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Moiré materials such as magic angle twisted bilayer graphene (MATBG) exhibit remarkable phe-
nomenology, but present significant challenges for certain experimental methods, particularly scan-
ning probes such as scanning tunneling microscopy (STM). Typical STM studies that can image
tens of thousands of atomic unit cells can image roughly ten moiré cells, making data analysis
statistically fraught. Here, we propose a method to mitigate this problem by aggregating STM con-
ductance data from several bias voltages, and then using the unsupervised machine learning method
of gaussian mixture model clustering to draw maximal insight from the resulting dataset. We apply
this method, using as input coarse-grained bond variables respecting the point group symmetry, to
investigate nematic ordering tendencies in MATBG for both charge neutral and hole-doped samples.
For the charge-neutral dataset, the clustering reveals the surprising coexistence of multiple types of
nematicity that are unrelated by symmetry, and therefore generically nondegenerate. By contrast,
the clustering in the hole doped data is consistent with long range order of a single type. Beyond its
value in analyzing nematicity in MATBG, our method has the potential to enhance understanding
of symmetry breaking and its spatial variation in a variety of moiré materials.

Magic angle twisted bilayer graphene (MATBG) and
other moiré systems have emerged as highly tunable plat-
forms for the experimental investigation of strongly cor-
related quantum matter[1, 2]. Rapid developments in
multilayer graphitic systems have discovered rich phe-
nomenology, including correlated insulating behavior [3],
topological phases[4–8], superconductivity[9, 10], and
symmetry breaking such as orbital ferromagnetism[11,
12] and other forms of flavor symmetry breaking[13, 14],
as well as nematicity[15–20]. By virtue of its surface
sensitivity and its spatial and energy resolution, scan-
ning tunneling microscopy (STM) is one of the tools best
suited to explore this physics. Indeed, STM studies have
led to remarkable insights into local symmetry breaking
tendencies in other materials[21]. However, STM studies
of moiré systems are challenging due to the large param-
eter space (the gate voltage, i.e. doping, being a new
tuning parameter), as well as the large effective lattice
constant, sketched in Fig. 1a . Because the lattice con-
stant is so large, only a few unit cells are contained in
a typical STM field of view (Figs. 1b,c), making edge
effects significant. As a result, previous STM imaging
studies on moiré systems have not explored spatial vari-
ations of symmetry breaking tendencies.

STM studies of moiré materials frequently observe the
breaking of the C3 rotational symmetry of the moiré
lattice, as is strikingly illustrated in the STM conduc-
tance image of Fig. 1b. Rotational symmetry breaking,
known as nematicity, is widely observed in correlated

materials and increasingly provides a unifying thread
among them [22, 23]. While the symmetry broken in
the most commonly studied materials is a C4 rotation,
the C3 rotational symmetry of the moiré lattice intro-
duces new aspects to the theoretical understanding of
nematic order[20, 24, 25]. Specifically, the nematic order
parameter for C3 symmetry breaking transforms under
a two-dimensional representation of the C3 point group.
Hence, two inequivalent types of nematic order can de-
velop: type-I, with one strong direction, and type-II, with
one weak direction, as shown in Fig. 1d (see supplemen-
tary material section II). While the existence of these two
types is guaranteed by symmetry, little is known about
the microscopic conditions that favor each type. More-
over, no experimental studies to date have explored this
additional nematic degree of freedom in moiré materials.

Here, we propose an unsupervised machine learn-
ing approach to detect the two types of nematicity
and their spatial fluctuations from STM data on moiré
materials. Lately, the community has made rapid
progress in applying machine learning[26, 27] to ex-
perimental data on quantum matter from bulk probes
such as resonant ultrasound[28], neutron scattering[29],
and X-ray scattering[30] and microscopic probes such as
STM[31–33], electron microscopy[34], and quantum gas
microscopy[35–37]. However, much of the literature has
focused on supervised machine learning. One advantage
of our technique is that, because it is unsupervised, it re-
quires no training data, which is a significant advantage
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given the extraordinary difficulty of STM experiments.
In previous work, this difficulty has been overcome us-
ing synthetic training data [32], but generating these
data inevitably introduces bias. Unsupervised learning
approaches look for naturally occurring clusters in the
distribution of data[30] and enable unbiased discoveries.
A key challenge in a successful implementation of an un-
supervised learning method is defining the feature space
for clustering. Since we are interested in phenomena at
the moire lattice scale, we introduce coarse-grained fea-
tures centered at each moire lattice cite (see Fig. 1f).
We then study spatial variations in type-I and type-II
nematic tendencies by clustering the features.

The STM data used in this work have been obtained
in the same experimental run as in Ref. [17]. MATBG
is placed on an atomically smooth hexagonal boron ni-
tride dielectric with the graphene gate underneath, Fig.
1a. In this configuration, MATBG can be doped electro-
statically i.e., by simply changing the gate voltage. The
spectroscopic maps used for investigating potential ne-
matic phases were obtained at various doping levels and
in close vicinity (±20 meV) of the Fermi level.

Our unsupervised learning approach consists of two
steps: feature selection and clustering. The goal of the
feature selection step is to define a nematic order param-
eter centered at each moiré lattice site. There are two
complementary ways to describe nematic order in this
setting, one borrowed from the physics of liquid crystals
and the other from the theory of finite groups. Nematic
liquid crystals are described using a headless vector, the
director field η = |η|(cos θ, sin θ), specifying the orienta-
tion of the long axis of the constituent molecules. For
electronic liquid crystals on a lattice with C3 symme-
try, η specifies an analogous elongation of local proper-
ties, and would naturally fall along high-symmetry lines–
either along bond directions or mid-way between them.
We dub these scenarios type I and type II nematicity re-
spectively, as illustrated in Fig. 1d. From the group the-
ory perspective, electronic nematicity can be described
using a two-component order parameter Φ transforming
under the E2 (or, informally, [dx2−y2 , dxy]) representa-
tion of D6. These perspectives are equivalent, according
to

Φ = |η|2
(

cos[2θ]
sin[2θ]

)
. (1)

We extract a local nematic order parameter from the
STM data by defining three coarse-grained bond vari-
ables α, β, γ as shown in Fig 1f, and constructing the
order parameter Φ as

Φ1 =α− 1

2

[
β + γ

]
, (2)

Φ2 =

√
3

2

[
γ − β

]
. (3)

See supplementary material section 2 for further details.

Once we have collected the values of Φ for each moiré
lattice site and each bias voltage, we proceed to the clus-
tering step. We combine order parameter values from se-
lected voltage windows into a larger dataset for improved
statistics, and then quantify the distribution of these data
using gaussian mixture modeling (GMM)[38]. In GMM,
each data point is assumed to have been drawn, with
some probability (or “weight”) from one of several gaus-
sians. The means and variances of the conjectured gaus-
sian distributions, as well as their weights, are learned
by maximizing the likelihood of the dataset being drawn
from the model. The clustering can quantify two distinct
phenomena regarding local nematicity: spatial coexis-
tence of different nematic tendencies, be it orientation
or type, and long-range correlation of one nematic ten-
dency. Separation between different clusters will signify
multiple nematic tendencies coexisting within the field
of view (see Fig. 1g-h). The spatial distribution of each
cluster will establish correlation length of each nematic
tendency. On the other hand, overlap among the clus-
ters will signify long-range (limited by the field-of-view)
correlation of one nematic tendency (see Fig. 1i-j).

We first apply our analysis to data at charge neutral-
ity point, with results shown in Fig. 2. We focus on
the vicinity of zero bias, specifically, the regions marked
by gray strips in Fig. 2a, which shows the field-of-view
averaged conductance as a function of bias voltage. In
this region the sample exhibits the coexistence of dif-
ferent types of nematicity, as well as rapid variation of
nematicity with bias voltage. At small positive volt-
ages (rightmost strip of Fig. 2a) the clustering in the
two-component order parameter space [Φ1,Φ2] (Fig. 2b)
yields results similar to the clustering of the synthetic
data of Fig. 1g,h: the two clusters with appreciable pop-
ulations (in magenta and cyan) are well separated both
from the origin and from each other. Fig. 2 plots these
data in the η plane, and shows that the magenta cluster
corresponds to type I nematicity while the blue cluster is
of type II. This is borne out visually in the conductance
images of panels (d)-(f), in which the two major clusters
form spatially separated regions. The data show phase
separation between type I, typified by the the circled site
of panel (e), and type II, typified by the circled site of
panel (d).

The coexistence of the two types, which are not related
by any symmetry, is unexpected on theoretical grounds.
Note that, because of the near equal population of data
points in the two main clusters, a simple average of the
data set shown would not yield a result along a high-
symmetry axis, and would therefore miss this mesoscale
spatial variation of well-developed nematicity.

Near zero bias (Fig. 2g,h), the clustering assigns nearly
all of the data points to a single broad cluster (blue). The
corresponding values of η (Fig. 2h) are also very broadly
distributed, as would be expected in a disorded nematic
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FIG. 1: (a) Schematic of the experimental geometry, with illustration of the moiré pattern that entails a very large
lattice constant. (b) STM conductance map on a hole-doped MATBG sample at a bias voltage of +12.0 mV,
showing clear breaking of the 60◦ rotation symmetry of the moiré lattice. The circle highlights a site with the

rod-shaped conductance distribution typifying type I nematicity, with director η (illustrated by the gray bar) at an
angle θ ≈ 60◦. Data are taken from [17], (c) Conductance map on a charge-neutral sample at bias −0.8 mV, showing
a disordered pattern of rotational symmetry breaking. The circle highlights a site with the X-shaped conductance

distribution typifying Type II nematicity, with η pointing at θ ≈ −30◦. (d) Illustration of types I and II nematicity.
Referring to the shapes on the black background to the left: the orange shape at the top has all bonds of equal
intensity, and is not nematic; the yellow shape below has one bond stronger than the others, constituting type I

nematicity; the red shape at the bottom has one bond weaker than the others, constituting type II nematicity. The
corresponding values of the director η are plotted to the right. (e) Zoom of the region enclosed by the dashed

rectangle in 1b. The black circles show the AA sites.(f) The region of 1e following a bilinear interpolation and a
gaussian blur. In addition to the AA sites, patches along 0, 120, and 240 degrees are overlaid. The conductance in

these three patches is averaged to form the bond variables α, β, γ. (g) GMM clustering of a synthetic dataset
displaying the coexistence of type I and type II nematicity. The data points are colored according to the cluster to

which they are assigned, and the corresponding distributions are represented by 2σ ellipses; the data are represented
in the η plane in (h). (i,j) Analogous plots for a dataset exhibiting long range order of type I nematicity.
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phase with spatial fluctuations of large amplitude but ex-
tremely small correlation length. At small negative volt-
ages there are again two significant clusters, in blue and
green, but both of type II character, with typical direc-
tor near −30◦, apparently modeling amplitude variation
of a single type. This is consistent with the predomi-
nance of x-shaped motifs (similar to the illustration in
the bottom left of Fig. 1d) in the conductance images of
(n)-(p), such as the site circled in (p). The dramatic bias
voltage dependence of both the effective number of clus-
ters and their underlying distributions indicates strong
correlation effects among low energy excitations.

Under hole doping, shown in Fig. 3, the sample ex-
hibits dramatically different behavior. In contrast to the
results above, the clusters are generally contiguous, cov-
ering a range of variation of either the amplitude of the
nematic order parameter or its angle. As the bias is low-
ered, weak type I nematicity gives way to strong, and
eventually to a continuous distribution of angles with no
well defined type. For large positive bias (rightmost strip
in panel (a), with Φ data plotted in panel (b)), the GMM
fit finds three clusters that all have values of Φ near the
high-symmetry axis at 120◦. Equivalently, as shown in
panel (c), η points near 60◦ for each cluster, indicative
of the nearly homogenous type I behavior obvious to the
eye from the rod-like motifs in the conductance images of
(d)-(f). Data for slightly smaller voltages, plotted in pan-
els (g) and (h), exhibit similar behavior but with larger
amplitude, with three clusters which, while clearly sepa-
rated, all lie along the same high-symmetry line. This is
consistent with a picture of long range order with spatial
variation of the order parameter amplitude, as is evident
in the varying intensity of the rods of (i)-(k).

At small positive bias voltage, panels (l),(m), the ne-
maticity is of a completely different character, with the
directions of Φ and η much more broadly distributed, but
always far from 60◦. Here, there are only two clusters of
significant population, both meaningfully separated from
the origin, and spread between the high-symmetry direc-
tions of 0◦ and −30◦. The associated distributions over-
lap, and the nematic director varies continuously in angle,
as can be seen in the conductance distributions in (n)-
(p). Remarkably, however, this nematicity (which is of
comparable strength to that exhibited at higher bias volt-
ages), has angle completely different angle than the or-
der parameter of the apparent long range order at larger
bias. As such, we find evidence of long range order that
manifests itself in a strongly bias-dependent fashion.

The variety of phenomenology encountered in these re-
sults is quite striking considering that they are all taken
within the exact same same field of view (at multiple
dopings and bias voltages). Among the bias voltage win-
dows considered, some suggest strong nematic fluctua-
tions without any order, others suggest well-established
order of type I, others of type II, and still others the co-
existence of both types. This coexistence is unexpected

from a theoretical perspective–the two types are not re-
lated by symmetry, and therefore in general are not de-
generate. An external symmetry breaking field such as
strain, which would have some fixed set of principal axes,
and would be expected to definitively prefer one type over
the other. This fact, as well as the broader profusion of
nematic behavior, may indicate that nematicity (whether
long-range ordered or not) is an intrinsic correlation ef-
fect within this region of the sample.

To summarize, we have developed a new set of tools
for the analysis of STM data on moiré materials that can
help overcome the challenges posed by the large size of
the unit cell, and have applied these tools to analyze ne-
matic order in MATBG. The first tool uses coarse grain-
ing of conductance images to define a local nematic order
parameter at each site that accords with the rotational
symmetry breaking readily observable by eye. This order
parameter transforms under the correct two dimensional
representation of the point group, and therefore it can
be used both to make contact with theoretical analysis
and to capture the previously unexplored physics of the
two qualitatively distinct types of nematicity. The sec-
ond tool consists of the application of gaussian mixture
model clustering to data sets aggregated from order pa-
rameter values at multiple sites and bias voltages. This
aggregation mitigates the problem of the small number
of moiré unit cells within the field of view, and the clus-
tering can reveal the coexistence of multiple qualitative
types of nematicity where present. Applying these tools
to data from hole-doped and charge-neutral MATBG, we
find indications of both types of nematic order as well as
coexistence thereof, suggesting strong intrinsic nematic
tendencies in this material.

We expect both steps of our method to have broader
applicability. First, the local order parameter we de-
fine can be applied to any image generated by STM (or
other imaging techniques), and by virtue of its symmetry
can describe any “universal” nematic physics contained
therein. Further, the coarse graining procedures we have
developed can easily be applied to other forms of symme-
try breaking, or in other materials[39]. Second, our ag-
gregation and clustering procedure will be generally help-
ful when data are limited by experimental conditions, and
constitutes an objective method for discovery of a range
of nematic (or other symmetry breaking) behavior.
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FIG. 2: (a) Bias voltage dependence of the sample-averaged conductance for the charge-neutral sample of 1c. The
shaded regions represent the voltage windows for the rows that follow. (b, g, l) Data for each of the selected voltage

ranges plotted in the Φ plane, with cluster assignments indicated by color and the fitted gaussian distributions
represented as 2σ ellipses. The data are shown in the η plane in (c,h,m). The voltage sets are, in mV: top row

[-3.2,-2.4,-1.6]; middle row [-0.8,0.0,0.8]; bottom row [1.6,2.4,3.2]. (d)-(f); (i)-(k); (n)-(p): Conductance maps for each
of the voltage ranges above, with values of η shown with rods at each site and cluster assignments indicated by color.
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FIG. 3: (a) Bias voltage dependence of the sample-averaged conductance for the hole-doped sample of 1b. The
shaded regions represent the voltage windows for the rows that follow. (b, g, l) Data for each of the selected voltage

ranges plotted in the Φ plane, with cluster assignments indicated by color and the fitted gaussian distributions
represented as 2σ ellipses. The data are shown in the η plane in (c,h,m).The voltage sets are, in mV: top row

[15.2,16.0,16.8]; middle row [11.2,12.0,12.8]; and bottom row [1.6,2.4,3.2]. (d)-(f); (i)-(k); (n)-(p): Conductance maps
for each of the voltage ranges above, with values of η shown with rods at each site and cluster assignments indicated

by color.
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superlattice, Science Advances 6, eaba8834 (2020).

[26] J. Carrasquilla, Machine learning for quantum mat-
ter, Advances in Physics: X 5, 1797528 (2020),
https://doi.org/10.1080/23746149.2020.1797528 .

[27] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld,
N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Machine
learning and the physical sciences, Rev. Mod. Phys. 91,
045002 (2019).

[28] S. Ghosh, M. Matty, R. Baumbach, E. D. Bauer, K. A.
Modic, A. Shekhter, J. A. Mydosh, E.-A. Kim, and
B. J. Ramshaw, One-component order parameter in
uru¡sub¿2¡/sub¿si¡sub¿2¡/sub¿ uncovered by resonant ul-
trasound spectroscopy and machine learning, Science Ad-
vances 6, eaaz4074 (2020).

[29] A. M. Samarakoon, K. Barros, Y. W. Li, M. Eisenbach,



8

Q. Zhang, F. Ye, V. Sharma, Z. L. Dun, H. Zhou, S. A.
Grigera, C. D. Batista, and D. A. Tennant, Machine-
learning-assisted insight into spin ice dy2ti2o7, Nature
Communications 11, 892 (2020).

[30] J. Venderley, K. Mallayya, M. Matty, M. Krogstad,
J. Ruff, G. Pleiss, V. Kishore, D. Mandrus, D. Phe-
lan, L. Poudel, A. G. Wilson, K. Weinberger, P. Up-
reti, M. Norman, S. Rosenkranz, R. Osborn, and E.-A.
Kim, Harnessing interpretable and unsupervised machine
learning to address big data from modern x-ray diffrac-
tion, Proceedings of the National Academy of Sciences
119, e2109665119 (2022).

[31] M. Ziatdinov, A. Maksov, L. Li, A. S. Sefat, P. Maksy-
movych, and S. V. Kalinin, Deep data mining in a real
space: separation of intertwined electronic responses in
a lightly doped BaFe2as2, Nanotechnology 27, 475706
(2016).

[32] Y. Zhang, A. Mesaros, K. Fujita, S. D. Edkins, M. H.
Hamidian, K. Ch’ng, H. Eisaki, S. Uchida, J. C. S.
Davis, E. Khatami, and E.-A. Kim, Machine learning in
electronic-quantum-matter imaging experiments, Nature
570, 484–490 (2019).

[33] S. C. Cheung, J. Y. Shin, Y. Lau, Z. Chen, J. Sun,
Y. Zhang, M. A. Müller, I. M. Eremin, J. N. Wright,
and A. N. Pasupathy, Dictionary learning in fourier-
transform scanning tunneling spectroscopy, Nature Com-
munications 11, 1081 (2020).

[34] M. Cao, M. Matty, Z. Chen, L. Li, E.-A. Kim, and
D. Muller, Machine learning for phase retrieval from 4d-
stem data, Microscopy and Microanalysis 26, 8–9 (2020).
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I. TRANSFORMATION OF Φ UNDER D6

Here we illustrate how the order parameter Φ defined in the text transforms under the E2 representation of the D6

point group. In the main text we defined bond variables α, β, γ as averages over conductance regions oriented at
0, 2π/3, 4π/3 from horizontal, with the nematic order parameter Φ defined as

Φ1 =α− 1

2

[
β + γ

]
, (1)

Φ2 =

√
3

2

[
γ − β

]
(2)

Each element of the symmetry group D6 acts as a permutation of these variables, so we will illustrate how Φ transforms
under a few of these. Consider the cyclic permutation α→ γ, β → α, γ → β, corresponding to a spatial rotation by
2π/3. Φ transforms as

Φ1 → Φ̃1 =β − 1

2

[
γ + α

]
(3)

=− 1

2

(
α− 1

2

[
β + γ

])
−
√

3

2

(√
3

2

[
γ − β

]
)

(4)

=− 1

2
Φ1 −

√
3

2
Φ2 (5)

Φ2 → Φ̃2 =

√
3

2

[
α− γ

]
(6)

=

√
3

2

(
α− 1

2

[
β + γ

])
− 1

2

(√
3

2

[
γ − β

]
)

(7)

=

√
3

2
Φ1 −

1

2
Φ2 (8)

or more compactly

Φ→ Φ̃ =

(
− 1

2 −
√
3
2√

3
2 − 1

2

)
Φ, (9)

so that Φ is rotated by 4π/3. This is twice that of the underlying spatial rotation; it is the director η that transforms as
a (headless) vector under rotations. Similarly, under the other cyclic permutation, corresponding to a spatial rotation
by 4π/3, Φ undergoes an 8π/3 rotation. The other class of permutations leave one bond variable invariant and
switch the others, corresponding to spatial reflection symmetries. For instance, we can take α → α, β → γ, γ → β,
corresponding to a reflection about the x or y-axis. For this permutation Φ1 → Φ1, Φ2 → −Φ2, so that Φ also
undergoes a reflection.
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FIG. 1: Raw topography data for the MATBG sample investigated in this study.

FIG. 2: Topography smoothed by the method in the text, with bilinear interpolation and Gaussian blur.

II. DATA PROCESSING

We begin with STM tunneling conductance and topography data over a field of view containing 12 moiré unit cells.
The conductance images have high conductance regions near the local maxima of the topography, which are the AA
sites of the moiré lattice. However, identifying the AA sites as the literal local maxima of the image may be incorrect
due to outlier pixels and noise, as you can see in Fig. 1. Therefore we smooth the data as follows: first we applying
a linear interpolation of the image on a four times finer grid; then apply a Gaussian filter (blur) filter with standard
deviation of one pixel (of the original image). Identifying the AA sites as the literal local maxima of the resulting
image yields results in clear accord with the actual shapes of the regions of large surface height, as can be seen in Fig.
2.

Next, we define six -shaped regions surrounding each site, in which each propeller extends towards a nearest
neighbor. The regions open at an angle of 60◦, extend to the midpoint of the bond, and have a perpendicular extent
w on each side, as shown in Fig.3, where we use w = 2 pixels in our work. To form a bond variable we average the
smoothed conductance over two opposite propeller regions: 0◦ and 180◦ for α, 120◦ and 300◦ for β, 240◦ and 60◦ for
γ.

III. LANDAU THEORY

The distinction between types I and II, and the phenomenological conditions under which each is preferred, can
be understood from a simple Landau theory. For this purpose, it is convenient to represent the order parameter as a



3

𝑤

FIG. 3: Illustration of the regions over which the conductance is averaged to form the bond variables used in our analysis.

complex number

Φ = |Φ|
(

cos[2θ]
sin[2θ]

)
=⇒ φ = |Φ| exp[2iθ] (10)

With this definition, we write the free energy to the lowest physical order as F = F0 + Fn, with1

F0 =u|φ|2 + g|φ|4, (11)

Fn =
γ

2

(
φ3 + [φ∗]3

)
(12)

The term F0 is the usual lowest-order Landau free energy for a single-component order parameter (such as Ising
magnetism or s-wave superconductivity), for which terms odd in φ are ruled out by symmetry. However, because the
nematic order has two components, there is no symmetry prohibiting the cubic term Fn. If we now substitute Eq. 10
into the full free energy, we obtain

F =u|Φ|2 + g|Φ|4 +
γ

2
|Φ|3 (exp[6iθ] + exp(−6iθ)) (13)

=u|Φ|2 + g|Φ|4 + γ|Φ|3 cos[6θ] (14)

The dependence on θ is entirely contained in the final term proportional to γ. If γ < 0, then the system will choose
6θ to be an integer multiple of 2π, so that θ = −π/3, 0, or π/3 (or equivalents). This is type I nematicity, with
the director oriented at −60◦, 0◦ or 60◦ from the horizontal axis. Alternatively, if γ > 0, the system prefers type II
nematicity, with director at −30◦, 30◦ or 90◦ from the horizontal axis.

Within low order Landau theory, our discussion above has been completely general, relying only on the C3 symmetry
of the Hamiltonian. However, the appropriate coefficients in this Landau theory, including that of the crucial cubic
term, depend on microscopic details. While such coefficients can be computed within a microscopic model, even
qualitative results will be strongly model dependent. This makes it all the more important to quantify nematicity in
experiment in such a way as to make contact with the theoretical analysis above.

1 Note that this low-order free energy is phenomenological only. The presence of a cubic term makes the transition generically
first order. Since the order parameter is not necessarily small at the transition, the expansion in φ is not actually permitted.


