP. We used a gray scale
where black represents intensities greater than a fixed threshold that is the same for all plots.

Fig.3 along !q1 direction and !q7 direction.
The fact that nematic critical fluctuations sharpen the

interference pattern and reveal positions of !qi vectors
is rather striking. One generally expects critical fluc-
tuations to blur the already soft features in the inter-
ference pattern of the free Bogoliubov qp’s in Fig. 2
(a). However, the effect of the critical nematic collec-
tive mode is quite the opposite[10]: it sharpens the in-
terference pattern. The nematic critical mode renor-
malizes the dispersion of the qp’s at the tips down,
reducing the gap slope v∆ and enhancing the velocity
anisotropy[10, 24] (Intriguingly, systematic flattening of
the gap slope with underdoping recently observed in
Bi2Sr2CaCu2O8+δ[7, 18, 19] could therefore be related
to glassy nematicity). This downward renormalization of
v∆ frees the qp’s at the tips from further collisions with
the nematic mode[10]. However, qp’s on the rest of the
equal energy contour lose coherence after a finite time τ"k

set by ImΣ̂(!k, ω) that is inversely proportional to their
energy ω .

An unambiguous sign of interference origin of peaks
displayed in Fig.2(b) would be to look for signs of con-
structive and destructive interference. Such distinctions
can be found by noting that there are two classes of
scattering !qi vectors connecting !k space points in a d-
wave superconductor, depending on whether they con-
nect points with the opposite sign of the gap (red in
Fig.1 and Fig.2 ) or the same sign of the gap (blue in
the same figures). Each of these classes of !qi vectors can
be associated with constructive or destructive interfer-
ence depending on the nature of the impurity scattering
center, as it has been pointed out in Refs. [13, 14]. Specif-
ically, since the charged impurity potential is asymmetric

in Nambu space (charged impurities affect particles and
holes differently), sign reversing !qi’s are expected to yield
constructive interference. On the other hand, both mag-
netic impurities VmI and pair scattering centers V∆σ̂1

which are symmetric in Nambu space are expected to
yield constructive interference for sign preserving !qi’s.
What is new here is that nematic critical fluctuations
clearly reveal the octet peaks through the accumulation
of coherence at the tips in the !k space equal energy con-
tour, and hence enable sharp comparison between QPI’s
induced by different types of impurity scattering centers.
This reasoning is clearly borne out in the line cuts Fig.3.

One way of tuning the degree of such constructive and
destructive interference is to introduce vorticies. A vor-
tex can act both as a pair field impurity due to its core
and as a magnetic impurity due to screening currents.
Since both the pair field impurity and magnetic impurity
are symmetric in Nambu space, vortices would shift the
QPI intensity towards sign-preserving vectors as shown
in Fig. 2(c) and Fig. 3(c). This trend is in remarkable
agreement with recent magnetic field dependence studies
of QPI[25]. Scattering due to thermally excited vortices
should also lead to a similar trend of enhancing peaks at
!q1, !q4 and !q5 upon raising temperature.

In summary, we have shown that nematic critical fluc-
tuations provide a natural mechanism for the accumu-
lation of coherence that can lead to well defined peaks
in the QPI map in a manner that is consistent with the
existing experimental literature. This is the first case in
which the octet vectors !qi were unmistakeably revealed
through a straightforward calculation. One open ques-
tion is how to resolve the disappearance of the dispersing
QPI peaks that accompanies the emergence of nematic

 :k-selective decoherence
•Self energy         due to fluctuation

τ1 τ1

k

k−q
ΣΨi(!q,ω) =

Σ̂(!q,ω)

QPI peaks



YBCO, spin and charge 



Anisotropy in inelastic (π/a,π/b) neutron scattering peak

Hinkov et al, Science, Jan 2008

by nuclear spins. In agreement with previous
work (21), an additional contribution to the mSR
signal from low-energy electronic spin excitations
is seen below 10 K. Manifestations of electronic
magnetic moments that are static on the micro-
second time scale probed by the muons are dis-
cernible only in the decay profiles below ~2 K.

Information about the spatial structure of
these low-energy spin correlations was obtained
by additional neutron-scattering measurements
with a spectrometer nominally set for zero

energy transfer. As a result of the finite energy
resolution, spin fluctuations with energies below
the instrumental resolution width of ~ 0.2 meV
are probed in this “quasi-elastic” configuration.
Representative data (Fig. 4B) show that the in-
commensurability of the quasi-elastic profile as
well as its width xa

–1 are nearly identical to
those of the low-energy inelastic data plotted in
Fig. 3A; xb

–1 is somewhat smaller. The quasi-
elastic intensity exhibits a significant upturn
below 30 K. These data fit well into the “spin-

freezing” phenomenology of deeply underdoped
cuprates (20–24). The characteristic frequency
of electronic spin fluctuations is reduced with
decreasing temperature; this is directly apparent
in the inelastic neutron-scattering data of Fig.
3C. Upon further cooling, the spin system grad-
ually freezes into an ensemble of slowly fluc-
tuating, finite-sized domains. The characteristic
fluctuation rate of these domains progressively
enters the frequency windows of quasi-elastic
neutron scattering (20, 22, 23), mSR (21, 22),
and nuclear magnetic resonance (24) methods.

The results demonstrate that the spin corre-
lations within the fluctuating domains are in-
commensurate. Because the signal derives entirely
from the CuO2 planes (14), coupling between
spins in the planes and the CuO chains can be
ruled out as a substantial driving force of these
correlations. Thus, our data demonstrate that
the spin system in the CuO2 planes of strongly
underdoped Y123 becomes inherently unstable
toward the formation of a uniaxial, slowly fluc-
tuating spin texture at a critical temperature of
~150 K. The small (<1%) orthorhombic distor-
tion of the crystal structure serves as an aligning
field for the incommensurate domains and leads
to the large anisotropy of the neutron-scattering
pattern below 150 K. This scenario is also con-
sistent with the observation of local uniaxial
charge domains in the spin-glass state of other
high-temperature superconductors by scanning
tunneling spectroscopy (25).
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Fig. 1. Geometry of the spin excitations aroundQAF at L = 1.7 r.l.u. in the a-b
plane at T= 5 K. (A to C) Intensity maps of the spin-excitation spectrum at 3, 7,
and 50 meV, respectively, assembled from triple-axis scans. The a* and b*
directions are indicated in (A). The scale is in arbitrary units and the wave
vector is in r.l.u. (14). The wave vector of the scattered neutrons, kf, was fixed
to 2.66 Å−1 in (A) and (B) and to 4.1 Å−1 in (C). The crossings of black lines
represent measured data points. All scans were corrected for a Q-linear

background. (D) Color map of the intensity at 3 meV, as it would be observed
in a crystal consisting of two perpendicular twin domains with equal popu-
lation. The representation was obtained by transposing the map in (A) and
superposing it with the original map. (E and F) Scans along a* and b* through
QAF. The resolution was enhanced as compared with (A) to (D) by working with
kf = 1.55 Å–1. Solid lines represent fits with one (F) or two (E) Gaussians to the
data. A linear background was subtracted.

Fig. 2. Temperature evolution of
the a-b anisotropy of the spin cor-
relations. Full squares and empty
circles represent data points mea-
sured at fixed K along a* and at
fixed H along b*, respectively. (A to
C) E = 3 meV; (D to F) E = 7 meV;
(G to I) E = 25 meV. The measure-
ments were performed at T = 5 K in
(A), (D), and (G); at T = 40 K in (B),
(E), and (H); and at T = 100 K in (C),
(F), and (I). The final wave vector kf
was fixed to 2.66 Å–1. All scans are
normalized to unity to allow a bet-
ter comparison of the scan profiles.
Solid lines represent the results of
fits with one or two Gaussians. A
linear background was subtracted.
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by nuclear spins. In agreement with previous
work (21), an additional contribution to the mSR
signal from low-energy electronic spin excitations
is seen below 10 K. Manifestations of electronic
magnetic moments that are static on the micro-
second time scale probed by the muons are dis-
cernible only in the decay profiles below ~2 K.

Information about the spatial structure of
these low-energy spin correlations was obtained
by additional neutron-scattering measurements
with a spectrometer nominally set for zero

energy transfer. As a result of the finite energy
resolution, spin fluctuations with energies below
the instrumental resolution width of ~ 0.2 meV
are probed in this “quasi-elastic” configuration.
Representative data (Fig. 4B) show that the in-
commensurability of the quasi-elastic profile as
well as its width xa

–1 are nearly identical to
those of the low-energy inelastic data plotted in
Fig. 3A; xb

–1 is somewhat smaller. The quasi-
elastic intensity exhibits a significant upturn
below 30 K. These data fit well into the “spin-

freezing” phenomenology of deeply underdoped
cuprates (20–24). The characteristic frequency
of electronic spin fluctuations is reduced with
decreasing temperature; this is directly apparent
in the inelastic neutron-scattering data of Fig.
3C. Upon further cooling, the spin system grad-
ually freezes into an ensemble of slowly fluc-
tuating, finite-sized domains. The characteristic
fluctuation rate of these domains progressively
enters the frequency windows of quasi-elastic
neutron scattering (20, 22, 23), mSR (21, 22),
and nuclear magnetic resonance (24) methods.

The results demonstrate that the spin corre-
lations within the fluctuating domains are in-
commensurate. Because the signal derives entirely
from the CuO2 planes (14), coupling between
spins in the planes and the CuO chains can be
ruled out as a substantial driving force of these
correlations. Thus, our data demonstrate that
the spin system in the CuO2 planes of strongly
underdoped Y123 becomes inherently unstable
toward the formation of a uniaxial, slowly fluc-
tuating spin texture at a critical temperature of
~150 K. The small (<1%) orthorhombic distor-
tion of the crystal structure serves as an aligning
field for the incommensurate domains and leads
to the large anisotropy of the neutron-scattering
pattern below 150 K. This scenario is also con-
sistent with the observation of local uniaxial
charge domains in the spin-glass state of other
high-temperature superconductors by scanning
tunneling spectroscopy (25).
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Fig. 1. Geometry of the spin excitations aroundQAF at L = 1.7 r.l.u. in the a-b
plane at T= 5 K. (A to C) Intensity maps of the spin-excitation spectrum at 3, 7,
and 50 meV, respectively, assembled from triple-axis scans. The a* and b*
directions are indicated in (A). The scale is in arbitrary units and the wave
vector is in r.l.u. (14). The wave vector of the scattered neutrons, kf, was fixed
to 2.66 Å−1 in (A) and (B) and to 4.1 Å−1 in (C). The crossings of black lines
represent measured data points. All scans were corrected for a Q-linear

background. (D) Color map of the intensity at 3 meV, as it would be observed
in a crystal consisting of two perpendicular twin domains with equal popu-
lation. The representation was obtained by transposing the map in (A) and
superposing it with the original map. (E and F) Scans along a* and b* through
QAF. The resolution was enhanced as compared with (A) to (D) by working with
kf = 1.55 Å–1. Solid lines represent fits with one (F) or two (E) Gaussians to the
data. A linear background was subtracted.

Fig. 2. Temperature evolution of
the a-b anisotropy of the spin cor-
relations. Full squares and empty
circles represent data points mea-
sured at fixed K along a* and at
fixed H along b*, respectively. (A to
C) E = 3 meV; (D to F) E = 7 meV;
(G to I) E = 25 meV. The measure-
ments were performed at T = 5 K in
(A), (D), and (G); at T = 40 K in (B),
(E), and (H); and at T = 100 K in (C),
(F), and (I). The final wave vector kf
was fixed to 2.66 Å–1. All scans are
normalized to unity to allow a bet-
ter comparison of the scan profiles.
Solid lines represent the results of
fits with one or two Gaussians. A
linear background was subtracted.
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by nuclear spins. In agreement with previous
work (21), an additional contribution to the mSR
signal from low-energy electronic spin excitations
is seen below 10 K. Manifestations of electronic
magnetic moments that are static on the micro-
second time scale probed by the muons are dis-
cernible only in the decay profiles below ~2 K.

Information about the spatial structure of
these low-energy spin correlations was obtained
by additional neutron-scattering measurements
with a spectrometer nominally set for zero

energy transfer. As a result of the finite energy
resolution, spin fluctuations with energies below
the instrumental resolution width of ~ 0.2 meV
are probed in this “quasi-elastic” configuration.
Representative data (Fig. 4B) show that the in-
commensurability of the quasi-elastic profile as
well as its width xa

–1 are nearly identical to
those of the low-energy inelastic data plotted in
Fig. 3A; xb

–1 is somewhat smaller. The quasi-
elastic intensity exhibits a significant upturn
below 30 K. These data fit well into the “spin-

freezing” phenomenology of deeply underdoped
cuprates (20–24). The characteristic frequency
of electronic spin fluctuations is reduced with
decreasing temperature; this is directly apparent
in the inelastic neutron-scattering data of Fig.
3C. Upon further cooling, the spin system grad-
ually freezes into an ensemble of slowly fluc-
tuating, finite-sized domains. The characteristic
fluctuation rate of these domains progressively
enters the frequency windows of quasi-elastic
neutron scattering (20, 22, 23), mSR (21, 22),
and nuclear magnetic resonance (24) methods.

The results demonstrate that the spin corre-
lations within the fluctuating domains are in-
commensurate. Because the signal derives entirely
from the CuO2 planes (14), coupling between
spins in the planes and the CuO chains can be
ruled out as a substantial driving force of these
correlations. Thus, our data demonstrate that
the spin system in the CuO2 planes of strongly
underdoped Y123 becomes inherently unstable
toward the formation of a uniaxial, slowly fluc-
tuating spin texture at a critical temperature of
~150 K. The small (<1%) orthorhombic distor-
tion of the crystal structure serves as an aligning
field for the incommensurate domains and leads
to the large anisotropy of the neutron-scattering
pattern below 150 K. This scenario is also con-
sistent with the observation of local uniaxial
charge domains in the spin-glass state of other
high-temperature superconductors by scanning
tunneling spectroscopy (25).
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Fig. 1. Geometry of the spin excitations aroundQAF at L = 1.7 r.l.u. in the a-b
plane at T= 5 K. (A to C) Intensity maps of the spin-excitation spectrum at 3, 7,
and 50 meV, respectively, assembled from triple-axis scans. The a* and b*
directions are indicated in (A). The scale is in arbitrary units and the wave
vector is in r.l.u. (14). The wave vector of the scattered neutrons, kf, was fixed
to 2.66 Å−1 in (A) and (B) and to 4.1 Å−1 in (C). The crossings of black lines
represent measured data points. All scans were corrected for a Q-linear

background. (D) Color map of the intensity at 3 meV, as it would be observed
in a crystal consisting of two perpendicular twin domains with equal popu-
lation. The representation was obtained by transposing the map in (A) and
superposing it with the original map. (E and F) Scans along a* and b* through
QAF. The resolution was enhanced as compared with (A) to (D) by working with
kf = 1.55 Å–1. Solid lines represent fits with one (F) or two (E) Gaussians to the
data. A linear background was subtracted.

Fig. 2. Temperature evolution of
the a-b anisotropy of the spin cor-
relations. Full squares and empty
circles represent data points mea-
sured at fixed K along a* and at
fixed H along b*, respectively. (A to
C) E = 3 meV; (D to F) E = 7 meV;
(G to I) E = 25 meV. The measure-
ments were performed at T = 5 K in
(A), (D), and (G); at T = 40 K in (B),
(E), and (H); and at T = 100 K in (C),
(F), and (I). The final wave vector kf
was fixed to 2.66 Å–1. All scans are
normalized to unity to allow a bet-
ter comparison of the scan profiles.
Solid lines represent the results of
fits with one or two Gaussians. A
linear background was subtracted.
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by nuclear spins. In agreement with previous
work (21), an additional contribution to the mSR
signal from low-energy electronic spin excitations
is seen below 10 K. Manifestations of electronic
magnetic moments that are static on the micro-
second time scale probed by the muons are dis-
cernible only in the decay profiles below ~2 K.

Information about the spatial structure of
these low-energy spin correlations was obtained
by additional neutron-scattering measurements
with a spectrometer nominally set for zero

energy transfer. As a result of the finite energy
resolution, spin fluctuations with energies below
the instrumental resolution width of ~ 0.2 meV
are probed in this “quasi-elastic” configuration.
Representative data (Fig. 4B) show that the in-
commensurability of the quasi-elastic profile as
well as its width xa

–1 are nearly identical to
those of the low-energy inelastic data plotted in
Fig. 3A; xb

–1 is somewhat smaller. The quasi-
elastic intensity exhibits a significant upturn
below 30 K. These data fit well into the “spin-

freezing” phenomenology of deeply underdoped
cuprates (20–24). The characteristic frequency
of electronic spin fluctuations is reduced with
decreasing temperature; this is directly apparent
in the inelastic neutron-scattering data of Fig.
3C. Upon further cooling, the spin system grad-
ually freezes into an ensemble of slowly fluc-
tuating, finite-sized domains. The characteristic
fluctuation rate of these domains progressively
enters the frequency windows of quasi-elastic
neutron scattering (20, 22, 23), mSR (21, 22),
and nuclear magnetic resonance (24) methods.

The results demonstrate that the spin corre-
lations within the fluctuating domains are in-
commensurate. Because the signal derives entirely
from the CuO2 planes (14), coupling between
spins in the planes and the CuO chains can be
ruled out as a substantial driving force of these
correlations. Thus, our data demonstrate that
the spin system in the CuO2 planes of strongly
underdoped Y123 becomes inherently unstable
toward the formation of a uniaxial, slowly fluc-
tuating spin texture at a critical temperature of
~150 K. The small (<1%) orthorhombic distor-
tion of the crystal structure serves as an aligning
field for the incommensurate domains and leads
to the large anisotropy of the neutron-scattering
pattern below 150 K. This scenario is also con-
sistent with the observation of local uniaxial
charge domains in the spin-glass state of other
high-temperature superconductors by scanning
tunneling spectroscopy (25).

3 meV

3 meV, “twinned”

7 meV 50 meV

along a* E = 3 meV, kf = 1.55 Å–1 along b*

Q (r.l.u.) H (r.l.u.) K (r.l.u.)

Q
 (

r.l
.u

.)
K

 (
r.l

.u
.)

In
te

ns
ity

 (
a.

u.
)

In
te

ns
ity

 (
a.

u.
)

K
 (

r.l
.u

.)

K
 (

r.l
.u

.)

A

D E F

B C700

600

500

400

300

200

100

0

1200

1000

800

600

400

200

0

300

250

200

150

100

50

0

600

500

400

300

200

100

0

-0.7

-0.6

-0.5

-0.4

-0.3

-0.7

-0.6

-0.5

-0.4

-0.3

1.7

1.6

1.5

1.4

1.3

0.7

0.6

0.5

0.4

0.3

1.0

0.5

0.0

1.0

0.5

0.0

1.3         1.4         1.5         1.6         1.7

1.3         1.4         1.5         1.6         1.7

1.3         1.4         1.5         1.6         1.70.3         0.4         0.5         0.6         0.7

0.3          0.4          0.5          0.6          0.7-0.3         -0.4         -0.5         -0.6         -0.7

H (r.l.u.) H (r.l.u.) H (r.l.u.)

Fig. 1. Geometry of the spin excitations aroundQAF at L = 1.7 r.l.u. in the a-b
plane at T= 5 K. (A to C) Intensity maps of the spin-excitation spectrum at 3, 7,
and 50 meV, respectively, assembled from triple-axis scans. The a* and b*
directions are indicated in (A). The scale is in arbitrary units and the wave
vector is in r.l.u. (14). The wave vector of the scattered neutrons, kf, was fixed
to 2.66 Å−1 in (A) and (B) and to 4.1 Å−1 in (C). The crossings of black lines
represent measured data points. All scans were corrected for a Q-linear

background. (D) Color map of the intensity at 3 meV, as it would be observed
in a crystal consisting of two perpendicular twin domains with equal popu-
lation. The representation was obtained by transposing the map in (A) and
superposing it with the original map. (E and F) Scans along a* and b* through
QAF. The resolution was enhanced as compared with (A) to (D) by working with
kf = 1.55 Å–1. Solid lines represent fits with one (F) or two (E) Gaussians to the
data. A linear background was subtracted.

Fig. 2. Temperature evolution of
the a-b anisotropy of the spin cor-
relations. Full squares and empty
circles represent data points mea-
sured at fixed K along a* and at
fixed H along b*, respectively. (A to
C) E = 3 meV; (D to F) E = 7 meV;
(G to I) E = 25 meV. The measure-
ments were performed at T = 5 K in
(A), (D), and (G); at T = 40 K in (B),
(E), and (H); and at T = 100 K in (C),
(F), and (I). The final wave vector kf
was fixed to 2.66 Å–1. All scans are
normalized to unity to allow a bet-
ter comparison of the scan profiles.
Solid lines represent the results of
fits with one or two Gaussians. A
linear background was subtracted.
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Incommensurability as Order parameter?

The relationship between the magnetic dy-
namics and the charge transport properties of
YBa2Cu3O6.45 can be discussed in the context
of theoretical proposals for electronic nematic
order. Although in-plane anisotropies of both
the spin fluctuation spectrum and the electrical
resistivity in the absence of spin and charge
order are generic features of nematic states in
theoretical models of quasi-2D electron systems
(10, 11), nematic order has thus far been diag-
nosed solely on the basis of the spontaneous
onset of anisotropic resistivity (12, 13). In
Y123, the case for nematicity is harder to make
based on transport alone, because the aligning
field is not tunable like the magnetic fields used
in (12, 13). The resistivity is thus anisotropic at
all temperatures, and the putative isotropic-to-
nematic transition is inevitably broadened. The
pronounced enhancement of the in-plane resis-
tivity ratio, ra/rb, below ~200 K (inset in Fig. 3B)
is, however, suggestive of an underlying phase
transition (15). The strikingly similar temper-

ature dependence of the spectral weight of the
anisotropic low-energy spin fluctuations (Fig. 3B)
confirms this interpretation. In addition, both
quantities exhibit a parallel evolution with energy
and doping: Optical conductivity measurements
on Y123 crystals with doping levels similar to
ours indicate that the charge transport anisot-
ropy is strongly reduced at excitation energies
above ~20 meV (26), in good agreement with
the crossover to isotropic spin fluctuations we
observe. In more highly doped Y123 (where the
orthorhombic distortion is enhanced), ra/rb is
reduced and much less temperature dependent
(15), whereas the spectral weight of the low-
energy collective spin excitations is strongly di-
minished (17–19, 27–29). Although low-energy
spin excitations are not entirely suppressed, this
phenomenon has been termed a “spin-gap.” We
note that the dispersion and in-plane geometry
of the excitations at energies exceeding the spin-
gap of YBa2Cu3O6+x (x ≥ 0.5) above Tc bear
some resemblance to the low-energy excita-

tions of YBa2Cu3O6.45 (19, 28, 29). This sug-
gests the presence of a quantum phase transition
at x ~ 0.5, where nematic order disappears and a
gap opens up in the spin fluctuation spectrum.
Whereas the spin fluctuations above the gap re-
main characteristic of the ordered phase nearby,
the dc-transport properties appear to be primar-
ily controlled by interactions with low-energy
excitations.

The energy and momentum dependence of
the spin excitations we have observed helps to
develop a microscopic description of the ne-
matic state and to discriminate between different
theoretical descriptions of the coupling between
spin and charge excitations in the cuprates.
Specifically, the data of Fig. 3A are incom-
patible with theories according to which the
resistivity anisotropy is controlled by an aniso-
tropic spin-spin correlation length (30). Rather,
the data indicate a correspondence between the
upturn in ra/rb and the onset of the incom-
mensurate modulation of the spin system.
Incommensurate peaks in the magnetic neutron-
scattering pattern can arise either from a lon-
gitudinal modulation, in which the magnetic
moments are collinear but their amplitude is
spatially modulated, or from a transverse mod-
ulation, in which the moment direction varies
but the amplitude remains constant. Our data are
compatible with slow fluctuations characteristic
of either type of modulation. Spin-amplitude
modulated states naturally go along with a mod-
ulation of the charge carrier density, and the
carrier mobilities along and perpendicular to the
modulation axis are generally expected to be
different (7). It has also been shown that a
transverse modulation with spiral spin correla-
tions can lead to anisotropic hopping transport
in weakly doped cuprates with diverging low-
temperature resistivity (31). Further work is re-
quired to assess whether this mechanism can be
generalized to metallic electron systems such as
the one in YBa2Cu3O6.45. Finally, we note that
the magnitude of d in YBa2Cu3O6.45 is incom-
patible (16, 18) with the Yamada-plot (32), that is,
the d-versus-x relation that holds generally for

A B C

Fig. 3. Temperature and energy evolution of parameters characterizing
the spin excitation spectrum. The parameters are the results of fits to the
raw data, corrected for the instrumental resolution. (A) Incommensurabil-
ity d (red symbols), half-width-at-half-maximum of the incommensurate
peaks along a* (xa

–1, black symbols) and along b* (xb
–1, open blue

symbols) in reciprocal lattice units. The upper border of the shaded area
follows xa

–1. The x–1 axis is scaled to twice the value of the d axis, hence

d-points lying inside the shaded area indicate an incommensurate peak
separation below xa

–1. (B) Imaginary part of the Q-integrated spin
susceptibility c′′(w) at 3 meV. The inset shows the ratio of the electrical
resistivity along a* and b* of a sample with similar doping levels as ours,
reproduced from (15). (C) Energy evolution of c′′(w) at T = 5, 40, 100,
and 290 K. In all panels, the error bars were estimated from the fits. The
lines are a guide to the eye.

Fig. 4. Measurements of the quasi-elastic
magnetic response. (A) Zero-field muon-
spin-relaxation data taken at T = 1.5,
2.75, 3.5, 5, 7, and 30 K. Solid lines
show the results of fits to a relaxation
function that consists of the product of a
stretched exponential and a Kubo-Toyabe
function, which account for the contribu-
tion of the electronic and nuclear mag-
netic moments, respectively. (B and C)
Neutron-scattering scans along a* at fixed
K = –0.5 and along b* at fixed H = 0.54,
with a nominal energy transfer of 0 meV.
The difference between the intensities at
5 K and 40 K is shown in arbitrary units,
and kf was fixed to 1.48 Å–1. Solid lines
represent fits with one (C) or two (B)
Gaussians to the data. A linear back-
ground was subtracted.
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We study the interplay between charge and spin ordering in electronic liquid crystalline states with
a particular emphasis on fluctuating spin stripe phenomena observed in recent neutron scattering
experiments[1, 2]. Based on a phenomenological model, we propose that charge nematic ordering
is indeed behind the formation of temperature dependent incommensurate inelastic peaks near
wavevector (π,π) in the dynamic structure factor of YBa2Cu3O6+y . We strengthen this claim by
providing a compelling fit to the experimental data and showing that a number of other ordering
possibilities cannot reproduce this phenomenology.

PACS numbers: 71.10.Hf,71.45.Gm,75.10.Jm

Kaleidoscopic variety of competing ordering tendencies
is both a hallmark of correlated electron fluids, such as
cuprate and Fe based superconductors[3, 4], and a theo-
retical challenge. As such, a clear identification of a bro-
ken symmetry phase offers a valuable guiding principle.
Recent observations of temperature, energy and doping
dependent onset of anisotropy in inelastic neutron scat-
tering (INS) studied by V. Hinkov et al. [1] provides an
opportunity for just such identification.

The symmetry of the “fluctuating spin stripe” phenom-
ena (one-dimensional incommensurate spin modulation
at finite energy) observed in Ref. 1 is consistent with
that of a nematic phase [5] (a metallic state that breaks
rotational symmetry without breaking translational sym-
metry). Furthermore, the qualitative departure in the
magnetic response of underdoped YBa2Cu3O6+yin Refs.
[1] from that of optimally and overdoped regimes y ! 0.5
[6, 7, 8, 9] indicates the possible existence of a quan-
tum critical point at around y ∼ 0.5 as we sketch in Fig.
1. In specific, low energy features are enhanced in INS
of y = 0.45 while the extensively studied high energy
“hour-glass” dispersion which are prominent at higher
doping [6, 7, 8, 9] is suppressed. (Considerable atten-
tion has been directed towards this resonance feature and
its signicance. See e.g. Ref.[10]). However, despite the
reported temperature dependence of the finite-frequency
incommensurability being suggestive of an order parame-
ter, it has not been clear how this quantity can be related
to a specific order parameter since an order parameter is
defined by broken symmetry of the ground state.

There has been a number of theoretical studies regard-
ing possible signatures of electronic liquid crystal physics
in the magnetic response [11, 12, 13]. While these stud-
ies shed light on the hour-glass dispersion observed in
y ! 0.5 at high energies, their connection with the low en-

T

y

TN

T*

AFM

Nematic
Crossover to 
fluctuating spin stripe

SuperconductingStatic spin
stripe

FIG. 1: (color online) Schematic phase diagram of
YBa2Cu3O6+y . Here the shaded region bound by TN repre-
sents a nematic phase and the dashed line below TN represents
the crossover temperature T ∗ to a “fluctuating spin stripe”
behavior. Sufficiently strong nematic ordering at low enough
temperatures could further stabilize a static spin stripe phase.

ergy phenomena in the underdoped regime with y < 0.5
is unclear. Moreover, they focused on the superconduct-
ing phase while the observed onset of fluctuating spin
stripe behavior is at TN ∼ 150K, well above the super-
conducting ordering temperature Tc = 35K.

In this letter we propose that charge nematic ordering
is the driving force behind the fluctuating spin stripe phe-
nomena observed in underdoped YBa2Cu3O6+y. We con-
sider a metallic system proximate to antiferromagnetic
(AFM) ordering and show that charge nematic ordering
quite uniquely can induce fluctuating and even static spin
stripes thus providing a concrete connection between the
charge[14] and spin aspects of liquid crystalline behavior
in underdoped YBa2Cu3O6+y. Our claims are supple-

arXiv:0906.3460
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retical challenge. As such, a clear identification of a bro-
ken symmetry phase offers a valuable guiding principle.
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dependent onset of anisotropy in inelastic neutron scat-
tering (INS) studied by V. Hinkov et al. [1] provides an
opportunity for just such identification.

The symmetry of the “fluctuating spin stripe” phenom-
ena (one-dimensional incommensurate spin modulation
at finite energy) observed in Ref. 1 is consistent with
that of a nematic phase [5] (a metallic state that breaks
rotational symmetry without breaking translational sym-
metry). Furthermore, the qualitative departure in the
magnetic response of underdoped YBa2Cu3O6+yin Refs.
[1] from that of optimally and overdoped regimes y ! 0.5
[6, 7, 8, 9] indicates the possible existence of a quan-
tum critical point at around y ∼ 0.5 as we sketch in Fig.
1. In specific, low energy features are enhanced in INS
of y = 0.45 while the extensively studied high energy
“hour-glass” dispersion which are prominent at higher
doping [6, 7, 8, 9] is suppressed. (Considerable atten-
tion has been directed towards this resonance feature and
its signicance. See e.g. Ref.[10]). However, despite the
reported temperature dependence of the finite-frequency
incommensurability being suggestive of an order parame-
ter, it has not been clear how this quantity can be related
to a specific order parameter since an order parameter is
defined by broken symmetry of the ground state.

There has been a number of theoretical studies regard-
ing possible signatures of electronic liquid crystal physics
in the magnetic response [11, 12, 13]. While these stud-
ies shed light on the hour-glass dispersion observed in
y ! 0.5 at high energies, their connection with the low en-
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ergy phenomena in the underdoped regime with y < 0.5
is unclear. Moreover, they focused on the superconduct-
ing phase while the observed onset of fluctuating spin
stripe behavior is at TN ∼ 150K, well above the super-
conducting ordering temperature Tc = 35K.

In this letter we propose that charge nematic ordering
is the driving force behind the fluctuating spin stripe phe-
nomena observed in underdoped YBa2Cu3O6+y. We con-
sider a metallic system proximate to antiferromagnetic
(AFM) ordering and show that charge nematic ordering
quite uniquely can induce fluctuating and even static spin
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charge[14] and spin aspects of liquid crystalline behavior
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dependent onset of anisotropy in inelastic neutron scat-
tering (INS) studied by V. Hinkov et al. [1] provides an
opportunity for just such identification.

The symmetry of the “fluctuating spin stripe” phenom-
ena (one-dimensional incommensurate spin modulation
at finite energy) observed in Ref. 1 is consistent with
that of a nematic phase [5] (a metallic state that breaks
rotational symmetry without breaking translational sym-
metry). Furthermore, the qualitative departure in the
magnetic response of underdoped YBa2Cu3O6+yin Refs.
[1] from that of optimally and overdoped regimes y ! 0.5
[6, 7, 8, 9] indicates the possible existence of a quan-
tum critical point at around y ∼ 0.5 as we sketch in Fig.
1. In specific, low energy features are enhanced in INS
of y = 0.45 while the extensively studied high energy
“hour-glass” dispersion which are prominent at higher
doping [6, 7, 8, 9] is suppressed. (Considerable atten-
tion has been directed towards this resonance feature and
its signicance. See e.g. Ref.[10]). However, despite the
reported temperature dependence of the finite-frequency
incommensurability being suggestive of an order parame-
ter, it has not been clear how this quantity can be related
to a specific order parameter since an order parameter is
defined by broken symmetry of the ground state.

There has been a number of theoretical studies regard-
ing possible signatures of electronic liquid crystal physics
in the magnetic response [11, 12, 13]. While these stud-
ies shed light on the hour-glass dispersion observed in
y ! 0.5 at high energies, their connection with the low en-
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ergy phenomena in the underdoped regime with y < 0.5
is unclear. Moreover, they focused on the superconduct-
ing phase while the observed onset of fluctuating spin
stripe behavior is at TN ∼ 150K, well above the super-
conducting ordering temperature Tc = 35K.

In this letter we propose that charge nematic ordering
is the driving force behind the fluctuating spin stripe phe-
nomena observed in underdoped YBa2Cu3O6+y. We con-
sider a metallic system proximate to antiferromagnetic
(AFM) ordering and show that charge nematic ordering
quite uniquely can induce fluctuating and even static spin
stripes thus providing a concrete connection between the
charge[14] and spin aspects of liquid crystalline behavior
in underdoped YBa2Cu3O6+y. Our claims are supple-

arXiv:0906.3460

2

mented by a successful fit with available INS data[1].
Phenomenological Model We start by noting that V.

Hinkov et al. [1] detect the dynamic onset of anisotropy
through in commensurate inelastic peaks near the AFM
wave vector Q = (π, π) in a metallic system (see Fig.2).
Given a microscopic theory of itinerant magnetism being
an open question, we take a phenomenological approach
as a first pass through the problem. In the presence of
long range AFM ordering, low-energy excitation in the
particle-hole channel is dominated by gapless spin waves
near Q with infinite life time:

"φ(q, ω)=

∫

d2kdΩ

2(2π)3
ψ†

α(k+Q+q, Ω+ω)"σα,βψβ(k, Ω). (1)

Here the operators ψ†
α(ψα) are the fermion creation (an-

nihilation) operators with spin α =↑, ↓. "φ and "σ are
vectors in spin space with σi

α,β representing (α, β) com-

ponent of Pauli matrix σi for i = x, y, z. q denotes the
wavevector of the spinwaves measured from Q and ω de-
notes their frequency. For underdoped cuprates outside
of but close to the AFM phase (see Fig.1), this spin-
wave can be either damped or gapped and well defined.
To quadratic order in "φ, the appropriate effective action
takes the form[15]

S["φ] =
1

g

∫

d2qdω

(2π)3
(

iΓ|ω| + ω2 − ∆2 (q)
)

|"φ(q, ω)|2.

(2)
where g is an overall scale and ∆ (q) is the momentum
q dependent spin wave gap in the absence of damping
and Γ is the damping energy scale. Here we take the
damping to be of Landau damping form[16] but most of
our conclusions below are insensitive to the details of the
damping dynamics.

The dynamic structure factor measured by INS exper-
iments will be proportional to the spectral function

χ′′(ω,q) = g
Γω

(Γω)2 + (ω2 − ∆(q)2)2
. (3)

for the action of Eq.(2). The uniform component of the
gap ∆(q = 0) sets the energy scale above which INS in-
tensity is significant and the q dependence of ∆(q) deter-
mine the distribution of intensity in the Fourier space. In
the absence of other symmetry breaking tendencies, ∆(q)
will be a minimum at q = 0 and respect the point group
symmetry of the system. Hence the INS intensity above
∆(q = 0) will be C4 symmetric (with static orthrhom-
bicity due to chain layer) and peaked at q = 0. Tem-
perature and energy dependent anisotropic incommensu-
rability observed in Ref.[1] indicate additional ordering
tendencies at play. We first study the effect of charge
nematic ordering motivated by transport anisotropy ob-
served in the nearby regime[14].

In a nematic fluid, charge degrees of freedom collec-
tively break rotational symmetry of space while preserv-
ing the translational symmetry (hence remains metallic)

and any other symmetry of the system such as time re-
versal and spin rotation[5]. A nematic order parame-
ter in a continuum system has the symmetry of charge
quadrupole moment (l = 2 representation of SO(2) ro-
tational group). It has two real components and it can
either be written as a symmetric traceless tensor of rank
two or as a complex field[17, 18].

As the nematic ordering involves spatial symmetry
breaking, the nature of the order parameter itself is af-
fected by crystal fields due to the lattice which lowers
the spatial rotational symmetry to a discrete group. For
instance in a square lattice with C4v symmetry, the or-
dering can occur in one of two channels dx2−y2 or dxy

reducing the order parameter symmetry to Ising-like (a
single component real field) in either case[19]. Due to this
discretization of the order parameter symmetry, the ne-
matic fluctuation below the transition temperature TN

will be massive. In YBa2Cu3O6+y, the weak external
field imposed by the chain layer will likely pick the ne-
matic to occur in the dx2−y2 channel and a representative
form of order parameter can therefore be written as

N =

∫

d2k

2(2π)2
N̄(cos kx − cos ky)ψ†

α(k)ψα(k). (4)

However, it is important to note that any electronic quan-
tity that is odd under 90◦ spatial rotation such as ef-
fective mass anisotropy ratio (my − mx)/(my + mx) or
transport anisotropy (ρxx − ρyy)/(ρxx + ρyy) can serve
as the order parameter for the nematic state[17]. In fact,
short of probes that couple directly to charge quadrupole
moments, nematic phases so far has been mostly de-
tected through temperature dependent in-plane trans-
port anisotropy in quasi 2D systems[20, 21].

In YBa2Cu3O6+y, Ando et al. [14] observed that trans-
port anisotropy increase upon under doping below y ∼
0.5 while the effect of CuO chains diminishes. Its elec-
tronic origin is further supported by the fact that this
anisotropy only sets in below a doping dependent onset
temperatures TN (180K for y = 0.45) making nematic
ordering a compelling candidate for background broken
symmetry in underdoped YBa2Cu3O6+yas advanced in
Ref.1 without a theoretical model.

Consider the effect of dx2−y2 nematic ordering below
TN on the spin fluctuations in Fig.1. The effective action
now depends on both "φ and N . Away from the classical
critical region near TN , the gapped nematic fluctuations
can be integrated out and the effect of finite N can be
represented by N -dependent coefficients in the gradient
expansion of S["φ, N ] in the long distance limit. Such N
dependence of S["φ, N ] can be incorporated through N
dependent “gap” ∆(q; N). On symmetry grounds,

∆2(q; N) = ∆2
0(N)+c2

0(N)q2−c2
2(N)N(q2

x−q2
y)+· · ·

(5)

where all functions of N are even and momenta are in
units of the lattice constant (i.e. qx ≡ kxa). (Note that



a
rX

iv
:0

9
0
6
.3

4
6
0
v
1
  
[c

o
n
d
-m

a
t.

st
r-

e
l]

  
1
8
 J

u
n
 2

0
0
9

Spin-charge interplay in electronic liquid crystals: fluctuating spin stripe driven by
charge nematic

Kai Sun,1, 2 Michael J. Lawler,3, 4 and Eun-Ah Kim4

1Department of Physics, University of Illinois at Urbana-Champaign,
1110 West Green Street, Urbana, Illinois 61801-3080

2Joint Quantum Institute and Condensed Matter Theory Center,
Department of Physics, University of Maryland, College Park, Maryland 20742-4111

3Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902
4Department of Physics, Cornell University, Ithaca, NY 14853

(Dated: June 18, 2009)

We study the interplay between charge and spin ordering in electronic liquid crystalline states with
a particular emphasis on fluctuating spin stripe phenomena observed in recent neutron scattering
experiments[1, 2]. Based on a phenomenological model, we propose that charge nematic ordering
is indeed behind the formation of temperature dependent incommensurate inelastic peaks near
wavevector (π,π) in the dynamic structure factor of YBa2Cu3O6+y . We strengthen this claim by
providing a compelling fit to the experimental data and showing that a number of other ordering
possibilities cannot reproduce this phenomenology.

PACS numbers: 71.10.Hf,71.45.Gm,75.10.Jm

Kaleidoscopic variety of competing ordering tendencies
is both a hallmark of correlated electron fluids, such as
cuprate and Fe based superconductors[3, 4], and a theo-
retical challenge. As such, a clear identification of a bro-
ken symmetry phase offers a valuable guiding principle.
Recent observations of temperature, energy and doping
dependent onset of anisotropy in inelastic neutron scat-
tering (INS) studied by V. Hinkov et al. [1] provides an
opportunity for just such identification.

The symmetry of the “fluctuating spin stripe” phenom-
ena (one-dimensional incommensurate spin modulation
at finite energy) observed in Ref. 1 is consistent with
that of a nematic phase [5] (a metallic state that breaks
rotational symmetry without breaking translational sym-
metry). Furthermore, the qualitative departure in the
magnetic response of underdoped YBa2Cu3O6+yin Refs.
[1] from that of optimally and overdoped regimes y ! 0.5
[6, 7, 8, 9] indicates the possible existence of a quan-
tum critical point at around y ∼ 0.5 as we sketch in Fig.
1. In specific, low energy features are enhanced in INS
of y = 0.45 while the extensively studied high energy
“hour-glass” dispersion which are prominent at higher
doping [6, 7, 8, 9] is suppressed. (Considerable atten-
tion has been directed towards this resonance feature and
its signicance. See e.g. Ref.[10]). However, despite the
reported temperature dependence of the finite-frequency
incommensurability being suggestive of an order parame-
ter, it has not been clear how this quantity can be related
to a specific order parameter since an order parameter is
defined by broken symmetry of the ground state.

There has been a number of theoretical studies regard-
ing possible signatures of electronic liquid crystal physics
in the magnetic response [11, 12, 13]. While these stud-
ies shed light on the hour-glass dispersion observed in
y ! 0.5 at high energies, their connection with the low en-
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FIG. 1: (color online) Schematic phase diagram of
YBa2Cu3O6+y . Here the shaded region bound by TN repre-
sents a nematic phase and the dashed line below TN represents
the crossover temperature T ∗ to a “fluctuating spin stripe”
behavior. Sufficiently strong nematic ordering at low enough
temperatures could further stabilize a static spin stripe phase.

ergy phenomena in the underdoped regime with y < 0.5
is unclear. Moreover, they focused on the superconduct-
ing phase while the observed onset of fluctuating spin
stripe behavior is at TN ∼ 150K, well above the super-
conducting ordering temperature Tc = 35K.

In this letter we propose that charge nematic ordering
is the driving force behind the fluctuating spin stripe phe-
nomena observed in underdoped YBa2Cu3O6+y. We con-
sider a metallic system proximate to antiferromagnetic
(AFM) ordering and show that charge nematic ordering
quite uniquely can induce fluctuating and even static spin
stripes thus providing a concrete connection between the
charge[14] and spin aspects of liquid crystalline behavior
in underdoped YBa2Cu3O6+y. Our claims are supple-
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mented by a successful fit with available INS data[1].
Phenomenological Model We start by noting that V.

Hinkov et al. [1] detect the dynamic onset of anisotropy
through in commensurate inelastic peaks near the AFM
wave vector Q = (π, π) in a metallic system (see Fig.2).
Given a microscopic theory of itinerant magnetism being
an open question, we take a phenomenological approach
as a first pass through the problem. In the presence of
long range AFM ordering, low-energy excitation in the
particle-hole channel is dominated by gapless spin waves
near Q with infinite life time:

"φ(q, ω)=

∫

d2kdΩ

2(2π)3
ψ†

α(k+Q+q, Ω+ω)"σα,βψβ(k, Ω). (1)

Here the operators ψ†
α(ψα) are the fermion creation (an-

nihilation) operators with spin α =↑, ↓. "φ and "σ are
vectors in spin space with σi

α,β representing (α, β) com-

ponent of Pauli matrix σi for i = x, y, z. q denotes the
wavevector of the spinwaves measured from Q and ω de-
notes their frequency. For underdoped cuprates outside
of but close to the AFM phase (see Fig.1), this spin-
wave can be either damped or gapped and well defined.
To quadratic order in "φ, the appropriate effective action
takes the form[15]

S["φ] =
1

g

∫

d2qdω

(2π)3
(

iΓ|ω| + ω2 − ∆2 (q)
)

|"φ(q, ω)|2.

(2)
where g is an overall scale and ∆ (q) is the momentum
q dependent spin wave gap in the absence of damping
and Γ is the damping energy scale. Here we take the
damping to be of Landau damping form[16] but most of
our conclusions below are insensitive to the details of the
damping dynamics.

The dynamic structure factor measured by INS exper-
iments will be proportional to the spectral function

χ′′(ω,q) = g
Γω

(Γω)2 + (ω2 − ∆(q)2)2
. (3)

for the action of Eq.(2). The uniform component of the
gap ∆(q = 0) sets the energy scale above which INS in-
tensity is significant and the q dependence of ∆(q) deter-
mine the distribution of intensity in the Fourier space. In
the absence of other symmetry breaking tendencies, ∆(q)
will be a minimum at q = 0 and respect the point group
symmetry of the system. Hence the INS intensity above
∆(q = 0) will be C4 symmetric (with static orthrhom-
bicity due to chain layer) and peaked at q = 0. Tem-
perature and energy dependent anisotropic incommensu-
rability observed in Ref.[1] indicate additional ordering
tendencies at play. We first study the effect of charge
nematic ordering motivated by transport anisotropy ob-
served in the nearby regime[14].

In a nematic fluid, charge degrees of freedom collec-
tively break rotational symmetry of space while preserv-
ing the translational symmetry (hence remains metallic)

and any other symmetry of the system such as time re-
versal and spin rotation[5]. A nematic order parame-
ter in a continuum system has the symmetry of charge
quadrupole moment (l = 2 representation of SO(2) ro-
tational group). It has two real components and it can
either be written as a symmetric traceless tensor of rank
two or as a complex field[17, 18].

As the nematic ordering involves spatial symmetry
breaking, the nature of the order parameter itself is af-
fected by crystal fields due to the lattice which lowers
the spatial rotational symmetry to a discrete group. For
instance in a square lattice with C4v symmetry, the or-
dering can occur in one of two channels dx2−y2 or dxy

reducing the order parameter symmetry to Ising-like (a
single component real field) in either case[19]. Due to this
discretization of the order parameter symmetry, the ne-
matic fluctuation below the transition temperature TN

will be massive. In YBa2Cu3O6+y, the weak external
field imposed by the chain layer will likely pick the ne-
matic to occur in the dx2−y2 channel and a representative
form of order parameter can therefore be written as

N =

∫

d2k

2(2π)2
N̄(cos kx − cos ky)ψ†

α(k)ψα(k). (4)

However, it is important to note that any electronic quan-
tity that is odd under 90◦ spatial rotation such as ef-
fective mass anisotropy ratio (my − mx)/(my + mx) or
transport anisotropy (ρxx − ρyy)/(ρxx + ρyy) can serve
as the order parameter for the nematic state[17]. In fact,
short of probes that couple directly to charge quadrupole
moments, nematic phases so far has been mostly de-
tected through temperature dependent in-plane trans-
port anisotropy in quasi 2D systems[20, 21].

In YBa2Cu3O6+y, Ando et al. [14] observed that trans-
port anisotropy increase upon under doping below y ∼
0.5 while the effect of CuO chains diminishes. Its elec-
tronic origin is further supported by the fact that this
anisotropy only sets in below a doping dependent onset
temperatures TN (180K for y = 0.45) making nematic
ordering a compelling candidate for background broken
symmetry in underdoped YBa2Cu3O6+yas advanced in
Ref.1 without a theoretical model.

Consider the effect of dx2−y2 nematic ordering below
TN on the spin fluctuations in Fig.1. The effective action
now depends on both "φ and N . Away from the classical
critical region near TN , the gapped nematic fluctuations
can be integrated out and the effect of finite N can be
represented by N -dependent coefficients in the gradient
expansion of S["φ, N ] in the long distance limit. Such N
dependence of S["φ, N ] can be incorporated through N
dependent “gap” ∆(q; N). On symmetry grounds,

∆2(q; N) = ∆2
0(N)+c2

0(N)q2−c2
2(N)N(q2

x−q2
y)+· · ·

(5)

where all functions of N are even and momenta are in
units of the lattice constant (i.e. qx ≡ kxa). (Note that
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breaking, the nature of the order parameter itself is af-
fected by crystal fields due to the lattice which lowers
the spatial rotational symmetry to a discrete group. For
instance in a square lattice with C4v symmetry, the or-
dering can occur in one of two channels dx2−y2 or dxy

reducing the order parameter symmetry to Ising-like (a
single component real field) in either case[19]. Due to this
discretization of the order parameter symmetry, the ne-
matic fluctuation below the transition temperature TN

will be massive. In YBa2Cu3O6+y, the weak external
field imposed by the chain layer will likely pick the ne-
matic to occur in the dx2−y2 channel and a representative
form of order parameter can therefore be written as

N =

∫

d2k

2(2π)2
N̄(cos kx − cos ky)ψ†

α(k)ψα(k). (4)

However, it is important to note that any electronic quan-
tity that is odd under 90◦ spatial rotation such as ef-
fective mass anisotropy ratio (my − mx)/(my + mx) or
transport anisotropy (ρxx − ρyy)/(ρxx + ρyy) can serve
as the order parameter for the nematic state[17]. In fact,
short of probes that couple directly to charge quadrupole
moments, nematic phases so far has been mostly de-
tected through temperature dependent in-plane trans-
port anisotropy in quasi 2D systems[20, 21].
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We study the interplay between charge and spin ordering in electronic liquid crystalline states with
a particular emphasis on fluctuating spin stripe phenomena observed in recent neutron scattering
experiments[1, 2]. Based on a phenomenological model, we propose that charge nematic ordering
is indeed behind the formation of temperature dependent incommensurate inelastic peaks near
wavevector (π,π) in the dynamic structure factor of YBa2Cu3O6+y . We strengthen this claim by
providing a compelling fit to the experimental data and showing that a number of other ordering
possibilities cannot reproduce this phenomenology.

PACS numbers: 71.10.Hf,71.45.Gm,75.10.Jm

Kaleidoscopic variety of competing ordering tendencies
is both a hallmark of correlated electron fluids, such as
cuprate and Fe based superconductors[3, 4], and a theo-
retical challenge. As such, a clear identification of a bro-
ken symmetry phase offers a valuable guiding principle.
Recent observations of temperature, energy and doping
dependent onset of anisotropy in inelastic neutron scat-
tering (INS) studied by V. Hinkov et al. [1] provides an
opportunity for just such identification.

The symmetry of the “fluctuating spin stripe” phenom-
ena (one-dimensional incommensurate spin modulation
at finite energy) observed in Ref. 1 is consistent with
that of a nematic phase [5] (a metallic state that breaks
rotational symmetry without breaking translational sym-
metry). Furthermore, the qualitative departure in the
magnetic response of underdoped YBa2Cu3O6+yin Refs.
[1] from that of optimally and overdoped regimes y ! 0.5
[6, 7, 8, 9] indicates the possible existence of a quan-
tum critical point at around y ∼ 0.5 as we sketch in Fig.
1. In specific, low energy features are enhanced in INS
of y = 0.45 while the extensively studied high energy
“hour-glass” dispersion which are prominent at higher
doping [6, 7, 8, 9] is suppressed. (Considerable atten-
tion has been directed towards this resonance feature and
its signicance. See e.g. Ref.[10]). However, despite the
reported temperature dependence of the finite-frequency
incommensurability being suggestive of an order parame-
ter, it has not been clear how this quantity can be related
to a specific order parameter since an order parameter is
defined by broken symmetry of the ground state.

There has been a number of theoretical studies regard-
ing possible signatures of electronic liquid crystal physics
in the magnetic response [11, 12, 13]. While these stud-
ies shed light on the hour-glass dispersion observed in
y ! 0.5 at high energies, their connection with the low en-
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FIG. 1: (color online) Schematic phase diagram of
YBa2Cu3O6+y . Here the shaded region bound by TN repre-
sents a nematic phase and the dashed line below TN represents
the crossover temperature T ∗ to a “fluctuating spin stripe”
behavior. Sufficiently strong nematic ordering at low enough
temperatures could further stabilize a static spin stripe phase.

ergy phenomena in the underdoped regime with y < 0.5
is unclear. Moreover, they focused on the superconduct-
ing phase while the observed onset of fluctuating spin
stripe behavior is at TN ∼ 150K, well above the super-
conducting ordering temperature Tc = 35K.

In this letter we propose that charge nematic ordering
is the driving force behind the fluctuating spin stripe phe-
nomena observed in underdoped YBa2Cu3O6+y. We con-
sider a metallic system proximate to antiferromagnetic
(AFM) ordering and show that charge nematic ordering
quite uniquely can induce fluctuating and even static spin
stripes thus providing a concrete connection between the
charge[14] and spin aspects of liquid crystalline behavior
in underdoped YBa2Cu3O6+y. Our claims are supple-
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mented by a successful fit with available INS data[1].
Phenomenological Model We start by noting that V.

Hinkov et al. [1] detect the dynamic onset of anisotropy
through in commensurate inelastic peaks near the AFM
wave vector Q = (π, π) in a metallic system (see Fig.2).
Given a microscopic theory of itinerant magnetism being
an open question, we take a phenomenological approach
as a first pass through the problem. In the presence of
long range AFM ordering, low-energy excitation in the
particle-hole channel is dominated by gapless spin waves
near Q with infinite life time:

"φ(q, ω)=

∫

d2kdΩ

2(2π)3
ψ†

α(k+Q+q, Ω+ω)"σα,βψβ(k, Ω). (1)

Here the operators ψ†
α(ψα) are the fermion creation (an-

nihilation) operators with spin α =↑, ↓. "φ and "σ are
vectors in spin space with σi

α,β representing (α, β) com-

ponent of Pauli matrix σi for i = x, y, z. q denotes the
wavevector of the spinwaves measured from Q and ω de-
notes their frequency. For underdoped cuprates outside
of but close to the AFM phase (see Fig.1), this spin-
wave can be either damped or gapped and well defined.
To quadratic order in "φ, the appropriate effective action
takes the form[15]

S["φ] =
1

g

∫

d2qdω

(2π)3
(

iΓ|ω| + ω2 − ∆2 (q)
)

|"φ(q, ω)|2.

(2)
where g is an overall scale and ∆ (q) is the momentum
q dependent spin wave gap in the absence of damping
and Γ is the damping energy scale. Here we take the
damping to be of Landau damping form[16] but most of
our conclusions below are insensitive to the details of the
damping dynamics.

The dynamic structure factor measured by INS exper-
iments will be proportional to the spectral function

χ′′(ω,q) = g
Γω

(Γω)2 + (ω2 − ∆(q)2)2
. (3)

for the action of Eq.(2). The uniform component of the
gap ∆(q = 0) sets the energy scale above which INS in-
tensity is significant and the q dependence of ∆(q) deter-
mine the distribution of intensity in the Fourier space. In
the absence of other symmetry breaking tendencies, ∆(q)
will be a minimum at q = 0 and respect the point group
symmetry of the system. Hence the INS intensity above
∆(q = 0) will be C4 symmetric (with static orthrhom-
bicity due to chain layer) and peaked at q = 0. Tem-
perature and energy dependent anisotropic incommensu-
rability observed in Ref.[1] indicate additional ordering
tendencies at play. We first study the effect of charge
nematic ordering motivated by transport anisotropy ob-
served in the nearby regime[14].

In a nematic fluid, charge degrees of freedom collec-
tively break rotational symmetry of space while preserv-
ing the translational symmetry (hence remains metallic)

and any other symmetry of the system such as time re-
versal and spin rotation[5]. A nematic order parame-
ter in a continuum system has the symmetry of charge
quadrupole moment (l = 2 representation of SO(2) ro-
tational group). It has two real components and it can
either be written as a symmetric traceless tensor of rank
two or as a complex field[17, 18].

As the nematic ordering involves spatial symmetry
breaking, the nature of the order parameter itself is af-
fected by crystal fields due to the lattice which lowers
the spatial rotational symmetry to a discrete group. For
instance in a square lattice with C4v symmetry, the or-
dering can occur in one of two channels dx2−y2 or dxy

reducing the order parameter symmetry to Ising-like (a
single component real field) in either case[19]. Due to this
discretization of the order parameter symmetry, the ne-
matic fluctuation below the transition temperature TN

will be massive. In YBa2Cu3O6+y, the weak external
field imposed by the chain layer will likely pick the ne-
matic to occur in the dx2−y2 channel and a representative
form of order parameter can therefore be written as

N =

∫

d2k

2(2π)2
N̄(cos kx − cos ky)ψ†

α(k)ψα(k). (4)

However, it is important to note that any electronic quan-
tity that is odd under 90◦ spatial rotation such as ef-
fective mass anisotropy ratio (my − mx)/(my + mx) or
transport anisotropy (ρxx − ρyy)/(ρxx + ρyy) can serve
as the order parameter for the nematic state[17]. In fact,
short of probes that couple directly to charge quadrupole
moments, nematic phases so far has been mostly de-
tected through temperature dependent in-plane trans-
port anisotropy in quasi 2D systems[20, 21].

In YBa2Cu3O6+y, Ando et al. [14] observed that trans-
port anisotropy increase upon under doping below y ∼
0.5 while the effect of CuO chains diminishes. Its elec-
tronic origin is further supported by the fact that this
anisotropy only sets in below a doping dependent onset
temperatures TN (180K for y = 0.45) making nematic
ordering a compelling candidate for background broken
symmetry in underdoped YBa2Cu3O6+yas advanced in
Ref.1 without a theoretical model.

Consider the effect of dx2−y2 nematic ordering below
TN on the spin fluctuations in Fig.1. The effective action
now depends on both "φ and N . Away from the classical
critical region near TN , the gapped nematic fluctuations
can be integrated out and the effect of finite N can be
represented by N -dependent coefficients in the gradient
expansion of S["φ, N ] in the long distance limit. Such N
dependence of S["φ, N ] can be incorporated through N
dependent “gap” ∆(q; N). On symmetry grounds,
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form of order parameter can therefore be written as

N =

∫

d2k

2(2π)2
N̄(cos kx − cos ky)ψ†

α(k)ψα(k). (4)

However, it is important to note that any electronic quan-
tity that is odd under 90◦ spatial rotation such as ef-
fective mass anisotropy ratio (my − mx)/(my + mx) or
transport anisotropy (ρxx − ρyy)/(ρxx + ρyy) can serve
as the order parameter for the nematic state[17]. In fact,
short of probes that couple directly to charge quadrupole
moments, nematic phases so far has been mostly de-
tected through temperature dependent in-plane trans-
port anisotropy in quasi 2D systems[20, 21].

In YBa2Cu3O6+y, Ando et al. [14] observed that trans-
port anisotropy increase upon under doping below y ∼
0.5 while the effect of CuO chains diminishes. Its elec-
tronic origin is further supported by the fact that this
anisotropy only sets in below a doping dependent onset
temperatures TN (180K for y = 0.45) making nematic
ordering a compelling candidate for background broken
symmetry in underdoped YBa2Cu3O6+yas advanced in
Ref.1 without a theoretical model.

Consider the effect of dx2−y2 nematic ordering below
TN on the spin fluctuations in Fig.1. The effective action
now depends on both "φ and N . Away from the classical
critical region near TN , the gapped nematic fluctuations
can be integrated out and the effect of finite N can be
represented by N -dependent coefficients in the gradient
expansion of S["φ, N ] in the long distance limit. Such N
dependence of S["φ, N ] can be incorporated through N
dependent “gap” ∆(q; N). On symmetry grounds,

∆2(q; N) = ∆2
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We study the interplay between charge and spin ordering in electronic liquid crystalline states with
a particular emphasis on fluctuating spin stripe phenomena observed in recent neutron scattering
experiments[1, 2]. Based on a phenomenological model, we propose that charge nematic ordering
is indeed behind the formation of temperature dependent incommensurate inelastic peaks near
wavevector (π,π) in the dynamic structure factor of YBa2Cu3O6+y . We strengthen this claim by
providing a compelling fit to the experimental data and showing that a number of other ordering
possibilities cannot reproduce this phenomenology.

PACS numbers: 71.10.Hf,71.45.Gm,75.10.Jm

Kaleidoscopic variety of competing ordering tendencies
is both a hallmark of correlated electron fluids, such as
cuprate and Fe based superconductors[3, 4], and a theo-
retical challenge. As such, a clear identification of a bro-
ken symmetry phase offers a valuable guiding principle.
Recent observations of temperature, energy and doping
dependent onset of anisotropy in inelastic neutron scat-
tering (INS) studied by V. Hinkov et al. [1] provides an
opportunity for just such identification.

The symmetry of the “fluctuating spin stripe” phenom-
ena (one-dimensional incommensurate spin modulation
at finite energy) observed in Ref. 1 is consistent with
that of a nematic phase [5] (a metallic state that breaks
rotational symmetry without breaking translational sym-
metry). Furthermore, the qualitative departure in the
magnetic response of underdoped YBa2Cu3O6+yin Refs.
[1] from that of optimally and overdoped regimes y ! 0.5
[6, 7, 8, 9] indicates the possible existence of a quan-
tum critical point at around y ∼ 0.5 as we sketch in Fig.
1. In specific, low energy features are enhanced in INS
of y = 0.45 while the extensively studied high energy
“hour-glass” dispersion which are prominent at higher
doping [6, 7, 8, 9] is suppressed. (Considerable atten-
tion has been directed towards this resonance feature and
its signicance. See e.g. Ref.[10]). However, despite the
reported temperature dependence of the finite-frequency
incommensurability being suggestive of an order parame-
ter, it has not been clear how this quantity can be related
to a specific order parameter since an order parameter is
defined by broken symmetry of the ground state.

There has been a number of theoretical studies regard-
ing possible signatures of electronic liquid crystal physics
in the magnetic response [11, 12, 13]. While these stud-
ies shed light on the hour-glass dispersion observed in
y ! 0.5 at high energies, their connection with the low en-
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T*

AFM

Nematic
Crossover to 
fluctuating spin stripe

SuperconductingStatic spin
stripe

FIG. 1: (color online) Schematic phase diagram of
YBa2Cu3O6+y . Here the shaded region bound by TN repre-
sents a nematic phase and the dashed line below TN represents
the crossover temperature T ∗ to a “fluctuating spin stripe”
behavior. Sufficiently strong nematic ordering at low enough
temperatures could further stabilize a static spin stripe phase.

ergy phenomena in the underdoped regime with y < 0.5
is unclear. Moreover, they focused on the superconduct-
ing phase while the observed onset of fluctuating spin
stripe behavior is at TN ∼ 150K, well above the super-
conducting ordering temperature Tc = 35K.

In this letter we propose that charge nematic ordering
is the driving force behind the fluctuating spin stripe phe-
nomena observed in underdoped YBa2Cu3O6+y. We con-
sider a metallic system proximate to antiferromagnetic
(AFM) ordering and show that charge nematic ordering
quite uniquely can induce fluctuating and even static spin
stripes thus providing a concrete connection between the
charge[14] and spin aspects of liquid crystalline behavior
in underdoped YBa2Cu3O6+y. Our claims are supple-
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mented by a successful fit with available INS data[1].
Phenomenological Model We start by noting that V.

Hinkov et al. [1] detect the dynamic onset of anisotropy
through in commensurate inelastic peaks near the AFM
wave vector Q = (π, π) in a metallic system (see Fig.2).
Given a microscopic theory of itinerant magnetism being
an open question, we take a phenomenological approach
as a first pass through the problem. In the presence of
long range AFM ordering, low-energy excitation in the
particle-hole channel is dominated by gapless spin waves
near Q with infinite life time:

"φ(q, ω)=

∫

d2kdΩ

2(2π)3
ψ†

α(k+Q+q, Ω+ω)"σα,βψβ(k, Ω). (1)

Here the operators ψ†
α(ψα) are the fermion creation (an-

nihilation) operators with spin α =↑, ↓. "φ and "σ are
vectors in spin space with σi

α,β representing (α, β) com-

ponent of Pauli matrix σi for i = x, y, z. q denotes the
wavevector of the spinwaves measured from Q and ω de-
notes their frequency. For underdoped cuprates outside
of but close to the AFM phase (see Fig.1), this spin-
wave can be either damped or gapped and well defined.
To quadratic order in "φ, the appropriate effective action
takes the form[15]

S["φ] =
1

g

∫

d2qdω

(2π)3
(

iΓ|ω| + ω2 − ∆2 (q)
)

|"φ(q, ω)|2.

(2)
where g is an overall scale and ∆ (q) is the momentum
q dependent spin wave gap in the absence of damping
and Γ is the damping energy scale. Here we take the
damping to be of Landau damping form[16] but most of
our conclusions below are insensitive to the details of the
damping dynamics.

The dynamic structure factor measured by INS exper-
iments will be proportional to the spectral function

χ′′(ω,q) = g
Γω

(Γω)2 + (ω2 − ∆(q)2)2
. (3)

for the action of Eq.(2). The uniform component of the
gap ∆(q = 0) sets the energy scale above which INS in-
tensity is significant and the q dependence of ∆(q) deter-
mine the distribution of intensity in the Fourier space. In
the absence of other symmetry breaking tendencies, ∆(q)
will be a minimum at q = 0 and respect the point group
symmetry of the system. Hence the INS intensity above
∆(q = 0) will be C4 symmetric (with static orthrhom-
bicity due to chain layer) and peaked at q = 0. Tem-
perature and energy dependent anisotropic incommensu-
rability observed in Ref.[1] indicate additional ordering
tendencies at play. We first study the effect of charge
nematic ordering motivated by transport anisotropy ob-
served in the nearby regime[14].

In a nematic fluid, charge degrees of freedom collec-
tively break rotational symmetry of space while preserv-
ing the translational symmetry (hence remains metallic)

and any other symmetry of the system such as time re-
versal and spin rotation[5]. A nematic order parame-
ter in a continuum system has the symmetry of charge
quadrupole moment (l = 2 representation of SO(2) ro-
tational group). It has two real components and it can
either be written as a symmetric traceless tensor of rank
two or as a complex field[17, 18].

As the nematic ordering involves spatial symmetry
breaking, the nature of the order parameter itself is af-
fected by crystal fields due to the lattice which lowers
the spatial rotational symmetry to a discrete group. For
instance in a square lattice with C4v symmetry, the or-
dering can occur in one of two channels dx2−y2 or dxy

reducing the order parameter symmetry to Ising-like (a
single component real field) in either case[19]. Due to this
discretization of the order parameter symmetry, the ne-
matic fluctuation below the transition temperature TN

will be massive. In YBa2Cu3O6+y, the weak external
field imposed by the chain layer will likely pick the ne-
matic to occur in the dx2−y2 channel and a representative
form of order parameter can therefore be written as

N =

∫

d2k

2(2π)2
N̄(cos kx − cos ky)ψ†

α(k)ψα(k). (4)

However, it is important to note that any electronic quan-
tity that is odd under 90◦ spatial rotation such as ef-
fective mass anisotropy ratio (my − mx)/(my + mx) or
transport anisotropy (ρxx − ρyy)/(ρxx + ρyy) can serve
as the order parameter for the nematic state[17]. In fact,
short of probes that couple directly to charge quadrupole
moments, nematic phases so far has been mostly de-
tected through temperature dependent in-plane trans-
port anisotropy in quasi 2D systems[20, 21].

In YBa2Cu3O6+y, Ando et al. [14] observed that trans-
port anisotropy increase upon under doping below y ∼
0.5 while the effect of CuO chains diminishes. Its elec-
tronic origin is further supported by the fact that this
anisotropy only sets in below a doping dependent onset
temperatures TN (180K for y = 0.45) making nematic
ordering a compelling candidate for background broken
symmetry in underdoped YBa2Cu3O6+yas advanced in
Ref.1 without a theoretical model.

Consider the effect of dx2−y2 nematic ordering below
TN on the spin fluctuations in Fig.1. The effective action
now depends on both "φ and N . Away from the classical
critical region near TN , the gapped nematic fluctuations
can be integrated out and the effect of finite N can be
represented by N -dependent coefficients in the gradient
expansion of S["φ, N ] in the long distance limit. Such N
dependence of S["φ, N ] can be incorporated through N
dependent “gap” ∆(q; N). On symmetry grounds,

∆2(q; N) = ∆2
0(N)+c2

0(N)q2−c2
2(N)N(q2

x−q2
y)+· · ·

(5)

where all functions of N are even and momenta are in
units of the lattice constant (i.e. qx ≡ kxa). (Note that
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ordering a compelling candidate for background broken
symmetry in underdoped YBa2Cu3O6+yas advanced in
Ref.1 without a theoretical model.

Consider the effect of dx2−y2 nematic ordering below
TN on the spin fluctuations in Fig.1. The effective action
now depends on both "φ and N . Away from the classical
critical region near TN , the gapped nematic fluctuations
can be integrated out and the effect of finite N can be
represented by N -dependent coefficients in the gradient
expansion of S["φ, N ] in the long distance limit. Such N
dependence of S["φ, N ] can be incorporated through N
dependent “gap” ∆(q; N). On symmetry grounds,

∆2(q; N) = ∆2
0(N)+c2

0(N)q2−c2
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y)+· · ·

(5)

where all functions of N are even and momenta are in
units of the lattice constant (i.e. qx ≡ kxa). (Note that
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We study the interplay between charge and spin ordering in electronic liquid crystalline states with
a particular emphasis on fluctuating spin stripe phenomena observed in recent neutron scattering
experiments[1, 2]. Based on a phenomenological model, we propose that charge nematic ordering
is indeed behind the formation of temperature dependent incommensurate inelastic peaks near
wavevector (π,π) in the dynamic structure factor of YBa2Cu3O6+y . We strengthen this claim by
providing a compelling fit to the experimental data and showing that a number of other ordering
possibilities cannot reproduce this phenomenology.

PACS numbers: 71.10.Hf,71.45.Gm,75.10.Jm

Kaleidoscopic variety of competing ordering tendencies
is both a hallmark of correlated electron fluids, such as
cuprate and Fe based superconductors[3, 4], and a theo-
retical challenge. As such, a clear identification of a bro-
ken symmetry phase offers a valuable guiding principle.
Recent observations of temperature, energy and doping
dependent onset of anisotropy in inelastic neutron scat-
tering (INS) studied by V. Hinkov et al. [1] provides an
opportunity for just such identification.

The symmetry of the “fluctuating spin stripe” phenom-
ena (one-dimensional incommensurate spin modulation
at finite energy) observed in Ref. 1 is consistent with
that of a nematic phase [5] (a metallic state that breaks
rotational symmetry without breaking translational sym-
metry). Furthermore, the qualitative departure in the
magnetic response of underdoped YBa2Cu3O6+yin Refs.
[1] from that of optimally and overdoped regimes y ! 0.5
[6, 7, 8, 9] indicates the possible existence of a quan-
tum critical point at around y ∼ 0.5 as we sketch in Fig.
1. In specific, low energy features are enhanced in INS
of y = 0.45 while the extensively studied high energy
“hour-glass” dispersion which are prominent at higher
doping [6, 7, 8, 9] is suppressed. (Considerable atten-
tion has been directed towards this resonance feature and
its signicance. See e.g. Ref.[10]). However, despite the
reported temperature dependence of the finite-frequency
incommensurability being suggestive of an order parame-
ter, it has not been clear how this quantity can be related
to a specific order parameter since an order parameter is
defined by broken symmetry of the ground state.

There has been a number of theoretical studies regard-
ing possible signatures of electronic liquid crystal physics
in the magnetic response [11, 12, 13]. While these stud-
ies shed light on the hour-glass dispersion observed in
y ! 0.5 at high energies, their connection with the low en-
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Crossover to 
fluctuating spin stripe

SuperconductingStatic spin
stripe

FIG. 1: (color online) Schematic phase diagram of
YBa2Cu3O6+y . Here the shaded region bound by TN repre-
sents a nematic phase and the dashed line below TN represents
the crossover temperature T ∗ to a “fluctuating spin stripe”
behavior. Sufficiently strong nematic ordering at low enough
temperatures could further stabilize a static spin stripe phase.

ergy phenomena in the underdoped regime with y < 0.5
is unclear. Moreover, they focused on the superconduct-
ing phase while the observed onset of fluctuating spin
stripe behavior is at TN ∼ 150K, well above the super-
conducting ordering temperature Tc = 35K.

In this letter we propose that charge nematic ordering
is the driving force behind the fluctuating spin stripe phe-
nomena observed in underdoped YBa2Cu3O6+y. We con-
sider a metallic system proximate to antiferromagnetic
(AFM) ordering and show that charge nematic ordering
quite uniquely can induce fluctuating and even static spin
stripes thus providing a concrete connection between the
charge[14] and spin aspects of liquid crystalline behavior
in underdoped YBa2Cu3O6+y. Our claims are supple-
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mented by a successful fit with available INS data[1].
Phenomenological Model We start by noting that V.

Hinkov et al. [1] detect the dynamic onset of anisotropy
through in commensurate inelastic peaks near the AFM
wave vector Q = (π, π) in a metallic system (see Fig.2).
Given a microscopic theory of itinerant magnetism being
an open question, we take a phenomenological approach
as a first pass through the problem. In the presence of
long range AFM ordering, low-energy excitation in the
particle-hole channel is dominated by gapless spin waves
near Q with infinite life time:

"φ(q, ω)=

∫

d2kdΩ

2(2π)3
ψ†

α(k+Q+q, Ω+ω)"σα,βψβ(k, Ω). (1)

Here the operators ψ†
α(ψα) are the fermion creation (an-

nihilation) operators with spin α =↑, ↓. "φ and "σ are
vectors in spin space with σi

α,β representing (α, β) com-

ponent of Pauli matrix σi for i = x, y, z. q denotes the
wavevector of the spinwaves measured from Q and ω de-
notes their frequency. For underdoped cuprates outside
of but close to the AFM phase (see Fig.1), this spin-
wave can be either damped or gapped and well defined.
To quadratic order in "φ, the appropriate effective action
takes the form[15]

S["φ] =
1

g

∫

d2qdω

(2π)3
(

iΓ|ω| + ω2 − ∆2 (q)
)

|"φ(q, ω)|2.

(2)
where g is an overall scale and ∆ (q) is the momentum
q dependent spin wave gap in the absence of damping
and Γ is the damping energy scale. Here we take the
damping to be of Landau damping form[16] but most of
our conclusions below are insensitive to the details of the
damping dynamics.

The dynamic structure factor measured by INS exper-
iments will be proportional to the spectral function

χ′′(ω,q) = g
Γω

(Γω)2 + (ω2 − ∆(q)2)2
. (3)

for the action of Eq.(2). The uniform component of the
gap ∆(q = 0) sets the energy scale above which INS in-
tensity is significant and the q dependence of ∆(q) deter-
mine the distribution of intensity in the Fourier space. In
the absence of other symmetry breaking tendencies, ∆(q)
will be a minimum at q = 0 and respect the point group
symmetry of the system. Hence the INS intensity above
∆(q = 0) will be C4 symmetric (with static orthrhom-
bicity due to chain layer) and peaked at q = 0. Tem-
perature and energy dependent anisotropic incommensu-
rability observed in Ref.[1] indicate additional ordering
tendencies at play. We first study the effect of charge
nematic ordering motivated by transport anisotropy ob-
served in the nearby regime[14].

In a nematic fluid, charge degrees of freedom collec-
tively break rotational symmetry of space while preserv-
ing the translational symmetry (hence remains metallic)

and any other symmetry of the system such as time re-
versal and spin rotation[5]. A nematic order parame-
ter in a continuum system has the symmetry of charge
quadrupole moment (l = 2 representation of SO(2) ro-
tational group). It has two real components and it can
either be written as a symmetric traceless tensor of rank
two or as a complex field[17, 18].

As the nematic ordering involves spatial symmetry
breaking, the nature of the order parameter itself is af-
fected by crystal fields due to the lattice which lowers
the spatial rotational symmetry to a discrete group. For
instance in a square lattice with C4v symmetry, the or-
dering can occur in one of two channels dx2−y2 or dxy

reducing the order parameter symmetry to Ising-like (a
single component real field) in either case[19]. Due to this
discretization of the order parameter symmetry, the ne-
matic fluctuation below the transition temperature TN

will be massive. In YBa2Cu3O6+y, the weak external
field imposed by the chain layer will likely pick the ne-
matic to occur in the dx2−y2 channel and a representative
form of order parameter can therefore be written as

N =

∫

d2k

2(2π)2
N̄(cos kx − cos ky)ψ†

α(k)ψα(k). (4)

However, it is important to note that any electronic quan-
tity that is odd under 90◦ spatial rotation such as ef-
fective mass anisotropy ratio (my − mx)/(my + mx) or
transport anisotropy (ρxx − ρyy)/(ρxx + ρyy) can serve
as the order parameter for the nematic state[17]. In fact,
short of probes that couple directly to charge quadrupole
moments, nematic phases so far has been mostly de-
tected through temperature dependent in-plane trans-
port anisotropy in quasi 2D systems[20, 21].

In YBa2Cu3O6+y, Ando et al. [14] observed that trans-
port anisotropy increase upon under doping below y ∼
0.5 while the effect of CuO chains diminishes. Its elec-
tronic origin is further supported by the fact that this
anisotropy only sets in below a doping dependent onset
temperatures TN (180K for y = 0.45) making nematic
ordering a compelling candidate for background broken
symmetry in underdoped YBa2Cu3O6+yas advanced in
Ref.1 without a theoretical model.

Consider the effect of dx2−y2 nematic ordering below
TN on the spin fluctuations in Fig.1. The effective action
now depends on both "φ and N . Away from the classical
critical region near TN , the gapped nematic fluctuations
can be integrated out and the effect of finite N can be
represented by N -dependent coefficients in the gradient
expansion of S["φ, N ] in the long distance limit. Such N
dependence of S["φ, N ] can be incorporated through N
dependent “gap” ∆(q; N). On symmetry grounds,

∆2(q; N) = ∆2
0(N)+c2

0(N)q2−c2
2(N)N(q2

x−q2
y)+· · ·

(5)

where all functions of N are even and momenta are in
units of the lattice constant (i.e. qx ≡ kxa). (Note that
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port anisotropy in quasi 2D systems[20, 21].
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0.5 while the effect of CuO chains diminishes. Its elec-
tronic origin is further supported by the fact that this
anisotropy only sets in below a doping dependent onset
temperatures TN (180K for y = 0.45) making nematic
ordering a compelling candidate for background broken
symmetry in underdoped YBa2Cu3O6+yas advanced in
Ref.1 without a theoretical model.

Consider the effect of dx2−y2 nematic ordering below
TN on the spin fluctuations in Fig.1. The effective action
now depends on both "φ and N . Away from the classical
critical region near TN , the gapped nematic fluctuations
can be integrated out and the effect of finite N can be
represented by N -dependent coefficients in the gradient
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We study the interplay between charge and spin ordering in electronic liquid crystalline states with
a particular emphasis on fluctuating spin stripe phenomena observed in recent neutron scattering
experiments[1, 2]. Based on a phenomenological model, we propose that charge nematic ordering
is indeed behind the formation of temperature dependent incommensurate inelastic peaks near
wavevector (π,π) in the dynamic structure factor of YBa2Cu3O6+y . We strengthen this claim by
providing a compelling fit to the experimental data and showing that a number of other ordering
possibilities cannot reproduce this phenomenology.

PACS numbers: 71.10.Hf,71.45.Gm,75.10.Jm

Kaleidoscopic variety of competing ordering tendencies
is both a hallmark of correlated electron fluids, such as
cuprate and Fe based superconductors[3, 4], and a theo-
retical challenge. As such, a clear identification of a bro-
ken symmetry phase offers a valuable guiding principle.
Recent observations of temperature, energy and doping
dependent onset of anisotropy in inelastic neutron scat-
tering (INS) studied by V. Hinkov et al. [1] provides an
opportunity for just such identification.

The symmetry of the “fluctuating spin stripe” phenom-
ena (one-dimensional incommensurate spin modulation
at finite energy) observed in Ref. 1 is consistent with
that of a nematic phase [5] (a metallic state that breaks
rotational symmetry without breaking translational sym-
metry). Furthermore, the qualitative departure in the
magnetic response of underdoped YBa2Cu3O6+yin Refs.
[1] from that of optimally and overdoped regimes y ! 0.5
[6, 7, 8, 9] indicates the possible existence of a quan-
tum critical point at around y ∼ 0.5 as we sketch in Fig.
1. In specific, low energy features are enhanced in INS
of y = 0.45 while the extensively studied high energy
“hour-glass” dispersion which are prominent at higher
doping [6, 7, 8, 9] is suppressed. (Considerable atten-
tion has been directed towards this resonance feature and
its signicance. See e.g. Ref.[10]). However, despite the
reported temperature dependence of the finite-frequency
incommensurability being suggestive of an order parame-
ter, it has not been clear how this quantity can be related
to a specific order parameter since an order parameter is
defined by broken symmetry of the ground state.

There has been a number of theoretical studies regard-
ing possible signatures of electronic liquid crystal physics
in the magnetic response [11, 12, 13]. While these stud-
ies shed light on the hour-glass dispersion observed in
y ! 0.5 at high energies, their connection with the low en-
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FIG. 1: (color online) Schematic phase diagram of
YBa2Cu3O6+y . Here the shaded region bound by TN repre-
sents a nematic phase and the dashed line below TN represents
the crossover temperature T ∗ to a “fluctuating spin stripe”
behavior. Sufficiently strong nematic ordering at low enough
temperatures could further stabilize a static spin stripe phase.

ergy phenomena in the underdoped regime with y < 0.5
is unclear. Moreover, they focused on the superconduct-
ing phase while the observed onset of fluctuating spin
stripe behavior is at TN ∼ 150K, well above the super-
conducting ordering temperature Tc = 35K.

In this letter we propose that charge nematic ordering
is the driving force behind the fluctuating spin stripe phe-
nomena observed in underdoped YBa2Cu3O6+y. We con-
sider a metallic system proximate to antiferromagnetic
(AFM) ordering and show that charge nematic ordering
quite uniquely can induce fluctuating and even static spin
stripes thus providing a concrete connection between the
charge[14] and spin aspects of liquid crystalline behavior
in underdoped YBa2Cu3O6+y. Our claims are supple-
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where g is an overall scale and ∆ (q) is the momentum
q dependent spin wave gap in the absence of damping
and Γ is the damping energy scale. Here we take the
damping to be of Landau damping form[16] but most of
our conclusions below are insensitive to the details of the
damping dynamics.

The dynamic structure factor measured by INS exper-
iments will be proportional to the spectral function

χ′′(ω,q) = g
Γω

(Γω)2 + (ω2 − ∆(q)2)2
. (3)

for the action of Eq.(2). The uniform component of the
gap ∆(q = 0) sets the energy scale above which INS in-
tensity is significant and the q dependence of ∆(q) deter-
mine the distribution of intensity in the Fourier space. In
the absence of other symmetry breaking tendencies, ∆(q)
will be a minimum at q = 0 and respect the point group
symmetry of the system. Hence the INS intensity above
∆(q = 0) will be C4 symmetric (with static orthrhom-
bicity due to chain layer) and peaked at q = 0. Tem-
perature and energy dependent anisotropic incommensu-
rability observed in Ref.[1] indicate additional ordering
tendencies at play. We first study the effect of charge
nematic ordering motivated by transport anisotropy ob-
served in the nearby regime[14].

In a nematic fluid, charge degrees of freedom collec-
tively break rotational symmetry of space while preserv-
ing the translational symmetry (hence remains metallic)

and any other symmetry of the system such as time re-
versal and spin rotation[5]. A nematic order parame-
ter in a continuum system has the symmetry of charge
quadrupole moment (l = 2 representation of SO(2) ro-
tational group). It has two real components and it can
either be written as a symmetric traceless tensor of rank
two or as a complex field[17, 18].

As the nematic ordering involves spatial symmetry
breaking, the nature of the order parameter itself is af-
fected by crystal fields due to the lattice which lowers
the spatial rotational symmetry to a discrete group. For
instance in a square lattice with C4v symmetry, the or-
dering can occur in one of two channels dx2−y2 or dxy

reducing the order parameter symmetry to Ising-like (a
single component real field) in either case[19]. Due to this
discretization of the order parameter symmetry, the ne-
matic fluctuation below the transition temperature TN

will be massive. In YBa2Cu3O6+y, the weak external
field imposed by the chain layer will likely pick the ne-
matic to occur in the dx2−y2 channel and a representative
form of order parameter can therefore be written as

N =

∫

d2k

2(2π)2
N̄(cos kx − cos ky)ψ†

α(k)ψα(k). (4)

However, it is important to note that any electronic quan-
tity that is odd under 90◦ spatial rotation such as ef-
fective mass anisotropy ratio (my − mx)/(my + mx) or
transport anisotropy (ρxx − ρyy)/(ρxx + ρyy) can serve
as the order parameter for the nematic state[17]. In fact,
short of probes that couple directly to charge quadrupole
moments, nematic phases so far has been mostly de-
tected through temperature dependent in-plane trans-
port anisotropy in quasi 2D systems[20, 21].

In YBa2Cu3O6+y, Ando et al. [14] observed that trans-
port anisotropy increase upon under doping below y ∼
0.5 while the effect of CuO chains diminishes. Its elec-
tronic origin is further supported by the fact that this
anisotropy only sets in below a doping dependent onset
temperatures TN (180K for y = 0.45) making nematic
ordering a compelling candidate for background broken
symmetry in underdoped YBa2Cu3O6+yas advanced in
Ref.1 without a theoretical model.

Consider the effect of dx2−y2 nematic ordering below
TN on the spin fluctuations in Fig.1. The effective action
now depends on both "φ and N . Away from the classical
critical region near TN , the gapped nematic fluctuations
can be integrated out and the effect of finite N can be
represented by N -dependent coefficients in the gradient
expansion of S["φ, N ] in the long distance limit. Such N
dependence of S["φ, N ] can be incorporated through N
dependent “gap” ∆(q; N). On symmetry grounds,

∆2(q; N) = ∆2
0(N)+c2

0(N)q2−c2
2(N)N(q2

x−q2
y)+· · ·

(5)

where all functions of N are even and momenta are in
units of the lattice constant (i.e. qx ≡ kxa). (Note that
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Phenomenological Model We start by noting that V.

Hinkov et al. [1] detect the dynamic onset of anisotropy
through in commensurate inelastic peaks near the AFM
wave vector Q = (π, π) in a metallic system (see Fig.2).
Given a microscopic theory of itinerant magnetism being
an open question, we take a phenomenological approach
as a first pass through the problem. In the presence of
long range AFM ordering, low-energy excitation in the
particle-hole channel is dominated by gapless spin waves
near Q with infinite life time:
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α,β representing (α, β) com-

ponent of Pauli matrix σi for i = x, y, z. q denotes the
wavevector of the spinwaves measured from Q and ω de-
notes their frequency. For underdoped cuprates outside
of but close to the AFM phase (see Fig.1), this spin-
wave can be either damped or gapped and well defined.
To quadratic order in "φ, the appropriate effective action
takes the form[15]
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where g is an overall scale and ∆ (q) is the momentum
q dependent spin wave gap in the absence of damping
and Γ is the damping energy scale. Here we take the
damping to be of Landau damping form[16] but most of
our conclusions below are insensitive to the details of the
damping dynamics.

The dynamic structure factor measured by INS exper-
iments will be proportional to the spectral function
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(Γω)2 + (ω2 − ∆(q)2)2
. (3)

for the action of Eq.(2). The uniform component of the
gap ∆(q = 0) sets the energy scale above which INS in-
tensity is significant and the q dependence of ∆(q) deter-
mine the distribution of intensity in the Fourier space. In
the absence of other symmetry breaking tendencies, ∆(q)
will be a minimum at q = 0 and respect the point group
symmetry of the system. Hence the INS intensity above
∆(q = 0) will be C4 symmetric (with static orthrhom-
bicity due to chain layer) and peaked at q = 0. Tem-
perature and energy dependent anisotropic incommensu-
rability observed in Ref.[1] indicate additional ordering
tendencies at play. We first study the effect of charge
nematic ordering motivated by transport anisotropy ob-
served in the nearby regime[14].

In a nematic fluid, charge degrees of freedom collec-
tively break rotational symmetry of space while preserv-
ing the translational symmetry (hence remains metallic)

and any other symmetry of the system such as time re-
versal and spin rotation[5]. A nematic order parame-
ter in a continuum system has the symmetry of charge
quadrupole moment (l = 2 representation of SO(2) ro-
tational group). It has two real components and it can
either be written as a symmetric traceless tensor of rank
two or as a complex field[17, 18].

As the nematic ordering involves spatial symmetry
breaking, the nature of the order parameter itself is af-
fected by crystal fields due to the lattice which lowers
the spatial rotational symmetry to a discrete group. For
instance in a square lattice with C4v symmetry, the or-
dering can occur in one of two channels dx2−y2 or dxy

reducing the order parameter symmetry to Ising-like (a
single component real field) in either case[19]. Due to this
discretization of the order parameter symmetry, the ne-
matic fluctuation below the transition temperature TN

will be massive. In YBa2Cu3O6+y, the weak external
field imposed by the chain layer will likely pick the ne-
matic to occur in the dx2−y2 channel and a representative
form of order parameter can therefore be written as
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where g is an overall scale and ∆ (q) is the momentum
q dependent spin wave gap in the absence of damping
and Γ is the damping energy scale. Here we take the
damping to be of Landau damping form[16] but most of
our conclusions below are insensitive to the details of the
damping dynamics.

The dynamic structure factor measured by INS exper-
iments will be proportional to the spectral function

χ′′(ω,q) = g
Γω

(Γω)2 + (ω2 − ∆(q)2)2
. (3)

for the action of Eq.(2). The uniform component of the
gap ∆(q = 0) sets the energy scale above which INS in-
tensity is significant and the q dependence of ∆(q) deter-
mine the distribution of intensity in the Fourier space. In
the absence of other symmetry breaking tendencies, ∆(q)
will be a minimum at q = 0 and respect the point group
symmetry of the system. Hence the INS intensity above
∆(q = 0) will be C4 symmetric (with static orthrhom-
bicity due to chain layer) and peaked at q = 0. Tem-
perature and energy dependent anisotropic incommensu-
rability observed in Ref.[1] indicate additional ordering
tendencies at play. We first study the effect of charge
nematic ordering motivated by transport anisotropy ob-
served in the nearby regime[14].

In a nematic fluid, charge degrees of freedom collec-
tively break rotational symmetry of space while preserv-
ing the translational symmetry (hence remains metallic)

and any other symmetry of the system such as time re-
versal and spin rotation[5]. A nematic order parame-
ter in a continuum system has the symmetry of charge
quadrupole moment (l = 2 representation of SO(2) ro-
tational group). It has two real components and it can
either be written as a symmetric traceless tensor of rank
two or as a complex field[17, 18].

As the nematic ordering involves spatial symmetry
breaking, the nature of the order parameter itself is af-
fected by crystal fields due to the lattice which lowers
the spatial rotational symmetry to a discrete group. For
instance in a square lattice with C4v symmetry, the or-
dering can occur in one of two channels dx2−y2 or dxy

reducing the order parameter symmetry to Ising-like (a
single component real field) in either case[19]. Due to this
discretization of the order parameter symmetry, the ne-
matic fluctuation below the transition temperature TN

will be massive. In YBa2Cu3O6+y, the weak external
field imposed by the chain layer will likely pick the ne-
matic to occur in the dx2−y2 channel and a representative
form of order parameter can therefore be written as

N =

∫

d2k

2(2π)2
N̄(cos kx − cos ky)ψ†

α(k)ψα(k). (4)

However, it is important to note that any electronic quan-
tity that is odd under 90◦ spatial rotation such as ef-
fective mass anisotropy ratio (my − mx)/(my + mx) or
transport anisotropy (ρxx − ρyy)/(ρxx + ρyy) can serve
as the order parameter for the nematic state[17]. In fact,
short of probes that couple directly to charge quadrupole
moments, nematic phases so far has been mostly de-
tected through temperature dependent in-plane trans-
port anisotropy in quasi 2D systems[20, 21].

In YBa2Cu3O6+y, Ando et al. [14] observed that trans-
port anisotropy increase upon under doping below y ∼
0.5 while the effect of CuO chains diminishes. Its elec-
tronic origin is further supported by the fact that this
anisotropy only sets in below a doping dependent onset
temperatures TN (180K for y = 0.45) making nematic
ordering a compelling candidate for background broken
symmetry in underdoped YBa2Cu3O6+yas advanced in
Ref.1 without a theoretical model.

Consider the effect of dx2−y2 nematic ordering below
TN on the spin fluctuations in Fig.1. The effective action
now depends on both "φ and N . Away from the classical
critical region near TN , the gapped nematic fluctuations
can be integrated out and the effect of finite N can be
represented by N -dependent coefficients in the gradient
expansion of S["φ, N ] in the long distance limit. Such N
dependence of S["φ, N ] can be incorporated through N
dependent “gap” ∆(q; N). On symmetry grounds,

∆2(q; N) = ∆2
0(N)+c2

0(N)q2−c2
2(N)N(q2

x−q2
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(5)

where all functions of N are even and momenta are in
units of the lattice constant (i.e. qx ≡ kxa). (Note thatδ ∝

√
T − T ∗
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We study the interplay between charge and spin ordering in electronic liquid crystalline states with
a particular emphasis on fluctuating spin stripe phenomena observed in recent neutron scattering
experiments[1, 2]. Based on a phenomenological model, we propose that charge nematic ordering
is indeed behind the formation of temperature dependent incommensurate inelastic peaks near
wavevector (π,π) in the dynamic structure factor of YBa2Cu3O6+y . We strengthen this claim by
providing a compelling fit to the experimental data and showing that a number of other ordering
possibilities cannot reproduce this phenomenology.

PACS numbers: 71.10.Hf,71.45.Gm,75.10.Jm

Kaleidoscopic variety of competing ordering tendencies
is both a hallmark of correlated electron fluids, such as
cuprate and Fe based superconductors[3, 4], and a theo-
retical challenge. As such, a clear identification of a bro-
ken symmetry phase offers a valuable guiding principle.
Recent observations of temperature, energy and doping
dependent onset of anisotropy in inelastic neutron scat-
tering (INS) studied by V. Hinkov et al. [1] provides an
opportunity for just such identification.

The symmetry of the “fluctuating spin stripe” phenom-
ena (one-dimensional incommensurate spin modulation
at finite energy) observed in Ref. 1 is consistent with
that of a nematic phase [5] (a metallic state that breaks
rotational symmetry without breaking translational sym-
metry). Furthermore, the qualitative departure in the
magnetic response of underdoped YBa2Cu3O6+yin Refs.
[1] from that of optimally and overdoped regimes y ! 0.5
[6, 7, 8, 9] indicates the possible existence of a quan-
tum critical point at around y ∼ 0.5 as we sketch in Fig.
1. In specific, low energy features are enhanced in INS
of y = 0.45 while the extensively studied high energy
“hour-glass” dispersion which are prominent at higher
doping [6, 7, 8, 9] is suppressed. (Considerable atten-
tion has been directed towards this resonance feature and
its signicance. See e.g. Ref.[10]). However, despite the
reported temperature dependence of the finite-frequency
incommensurability being suggestive of an order parame-
ter, it has not been clear how this quantity can be related
to a specific order parameter since an order parameter is
defined by broken symmetry of the ground state.

There has been a number of theoretical studies regard-
ing possible signatures of electronic liquid crystal physics
in the magnetic response [11, 12, 13]. While these stud-
ies shed light on the hour-glass dispersion observed in
y ! 0.5 at high energies, their connection with the low en-
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Nematic
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fluctuating spin stripe

SuperconductingStatic spin
stripe

FIG. 1: (color online) Schematic phase diagram of
YBa2Cu3O6+y . Here the shaded region bound by TN repre-
sents a nematic phase and the dashed line below TN represents
the crossover temperature T ∗ to a “fluctuating spin stripe”
behavior. Sufficiently strong nematic ordering at low enough
temperatures could further stabilize a static spin stripe phase.

ergy phenomena in the underdoped regime with y < 0.5
is unclear. Moreover, they focused on the superconduct-
ing phase while the observed onset of fluctuating spin
stripe behavior is at TN ∼ 150K, well above the super-
conducting ordering temperature Tc = 35K.

In this letter we propose that charge nematic ordering
is the driving force behind the fluctuating spin stripe phe-
nomena observed in underdoped YBa2Cu3O6+y. We con-
sider a metallic system proximate to antiferromagnetic
(AFM) ordering and show that charge nematic ordering
quite uniquely can induce fluctuating and even static spin
stripes thus providing a concrete connection between the
charge[14] and spin aspects of liquid crystalline behavior
in underdoped YBa2Cu3O6+y. Our claims are supple-
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ken symmetry phase offers a valuable guiding principle.
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dependent onset of anisotropy in inelastic neutron scat-
tering (INS) studied by V. Hinkov et al. [1] provides an
opportunity for just such identification.
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ena (one-dimensional incommensurate spin modulation
at finite energy) observed in Ref. 1 is consistent with
that of a nematic phase [5] (a metallic state that breaks
rotational symmetry without breaking translational sym-
metry). Furthermore, the qualitative departure in the
magnetic response of underdoped YBa2Cu3O6+yin Refs.
[1] from that of optimally and overdoped regimes y ! 0.5
[6, 7, 8, 9] indicates the possible existence of a quan-
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“hour-glass” dispersion which are prominent at higher
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tion has been directed towards this resonance feature and
its signicance. See e.g. Ref.[10]). However, despite the
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mented by a successful fit with available INS data[1].
Phenomenological Model We start by noting that V.

Hinkov et al. [1] detect the dynamic onset of anisotropy
through in commensurate inelastic peaks near the AFM
wave vector Q = (π, π) in a metallic system (see Fig.2).
Given a microscopic theory of itinerant magnetism being
an open question, we take a phenomenological approach
as a first pass through the problem. In the presence of
long range AFM ordering, low-energy excitation in the
particle-hole channel is dominated by gapless spin waves
near Q with infinite life time:

"φ(q, ω)=

∫

d2kdΩ

2(2π)3
ψ†

α(k+Q+q, Ω+ω)"σα,βψβ(k, Ω). (1)

Here the operators ψ†
α(ψα) are the fermion creation (an-

nihilation) operators with spin α =↑, ↓. "φ and "σ are
vectors in spin space with σi

α,β representing (α, β) com-

ponent of Pauli matrix σi for i = x, y, z. q denotes the
wavevector of the spinwaves measured from Q and ω de-
notes their frequency. For underdoped cuprates outside
of but close to the AFM phase (see Fig.1), this spin-
wave can be either damped or gapped and well defined.
To quadratic order in "φ, the appropriate effective action
takes the form[15]

S["φ] =
1

g

∫

d2qdω

(2π)3
(

iΓ|ω| + ω2 − ∆2 (q)
)

|"φ(q, ω)|2.

(2)
where g is an overall scale and ∆ (q) is the momentum
q dependent spin wave gap in the absence of damping
and Γ is the damping energy scale. Here we take the
damping to be of Landau damping form[16] but most of
our conclusions below are insensitive to the details of the
damping dynamics.

The dynamic structure factor measured by INS exper-
iments will be proportional to the spectral function

χ′′(ω,q) = g
Γω

(Γω)2 + (ω2 − ∆(q)2)2
. (3)

for the action of Eq.(2). The uniform component of the
gap ∆(q = 0) sets the energy scale above which INS in-
tensity is significant and the q dependence of ∆(q) deter-
mine the distribution of intensity in the Fourier space. In
the absence of other symmetry breaking tendencies, ∆(q)
will be a minimum at q = 0 and respect the point group
symmetry of the system. Hence the INS intensity above
∆(q = 0) will be C4 symmetric (with static orthrhom-
bicity due to chain layer) and peaked at q = 0. Tem-
perature and energy dependent anisotropic incommensu-
rability observed in Ref.[1] indicate additional ordering
tendencies at play. We first study the effect of charge
nematic ordering motivated by transport anisotropy ob-
served in the nearby regime[14].

In a nematic fluid, charge degrees of freedom collec-
tively break rotational symmetry of space while preserv-
ing the translational symmetry (hence remains metallic)

and any other symmetry of the system such as time re-
versal and spin rotation[5]. A nematic order parame-
ter in a continuum system has the symmetry of charge
quadrupole moment (l = 2 representation of SO(2) ro-
tational group). It has two real components and it can
either be written as a symmetric traceless tensor of rank
two or as a complex field[17, 18].

As the nematic ordering involves spatial symmetry
breaking, the nature of the order parameter itself is af-
fected by crystal fields due to the lattice which lowers
the spatial rotational symmetry to a discrete group. For
instance in a square lattice with C4v symmetry, the or-
dering can occur in one of two channels dx2−y2 or dxy

reducing the order parameter symmetry to Ising-like (a
single component real field) in either case[19]. Due to this
discretization of the order parameter symmetry, the ne-
matic fluctuation below the transition temperature TN

will be massive. In YBa2Cu3O6+y, the weak external
field imposed by the chain layer will likely pick the ne-
matic to occur in the dx2−y2 channel and a representative
form of order parameter can therefore be written as

N =

∫

d2k

2(2π)2
N̄(cos kx − cos ky)ψ†

α(k)ψα(k). (4)

However, it is important to note that any electronic quan-
tity that is odd under 90◦ spatial rotation such as ef-
fective mass anisotropy ratio (my − mx)/(my + mx) or
transport anisotropy (ρxx − ρyy)/(ρxx + ρyy) can serve
as the order parameter for the nematic state[17]. In fact,
short of probes that couple directly to charge quadrupole
moments, nematic phases so far has been mostly de-
tected through temperature dependent in-plane trans-
port anisotropy in quasi 2D systems[20, 21].

In YBa2Cu3O6+y, Ando et al. [14] observed that trans-
port anisotropy increase upon under doping below y ∼
0.5 while the effect of CuO chains diminishes. Its elec-
tronic origin is further supported by the fact that this
anisotropy only sets in below a doping dependent onset
temperatures TN (180K for y = 0.45) making nematic
ordering a compelling candidate for background broken
symmetry in underdoped YBa2Cu3O6+yas advanced in
Ref.1 without a theoretical model.

Consider the effect of dx2−y2 nematic ordering below
TN on the spin fluctuations in Fig.1. The effective action
now depends on both "φ and N . Away from the classical
critical region near TN , the gapped nematic fluctuations
can be integrated out and the effect of finite N can be
represented by N -dependent coefficients in the gradient
expansion of S["φ, N ] in the long distance limit. Such N
dependence of S["φ, N ] can be incorporated through N
dependent “gap” ∆(q; N). On symmetry grounds,

∆2(q; N) = ∆2
0(N)+c2

0(N)q2−c2
2(N)N(q2

x−q2
y)+· · ·

(5)

where all functions of N are even and momenta are in
units of the lattice constant (i.e. qx ≡ kxa). (Note that
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mented by a successful fit with available INS data[1].
Phenomenological Model We start by noting that V.

Hinkov et al. [1] detect the dynamic onset of anisotropy
through in commensurate inelastic peaks near the AFM
wave vector Q = (π, π) in a metallic system (see Fig.2).
Given a microscopic theory of itinerant magnetism being
an open question, we take a phenomenological approach
as a first pass through the problem. In the presence of
long range AFM ordering, low-energy excitation in the
particle-hole channel is dominated by gapless spin waves
near Q with infinite life time:

"φ(q, ω)=

∫

d2kdΩ

2(2π)3
ψ†

α(k+Q+q, Ω+ω)"σα,βψβ(k, Ω). (1)

Here the operators ψ†
α(ψα) are the fermion creation (an-

nihilation) operators with spin α =↑, ↓. "φ and "σ are
vectors in spin space with σi

α,β representing (α, β) com-

ponent of Pauli matrix σi for i = x, y, z. q denotes the
wavevector of the spinwaves measured from Q and ω de-
notes their frequency. For underdoped cuprates outside
of but close to the AFM phase (see Fig.1), this spin-
wave can be either damped or gapped and well defined.
To quadratic order in "φ, the appropriate effective action
takes the form[15]

S["φ] =
1

g

∫

d2qdω

(2π)3
(

iΓ|ω| + ω2 − ∆2 (q)
)

|"φ(q, ω)|2.

(2)
where g is an overall scale and ∆ (q) is the momentum
q dependent spin wave gap in the absence of damping
and Γ is the damping energy scale. Here we take the
damping to be of Landau damping form[16] but most of
our conclusions below are insensitive to the details of the
damping dynamics.

The dynamic structure factor measured by INS exper-
iments will be proportional to the spectral function
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Γω

(Γω)2 + (ω2 − ∆(q)2)2
. (3)

for the action of Eq.(2). The uniform component of the
gap ∆(q = 0) sets the energy scale above which INS in-
tensity is significant and the q dependence of ∆(q) deter-
mine the distribution of intensity in the Fourier space. In
the absence of other symmetry breaking tendencies, ∆(q)
will be a minimum at q = 0 and respect the point group
symmetry of the system. Hence the INS intensity above
∆(q = 0) will be C4 symmetric (with static orthrhom-
bicity due to chain layer) and peaked at q = 0. Tem-
perature and energy dependent anisotropic incommensu-
rability observed in Ref.[1] indicate additional ordering
tendencies at play. We first study the effect of charge
nematic ordering motivated by transport anisotropy ob-
served in the nearby regime[14].

In a nematic fluid, charge degrees of freedom collec-
tively break rotational symmetry of space while preserv-
ing the translational symmetry (hence remains metallic)

and any other symmetry of the system such as time re-
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quadrupole moment (l = 2 representation of SO(2) ro-
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either be written as a symmetric traceless tensor of rank
two or as a complex field[17, 18].
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breaking, the nature of the order parameter itself is af-
fected by crystal fields due to the lattice which lowers
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reducing the order parameter symmetry to Ising-like (a
single component real field) in either case[19]. Due to this
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port anisotropy in quasi 2D systems[20, 21].
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0.5 while the effect of CuO chains diminishes. Its elec-
tronic origin is further supported by the fact that this
anisotropy only sets in below a doping dependent onset
temperatures TN (180K for y = 0.45) making nematic
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symmetry in underdoped YBa2Cu3O6+yas advanced in
Ref.1 without a theoretical model.
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TN on the spin fluctuations in Fig.1. The effective action
now depends on both "φ and N . Away from the classical
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BSCCO, got nematic?



Local measure of  broken symmetry?
direct test of such ideas has not been possible
because neither the real-space electronic struc-
ture of the ECG state, nor that of an individual
“cluster,” could be determined directly as no
suitable imaging techniques existed.

Design of TA studies in Ca1.88Na0.12CuO2Cl2
and Bi2Sr2Dy0.2Ca0.8Cu2O8+d. STM-based im-
aging might appear an appropriate tool to ad-
dress such issues. But dI/dV imaging is fraught

with problems in lightly doped cuprates. For
example, a standard dI/dV image, although well
defined, is not a direct image of the LDOS (see
supporting online text 1). Moreover, there are
theoretical concerns that, in Ca2-xNaxCuO2Cl2,
the topmost CuO2 plane may be in an “extraor-
dinary” state (34) or that interference between
two tunneling trajectories through the 3pz-Cl
orbitals adjacent to a dopant Na+ ion may cause

rotational symmetry breaking in the tunneling
patterns (35).

The new proposals (4, 5) for tunneling
asymmetry measurements provide a notable
solution to problems with standard dI/dV
imaging because Eqs. 2 and 3 have a crucial
practical advantage. If we define the ratios
Zðr→, V Þ and Rðr→, V Þ in terms of the tunneling
current

Zðr→,V Þ ≡
dI
dV ðr

→, z, þV Þ
dI
dV ðr

→, z,−V Þ
ð4aÞ

Rðr→, V Þ ≡ Iðr→, z, þV Þ
Iðr→, z, −V Þ ð4bÞ

we see immediately from Eq. 1 that the un-
known effects in f ðr→, zÞ are all canceled out
by the division process. Thus, Zðr→, V Þ and
Rðr→, V Þ not only contain important physical
information (4, 5) but, unlike Nðr→, EÞ, are also
expressible in terms of measurable quantities
only. We have confirmed that the unknown
factors f ðr→, zÞ are indeed canceled out in Eq. 4
(see supporting online text and figures 2).

To address the material-specific theoret-
ical concerns (34, 35), we have designed a
sequence of identical TA-imaging exper-
iments in two radically different cuprates:
strongly underdoped Ca1.88Na0.12CuO2Cl2
(Na-CCOC; critical temperature Tc ~ 21 K)
and Bi2Sr2Dy0.2Ca0.8Cu2O8+d (Dy-Bi2212; Tc ~
45 K). As indicated schematically in Fig. 2, B
and C, they have completely different crystal-
lographic structure, chemical constituents, and
dopant species and sites in the termination
layers lying between the CuO2 plane and the
STM tip. Na-CCOC has a single CuO2 layer

Fig. 4. (A and D) R maps of Na-CCOC and Dy-Bi2212, respectively (taken at 150 mV from areas in
the blue boxes of Fig. 3, C and D). The fields of view are (A) 5.0 nm by 5.3 nm and (B) 5.0 nm by
5.0 nm. The blue boxes in (A) and (D) indicate areas of Fig. 4, B and C, and Fig. 4, E and F,
respectively. (B and E) Higher-resolution R map within equivalent domains from Na-CCOC and Dy-
Bi2212, respectively (blue boxes of Fig. 4, A and D). The locations of the Cu atoms are shown as
black crosses. (C and F) Constant-current topographic images simultaneously taken with Fig. 4, B
and E, respectively. Imaging conditions are (C) 50 pA at 600 mV and (F) 50 pA at 150 mV. The
markers show atomic locations, used also in Fig. 4, B and E. The fields of view of these images are
shown in Fig. 3, A and B, as orange boxes.

Fig. 5. (A) Locations relative to
the O and Cu orbitals in the CuO2
plane where each dI/dV spectrum
at the surfaces of Fig. 4, C and F,
and shown in Fig. 5B, is mea-
sured. Spectra are measured
along equivalent lines labeled
1, 2, 3, and 4 in both domains
of Fig. 4, B and E, and Fig. 5A.
(B) Differential tunneling con-
ductance spectra taken along
parallel lines through equiv-
alent domains in Na-CCOC and
Dy-Bi2212. All spectra were
taken under identical junction conditions (200 pA, 200 mV). Numbers (1 to 4)
correspond to trajectories where these sequences of spectra were taken.
Locations of the trajectories, relative to the domains, are shown between
Fig. 4B (C) and 4E (F) by arrows.
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Figure S7 a-f. A series of images displaying the real space conductance ratio Z as a function
of energy rescaled to the local psuedogap value, e = E/∆1(r). Each pixel location was rescaled
independently of the others. The common color scale illustrates that the bond centered
pattern appears strongest in Z exactly at E = ∆1(r).
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Figure S7 a-f. A series of images displaying the real space conductance ratio Z as a function
of energy rescaled to the local psuedogap value, e = E/∆1(r). Each pixel location was rescaled
independently of the others. The common color scale illustrates that the bond centered
pattern appears strongest in Z exactly at E = ∆1(r).
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Kohsaka et al, Nature 454, 1072 (2008)

UD Tc=45K

electronic disorder detected by STS1–4 to surface damage not present
in ARPES studies cannot be correct.

Second, the high-precision g(q,q) data presented here are rel-
evant to proposals that LDOS modulations in Bi-2212 might result
from the existence of a second charge-density wave order parameter
with fixed q-vector, for example, stripes25. In such models g(q,q)
should exhibit only two non-dispersive peaks (or four non-dis-
persive peaks for twinned stripe domains). By contrast, quantum
interferencemodels predict 16 sets of dispersive q-vectors consistent
with each other, the Fermi-surface, and D(ks). Clearly this is far
more consistent with our data. More recent proposals26–29 suggest
that a set of non-dispersive LDOS modulations due to fluctuations
of a charge- or spin-ordered state might coexist with the quasipar-
ticle interference patterns. We do not observe such a non-dispersive
signal in addition to the quasiparticle interference effects, in the
g(q,q) of these as-grown samples (except for crystalline effects). In
principle, however, one cannot rule out the possibility of such a
hypothetical non-dispersive signal because its intensity could be
arbitrarily weak. Overall, our data demonstrate that quasiparticle
interference is by far the predominant effect.

Third, we discuss the quantum mechanical description of the
copper oxide quasiparticles. Bogoliubov quasiparticles are the
excited states of a conventional Bardeen–Cooper–Schrieffer (BCS)
superconductor: quantum-coherent mixtures of particles and
holes. It is important to determine whether the copper oxide
quasiparticles are of this type. A strong experimental indication
consistent with Bogoliubov quasiparticles is the presence of two
identical branches of quasiparticle dispersion ^E(k). Although
efforts have been made to study the positive branch þE(k) by

photoemission30, it has proved challenging because the Fermi
function terminates photoemission intensity from these unoccu-
pied states. By using FT-STS we can probe the momentum-space
structure of the positive branch by measuring g(q,q) at positive
sample bias (tunnelling into unoccupied states). If identical positive
and negative branches ^E(k) exist, the LDOS modulations at
positive bias should be consistent with the negative-bias D(k) in
Fig. 3. A representative example of positive bias g(q,q) measured at
q ¼ þ14meV is shown in Fig. 2h. Comparison with that at
q ¼ 214meV shows them to be similar but not identical, as are
all measured pairs g(q, ^ q). However, when the positive branch
interference wavevectors qi(þq) are measured, the deduced D(k)
(triangles in Fig. 3c) is indistinguishable within errors from that of
the filled-state D(k) (open circles in Fig. 3c). This provides evidence
that, in momentum-space, the copper oxide quasiparticles are
particle–hole superpositions, consistent with the Bogoliubov
description.
Fourth, the data can also be used to explore implications of the

nanoscale electronic disorder in Bi-2212 (refs 1–4). Figure 2 shows
that at jqj, 0:15 there is a strong response in g(q,q) for all q. These
are apparent as dark regions near the centre of each panel in Fig. 2c–
h. This may reflect long-wavelength inhomogeneity in the inte-
grated LDOS1 and, if so, reveals an obvious candidate for weak but
ubiquitous potential scattering that could produce the LDOS-
modulations. We also note that the theoretical models, to date,
are based on isolated point-like scatterers14,15,16 but the real scat-
terers are likely to be more complex in form. In that case, the
character and strength of the scatterers could cause deviations of
ks(q) (as determined here) from the real Fermi surface, whereas
their spatial distribution could result in breaking the symmetry of
g(q,q) under 908 rotations. New microscopic models and further
experiments will be required to fully explore such effects.
A final new FT-STS observation relates to the antinodal quasi-

particles which are at the heart of high-Tc superconductivity.
Measurements of g(r,q) reveal intense LDOS modulations with
wavevectors equal to the reciprocal lattice vectors G when q < D0

or equivalently when k< ðp=a0;0Þ: In a crystal, the electronic
wavefunctions are a linear combination of states with wavevectors
k and k þ G near the zone boundary. This mixing is due to
Umklapp scattering off the crystal lattice and can produce intense
LDOS modulations at G when k< ðp=a0;0Þ:However, as shown in
Fig. 4, we unexpectedly find that for a given q the Umklapp LDOS
modulation signal is localized to the nanoscale regions where q is
equal to the local gap value. This implies strong nanoscale spatial
variations in the quasiparticle dispersions near k¼ ðp=a0;0Þ and
therefore significant scattering. Thus, whatever the source of
nanoscale electronic disorder, it appears to strongly influence the
lifetimes of antinodal quasiparticles in Bi-2212. A
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Figure 4 The electronic density of states modulations associated with antinodal
quasiparticles at energies near the gap maximum. a, A map of the energy-gap

magnitude4 in a particular area of the surface studied in this paper (see colour scale).

b–d, g(r,q) measured at three energies, 224meV, 234meV and 250meV

respectively, in this exact field of view. One can immediately see, by comparison of panel a
with the others, that wherever q equals the local value of D, an intense ‘tweed’-like

pattern exists g(r,q). The wavevectors of this pattern are the same in all three panels,
either q¼ ð2p=a0;0Þ or q¼ ð0;2p=a0Þ: Thus, LDOS modulations consistent with
Umklapp scattering occur at different energies in adjacent nanoscale regions, signifying

strong scattering of the antinodal quasiparticles.
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Local measure of  broken symmetry?
HAMLET: Do you see yonder cloud that's almost in shape of a camel?
POLONIUS: By th'mass, and 'tis like a camel indeed.
HAMLET: Methinks it is like a weasel.
POLONIUS: It is backed like a weasel.
                                                 --W. Shakespeare (S. Chakravarty’s perspectives Science 08)
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•Translational  symmetry

•Rotational symmetry 

Can we separately measure?

Need a                preserving order parameter 
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scattering studies by the same group show that long-
range positional stripe order sets in only at much lower
temperatures. These experiments suggest that this man-
ganite is in a nematic state below the transition at Tco ,
and long-range charge-stripe order occurs at much lower
temperatures.

2. Anisotropic diffraction patterns

A more microscopic approach is to measure directly
the nematic order parameter Qk of Eq. (2.1), by diffrac-
tion. This was done (more or less) by Mook et al. (2000),
in neutron-scattering studies of the magnetic dynamic
structure factor of a partially (2 to 1) detwinned sample
of YBa2Cu3O6!y with y"0.6 and Tc!60 K. No elastic
scattering corresponding to actual stripe order was de-
tected; however, well-developed structure was observed
in the inelastic spectrum at the two-dimensional wave
vectors Qs!(0.5#0.1,0.5) and Qs!!(0.5,0.5#0.1) in
units of 2"/a . Remarkably, the intensities of the peaks
at Qs were found to be about a factor of 2 larger than
those of the Qs! peaks, consistent with the supposition
that, in a single twin domain, the incommensurate in-
elastic structure is entirely associated with ordering vec-
tors perpendicular to the chain direction, i.e.,
QQ!1.

More recently, inelastic neutron-scattering studies of
Stock et al. (2003) on a nearly single-domain sample of
the ortho-II phase of YBa2Cu3O6.5 (Stock et al., 2002)
have revealed substantial structure down to the lowest
energies in the magnetic structure factor. These spectra
are highly anisotropic about the Néel ordering vector:
For a scan perpendicular to the chain direction, there is
a broad flat-topped peak [reminiscent of earlier results
on underdoped YBCO (Sternlieb et al., 1994)] which is
strongly suggestive of two barely resolved incommensu-
rate peaks at the expected stripe-ordering wave vector.
However, a scan along the chain direction reveals a
single, sharp peak at the commensurate wave vector
"/a . Moreover, in the normal state, this structure is ob-
served at all energies below the resonant peak energy,
#!25 meV, down to the lowest energies probed.

Although the presence of chains in this material cer-
tainly means that there is no symmetry operation that
interchanges the a and b axes, the copper-oxide planes
are nearly tetragonal. Thus it seems to us that the ex-
treme anisotropy of the inelastic scattering is very strong
evidence of a nematic liquid phase in this material. As
pointed out by Mook et al. (2000), this conclusion also
offers a potential explanation for the observed (Basov
et al., 1995) large but nearly temperature-independent
superfluid anisotropy in the a-b plane.

Interesting anisotropies have also been observed in
optical phonon branches of YBa2Cu3O6!y with y"0.6.
The identification by Mook et al. (2000) of an anoma-
lous broadening of a bond-bending mode at a wave vec-
tor expected for charge-stripe order is potentially the
most direct evidence of nematic order. However, con-
flicting results have been reported by Pintschovius et al.
(2002), who have instead observed a zone-boundary

softening of the bond-stretching mode propagating
along b but not for that along a. This latter anisotropy is
unlikely to be directly associated with a stripe modula-
tion wave vector, since the anomaly occurs along the
direction parallel to the Cu-O chains. Of course, this
does not necessarily rule out a connection with stripes,
as the softening might be associated with anisotropic
screening due to charge fluctuations along the stripes.

In an attempt to understand the effects of stripe order
on phonons, a neutron-scattering study (Tranquada
et al., 2002) was recently performed on La1.69Sr0.31NiO4 .
Although the charge-ordering wave vector did not play
an obvious role, the high-energy bond-stretching mode
propagating parallel (and perpendicular) to the stripe
modulation exhibited an energy splitting toward the
zone boundary, while along the Ni-O bond direction (at
45° to the stripes) a softening from zone center to zone
boundary was observed with a magnitude similar to that
in the cuprates. A better understanding of the nature of
the relevant electron-phonon coupling processes is re-
quired to make progress here.

3. STM imaging of nematic order

Because it is a local but spatially resolved probe, STM
is actually the optimal probe of nematic order. One way
it can be used, which is illustrated in Fig. 11, has been
explored by Howald et al. (2003a, 2003b). What is shown
here is a filtered version of N(r,E) measured on a patch
of surface of a very slightly overdoped crystal of
Bi2Sr2CaCu2O8!$ (Tc"86 K). Specifically, Howald et al.
defined a filtered image

Nf%r,E &"! dr!f%r$r!&N%r!,E &, (5.1)

FIG. 11. (Color in online edition) A filtered version of the
local-density-of-states map Nf(r,E) on a surface patch of a
Bi2Sr2CaCu2O8!$ crystal. Here, E"15 meV and the distances
on the x and y axes are measured in angstroms. The filter is
defined in Eq. (5.1) with '"(2"/15a). The arrows point along
the directions of the Cu-O bonds.
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where in the present case, the filter function f has been
defined so as to accentuate the portions of the signal
associated with stripe order,

f!r"#$2e!r2$2/2%cos!&x/2a ""cos!&y/2a "' . (5.2)

Clearly, f(r)→((r) when $→) , while Nf#N(Qch ,E)
"N(R%Qch' ,E)"c.c. in the limit $→0. For intermedi-
ate values of $, the filtered image shows only that por-
tion of the signal we have associated with pinned stripes.
The roughly periodic structure in the image has a period
of 4a . We know independently from the analysis in Sec.
V.B that there is prominent structure in the raw data
with this period, but even were there not, the filtering
would build in such structure. However, what is clear
from the image is that there is a characteristic domain
structure, within which the stripes appear to lie predomi-
nantly in one direction or the other. The domain size is
seen to be on the order of 100 Å*25a , which is large
compared to $!1 and, more importantly, roughly inde-
pendent (Howald et al., 2003a) of the precise value of $.
This domain size is a characteristic correlation length of
the pinned nematic order.

This particular method of analysis builds directly on
the realization of the nematic as a melted stripe-ordered
state. Indeed, looking at the figure, one can clearly iden-
tify dislocations and disclinations in what looks like a
fairly well-developed locally ordered stripe array.

More generally, STM could be used to measure di-
rectly the two independent components of a suitably de-
fined traceless symmetric tensorial density. The simplest
such quantities are

Qxx!r,E "#%+x
2!+y

2'N!r,E ",

Qxy!r,E "#2+x+yN!r,E ". (5.3)

Of course, these quantities, like the local density of
states itself, will typically have features that reflect the
interference between elementary excitations, and other
extraneous information. To obtain a better view of the
long-wavelength nematic correlations, we should again
integrate these densities over a suitable energy interval
,, and filter out the short-wavelength components:

Q̃f!r"#!
0

, dE
, ! dr!f!r!r!"Q!r!,E ", (5.4)

where f might be a Gaussian filter, as in Eq. (5.2), but
without the cosine factors. A map of Q̃f should produce
a domain structure, similar to that shown in Fig. 11, but
without all the short-wavelength detail. Where the do-
main size LN is large compared to a , the resulting pic-
ture should look qualitatively the same independent of
the range over which the signal is coarse grained, so long
as LN$$!1$a . The above procedure should work well
if there are no other long-wavelength features in the
data. Unfortunately, for BSCCO, the inhomogeneities in
the gap structure (Lang et al., 2000; Howald et al.,
2003b) hamper such a procedure.

D. ‘‘1/8 anomaly’’

Many members of the lanthanum cuprate family of
high-temperature superconductors exhibit strong singu-

larities in the doping dependence of various interesting
low-temperature properties at x#1/8; together, these
phenomena are referred to as the ‘‘1/8 anomaly.’’ For
instance, in La2!xBaxCuO4 and La1.6!xNd0.4SrxCuO4 ,
there is (Moodenbaugh et al., 1988; Crawford et al.,
1991) a deep minimum in Tc(x); in La2!xBaxCuO4 and
La2!xSrxCuO4 there is a pronounced (Crawford et al.,
1990; Zhao et al., 1997) maximum in -(x), the isotope
exponent -.d ln(Tc)/d ln(M); and in La2!xSrxCuO4
there is (Panagopoulos et al., 2002) a pronounced mini-
mum in the superfluid density ns(x). One of the central
inferences drawn by Tranquada, Sternlieb, et al. (1995)
following the discovery of stripe order in
La1.6!xNd0.4SrxCuO4 is that this 1/8 anomaly is associ-
ated with a commensurate lock-in of the stripe structure.
At x#1/8 the preferred spacing between charge stripes
is four lattice constants, so there is an additional com-
mensuration energy which stabilizes stripe order at this
particular hole density.

While it is possible to imagine other forms of charge-
density-wave order which would similarly be stabilized
at x#1/8, there can be no doubt that in this family of
materials the 1/8 effect is associated with stripe order.
This has been confirmed, for example, in La2!xSrxCuO4
where quasielastic magnetic scattering from spin-stripe
order has been detected (Suzuki et al., 1998; Kimura
et al., 1999) for x in the neighborhood of 1/8; in low-
energy inelastic measurements, Yamada et al. (1998)
have shown that the magnetic peak width is narrowest at
x#1/8. Correspondingly, slow (probably glassy) spin
fluctuations have been detected by /SR in the same ma-
terial with a somewhat arbitrarily defined onset tem-
perature, Tg(x), which has (Panagopoulos et al., 2002) a
pronounced peak at x#1/8. The fact that quasielastic
magnetic order as detected by neutron scattering onsets
at a considerably higher temperature than that detected
by /SR is clearly a consequence of the inevitable glassi-
ness of a density-wave transition in the presence of
quenched disorder; it reflects the differences in the time
scales of the two probes, not the presence of two distinct
ordering phenomena. More recently, new experiments
on La2!xSrxCuO4 as a function of x show pronounced
singularities in the x dependence of the c axis Josephson
plasma edge (Basov, 2002) and in the low-temperature
thermal conductivity (Takeya et al., 2002); these effects
can be interpreted straightforwardly in terms of a peak
in the stability of the charge-stripe order at x#1/8. Fur-
thermore, charge-stripe order has now been detected di-
rectly by neutron diffraction in La1.875Ba0.125!xSrxCuO4
(Fujita et al., 2002).

The large drop in Tc at x#1/8 found in
La2!xBaxCuO4 is not observed in La2!xSrxCuO4 ; how-
ever, such a dip in the doping dependence of Tc can be
induced in La2!xSrxCuO4 (centered at x#0.115) by
substitution of 1% Zn for Cu, as shown some time ago
by Koike et al. (1992). Zn substitution enhances local
magnetic order at low temperature near the dip mini-
mum, as detected by /SR (Panagopoulos et al., 2002;
Watanabe et al., 2002). Given the clear association be-
tween the 1/8 anomaly and stripe order in
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• Relating asymmetry to a quantitative measure

•Fourier filtering to look for stripe

C. Howald et al, 
PRB 67, 014533 (2003)

S. Kivelson et al, 
RMP 75, 1201 (2003)

Z(r, w) R(r)
M.B.J. Meinders, H. Eskes, G.A. Sawatzky

Phys. Rev. B, 48, 3916 (1993)
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Nematic ordering in UD 45

ON ≡ [Z̃( !Qx)− Z̃( !Qy) + Z̃(− !Qx)− Z̃(− !Qy)]
(sum)

QxQy

Kohsaka et al, Nature 454, 1072 (2008)

Extracted from published data, T=4K
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•Shift Qx, Qy to origin 
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•Low pass filter (long 
distance physics)
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Relative stripe directions
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Oriented stripe domains
•Shift Sx, Sy to origin 
(“tune to the channel”)

•Low pass filter (long 
distance physics)
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Looking ahead
• Doping dependence?

• Temperature dependence?

• Diffraction measurements?

Electronic Nematic in Cuprates?

        




































‣Phenomenological model ‣Why would cuprates do that?

‣Is it useful for superconductivity?


