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Topological orders competing for the Dirac surface state in FeSeTe surfaces
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FeSeTe has recently emerged as a leading candidate material for the two-dimensional topological supercon-
ductivity (TSC). Two reasons for the excitement are the high Tc of the system and the fact that the Majorana zero
modes (MZMs) inside the vortex cores live on the exposed surface rather than at the interface of a heterostructure
as in the proximitized topological insulators. However, the recent scanning tunneling spectroscopy data have
shown that, contrary to the theoretical expectation, the MZM does not exist inside every vortex core. Hence
there are “full” vortices with MZMs and “empty” vortices without MZMs. Moreover, the fraction of “empty”
vortices increases with an increase in the magnetic field. We propose the possibility of two distinct gapped states
competing for the topological surface states in FeSeTe: the TSC and half quantum anomalous Hall (hQAH).
The latter is promoted by a magnetic field through the alignment of impurity magnetic moments such as Fe
interstitials. When hQAH takes over the topological surface state, the surface will become transparent to scanning
tunneling microscopy and the nature of the vortices in such regions will appear identical to what is expected of
the vortices in the bulk, i.e., empty. The unmistakable signature of the proposed mechanism for empty vortices
will be the existance of chiral Majorana modes(CMM) at the domain wall between an hQAH region and a TSC
region. Such CMMs should be observable by measuring local density of states along a line connecting an empty
vortex to a nearby full vortex.

DOI: 10.1103/PhysRevResearch.3.013066

I. INTRODUCTION

One particularly exciting feature of the topological insu-
lator (TI) is its potential to host the Majorana zero mode
(MZM), which has led to many proposals [1–4] and attempts
[5–9] to realize MZM through introducing superconduct-
ing pairing to the TI surface state. Early works focused on
inducing topological superconductivity (TSC) through the
proximity effect [3,10–12]. More recently, the prospect of
FeSeTe, possessing at its surface the equivalent of TI surface
states with superconducting gaps induced by proximity to the
intrinsic high Tc bulk superconductivity, raised much enthusi-
asm [13–16]. More recently it has been recognized that such
a state possesses a higher-order topology [17–21].

Intensive experimental investigations of FeSeTe confirmed
the existence of a Dirac surface state in the normal state
above Tc [22]. The predicted evidence for the MZM in the
vortex core in the superconducting state was a zero-bias
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peak in scanning tunneling microscopy (STM). Indeed, STM
is a particularly suitable probe for the MZM in this mate-
rial as it would exist at the surface [11,12]. Despite several
observations of zero-bias peaks in cores of some vortices
[23–26], an apparent contradiction to the prediction has also
been observed in the increasing fraction of “empty” vortices
without a zero-bias peak upon the increase in magnetic field
[27,28]. A careful study [27] revealed that the “empty” vor-
tices cannot be accounted for by a simple picture of pair-wise
annihilation of MZM between two near-by vortices. Although
Ref. [29] showed that a model allowing for long-range inter-
actions among far-separated MZMs can, in principle, explain
the “empty” vortices, an alternative explanation with simpler
starting point and a falsifiable prediction is desirable.

Here we provide an alternative interpretation of the ob-
served “empty” vortices based on the role of the magnetic
field in aligning local moments of Fe interstitials. Our main
physical picture is summarized in Figs. 1(a)–1(d). As it is
known from the study of magnetic dopants added to TI surface
states, the exchange field from magnetic impurities also gaps
out the TI surface state to form the half quantum anomalous
Hall (hQAH) state with half-integer quantization of Hall con-
ductivity [2,30–32] [Figs. 1(a)– 1(b)]. Uneven distribution of
Fe interstitials can nucleate the hQAH regions on the surface
of FeSeTe when their moments get aligned with external
magnetic fields [Fig. 1(c)], preventing TSC to form in that
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FIG. 1. (a) Gapless Dirac surface state with random magnetic
moments of Fe interstitials and (b) the gaped surface state when mag-
netic moments are aligned by external magnetic fields. (c) Domain
wall between the TSC region (with dominant superconducting gap)
and the hQAH region (with dominant magnetic gap) on the surface
of FeTeSe. (d) MZM exists at the vortex core (the red spots) in the
TSC region, but not in the hQAH region. The CMM exists at the
boundary between the TSC and hQAH regions.

very region. Such a hQAH surface state will reveal the bulk
superconductivity to STM and the vortices penetrating hQAH
surface will show properties of the bulk superconducting state
with the topologically trivial s± pairing [33,34], i.e., becoming
“empty”. With increasing magnetic fields, more hQAH re-
gions are nucleated on the surface of FeSeTe, thus providing a
natural explanation of the increasing faction of empty vortices
observed in experiments. Interestingly, it has been known that
a boundary between hQAH and TSC should host a chiral
Majorana mode (CMM) [4,35–37]. Hence our key prediction
is that the MZM that would have been in the vortex core
transforms into the CMM located at the boundary between the
hQAH and TSC on the surface of FeTeSe [Fig. 1(d)]. In the
rest of this article, we first present our proposal using a low-
energy effective theory and then support it with a numerical
simulation based on a microscopic model in FeSeTe.

II. EXCHANGE FIELD AND LOW-ENERGY
EFFECTIVE THEORY

Due to the topologically nontrivial properties in FeSeTe,
there are topological Dirac surface states. As noted by neutron
scattering experiments [38], and by Jiang et al. [39], the inter-
stitial Fe atoms can provide magnetic impurities and generate
magnetic domains in FeSeTe. Although the impurity moments
will point in random directions at zero field [Fig. 1(a)], the ex-
ternal field applied to create vortices would align the impurity
moments [Fig. 1(b)]. In the regions with a higher con-
centration of aligned impurity moments, the exchange field
generated by these moments would couple to the topological
surface state as in magnetically doped TIs [40–46]. Such an
exchange coupling can be captured by Hex(r) = −J0

∑
i Si ·

sδ(r − ri ), where s = h̄
2 σ is the surface state electron spin,

Si and ri are the spin and location, respectively, of the Fe
interstitial and J0 is the coupling constant. This exchange

field will be heterogeneous depending on the distribution of
the interstitials. We consider the mean field approximation for
the exchange field, leading to the form Hex(r) = −Iex(r) · σ ,
where Iex(r) = J0 h̄

2

∑
i〈Siδ(r − ri )〉local is a smoothly varying

field with 〈...〉local representing the average over a small region
for Fe moments. In an ordinary topological insulator, such
a heterogeneous exchange field should result in the hQAH
effect with spatially varying gaps for the Dirac surface state
[47]. However, nontopological bands crossing the Fermi level
will mask hQAH states in the normal state of FeSeTe.

Once the system develops superconductivity, the hQAH
and TSC can compete as the two distinct ways of gap-
ping the Dirac surface state. Moreover, the hQAH region
will reveal itself by leaving the bulk superconductivity bare
when the exchange gap dominates over the superconducting
gap. This can be captured by the Bogoliubov–de Gennes
(BdG) Hamiltonian for the Dirac surface state with both
the exchange field and the s-wave pairing in the basis
(ck,↑, ck,↓, c†

−k,↓,−c†
−k,↑)T :

HBdG = (vk · σ − μ)τz − Iexσz + �τx, (1)

where σi and τi are the Pauli matrices in the spin space and
particle-hole space, respectively. Here we assumed an s-wave
gap to be real and only consider an exchange field along the z
direction; possible change in the pairing gap symmetry due to
the exchange field [46] was not included as the exchange field
has little effect on the bulk pairing. It is straightforward to find
upon increase in the exchange term that the superconducting
gap for BdG quasiparticles closes at a critical exchange field
strength of [48–50]

I2
ex,c = |�|2 + μ2. (2)

When |Iex| < |Iex,c|, the TSC dominates to support vortex
core MZMs, which can be explicitly obtained by choos-
ing �τx → |�|(τx cos θ − τy sin θ ) substitution (θ is the
azimuthal angle) with a superconducting vortex at the origin.
The zero-energy mode we obtain for |Iex| < |μ| reads [3]

⎡
⎢⎢⎣

ψ↑(r)
ψ↓(r)
ψ

†
↓(r)

−ψ
†
↑(r)

⎤
⎥⎥⎦= e− ∫ r

0 dr′ |�|
h̄v(

μ2−I2
ex

) 1
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−i π
4
√

μ+IexJ0

(√
μ2−I2

ex

h̄v
r

)

ei π
4 eiθ√μ−IexJ1

(√
μ2−I2

ex

h̄v
r

)

e−i π
4 e−iθ√μ−IexJ1

(√
μ2−I2

ex

h̄v
r

)

−ei π
4
√

μ+IexJ0

(√
μ2−I2

ex

h̄v
r

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3)

where Jl is the l-th Bessel function of the first type, and it is
reduced to the Fu-Kane vortex zero-energy mode by setting
first Iex = 0 and then μ = 0 [3]. It can also be generalized to
|Iex| > |μ| using Jl (ix) = inIl (x) for x ∈ R, where Il is the l-th
modified Bessel function of the first type, provided, however,
that |�(r → ∞)| >

√
I2
ex − μ2, i.e., |Iex| < |Iex,c|, as can be

seen from the asymptotic forms for the large real arguments,
Il (x) ∼ ex/

√
2πx.

On the other hand, when |Iex| > |Iex,c|, hQAH dominates
with the absence of vortex core MZMs. The domain wall
CMM can be demonstrated by setting μ = 0 with the domain
wall at y = 0 arising from Iex(y) = I0	(y) and � = �0	(−y)
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FIG. 2. Topological phase transition for (001) surface states in the lattice model with increasing exchange field Iex: (a) Iex = 0, (b) Iex =
−0.2 and (c) Iex = −0.4. The adopted parameters are tx,y = tz = 0.5, M0 = 2.5, mx = −mz = −1.0, �s = 0.2 and μ = 0.

will be considered, i.e.,

HBdG = vk · στz − I0	(y)σz + �0	(−y)τx (4)

for I0 = �0 > 0, it is straightforward to show the existence of
the domain wall CMM,⎡

⎢⎢⎣
ψ↑(r)
ψ↓(r)
ψ

†
↓(r)

−ψ
†
↑(r)

⎤
⎥⎥⎦ =

√
�0

vLx
eikxxe−�0|y|/v

⎡
⎢⎣

1/2
1/2
1/2

−1/2

⎤
⎥⎦ (5)

with the eigenenergy Ekx = vkx.

III. MICROSCOPIC MODEL

Next we will support our results by the numerical sim-
ulations based on the bulk model of FeSeTe system. For
the FeSeTe bulk system, the topological phase is attributed
to a band inversion between two states with opposite par-
ities at Z point. Taking |S+,+ 1

2 〉, |S+,− 1
2 〉, |P−, 1

2 〉, and
|P−,− 1

2 〉 as the basis at Z point [14,15], the topological
electronic structure can be described by the Hamiltonian in
a three-dimensional (3D) lattice HTI = ∑

k ψ
†
kHTI(k)ψk and

the Hamiltonian matrix reads

HTI(k) = ηxd · σ + Mkηz − μ, (6)

where ψ
†
k = (c†

Sk↑, c†
Sk↓, c†

Pk↑, c†
Pk↓), Mk = M0 + mz cos kz +

mx(cos kx + cos ky) and di = 2ti sin ki (i = x, y, z). Here η are
Pauli matrices in the orbital space. The mass terms at �

and Z points are M0 + mz + 2mx and M0 − mz + 2mx, respec-
tively. Let us take m0 = −mz = mx, where the above model
describes a strong topological insulator phase with a band
inversion at Z point provided −3 < M0

m0
< −1 is satisfied.

We further extend the above Hamiltonian to include su-
perconductivity and an exchange field from impurities. The
BdG Hamiltonian is HBdG = 1

2

∑
k �

†
kHTI

BdG(k)�k with �k =
[ψ†

k , ψT
−k(−iσy)] and the Hamiltonian matrix reads

HTI
BdG(k) =

(
HTI(k) − Iexσz �s

�†
s −HTI(k) − Iexσz

)
, (7)

where �s is the intraorbital spin singlet pairing. In the absence
of the exchange field, the (001) surface states will be gapped
by superconductivity and form an effective p + ip pairing,
where the Majorana modes can be trapped in a vortex core
of the surface (as described by Eq. (1) with Iex = 0). We then
study the effect of the exchange field on the (001) surface

states by adopting the above Hamiltonian with open boundary
condition along the z direction.

The microscopic model reproduces the topological phase
transition of the low-energy effective theory. Figure 2 demon-
strates the process of the topological phase transition for the
surface states by fixing the pairing potential and increasing the
exchange field strength. In Fig. 2(a), with zero exchange field,
the surface state is gapped by the superconducting pairing.
When the exchange field strength reaches the critical strength,
which is equal to the superconducting gap for μ = 0, the gap
of the surface states closes [Fig. 2(b)], consistent with the
condition of Eq. (2). With further increasing the exchange
field, the surface state gap reopens and the system is driven
into the hQAH state [Fig. 2(c)].

Next we turn to how the exchange field affects the vortex
core MZM in topological surface state superconductivity. We
introduce a vortex located at the center of the system by
setting �s(r) = |�s(r)|eiθ and adopt the Hamiltonian with
open boundary conditions along the x, y, z directions. A lattice
size of 17 × 17 × 16 is chosen for the following numerical
calculations. The exchange field is only restricted to the top
(001) surface of the system.

With the above sample configuration, Figs. 3(a) and 3(b)
show the distribution of the zero-energy local density of states
on the bottom and top surfaces, respectively, for the exchange
field exceeding the critical strength defined by Eq. (2). One
can see that an “empty vortex” appears on the top surface in
Fig. 3(b), in sharp contrast to the “full vortex” on the bottom

FIG. 3. The 3D profiles of MZMs for (001) surface on a 17 ×
17 × 16 lattice with Iex = −0.4, �s = 0.2 and μ = 0. There is a lo-
calized Majorana in the vortex and chiral Majorana modes localized
on edges on bottom and top surface, respectively.
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FIG. 4. The profiles of zero-energy states in the vicinity of a
“full” vortex and the CMM in an “empty” vortex on the (001) surface
(a) and position-dependent local density of states between a “full”
and an “empty” vortices (b). ξ0 is the coherence length.

surface where there is no exchange field in Fig. 3(a). At the
core of a full vortex, there is a well-defined MZM with a
zero-bias peak in the local density of states. On the other
hand, the MZM is absent at the core of an empty vortex.
Despite the absence of MZM in the vortex core, the edges
of the top surface under exchange field show a large amount
of density of states that depict the presence of edge CMM. In
the Appendix A, we study the profile evolution of zero-energy
local density of states on the top surface with increasing mag-
netic fields, from which one can find that the localized MZM
gradually extends outside of the vortex and becomes localized
on the the edges of (001) surface.

IV. EXPERIMENTAL PREDICTION

According to angle resolved photoelectron spectroscopy
measurements of Fe(Te0.55Se0.45), the superconducting gap
for the surface states is about � = 1.5 meV and the chem-
ical potential (relative to the Dirac point) is about μ =
4.5 meV [22], resulting in a critical Iex,c = 4.7 meV. Our first-
principles calculation reveals that the average Zeeman field
for the surface states from an interstitial Fe impurity is of the
order of 10 meV (details are given in the Appendix C). This
suggests that interstitial Fe impurities in Fe(Te,Se) can create
hQAH regions.

Based on our results that have been well established by
both the effective theory and microscopic bulk model, a nat-
ural prediction is the existence of the domain wall CMM
between an empty vortex and a full vortex. Consider an
experimental setup shown in Fig. 1(c), in which two vor-
tices are located at the TSC and hQAH regions, respectively.
Figure 4(a) displays the spatial profiles of zero-energy states

in the vicinity of a full vortex (left) and an empty vortex
(right) and Fig. 4(b) shows the progression of the local density
of states (LDOS) as a tip marches from a full vortex to an
empty vortex. Experimentally, one can implement an STM
measurement of LDOS along the line connecting a full vortex
(indicating the TSC state) and an empty vortex (indicating
the hQAH state). As shown in Fig. 4(b), a zero-bias peak
is expected to occur in the intermediate region without any
vortex and can be attributed to the existence of the CMM at
the domain wall between the hQAH and TSC regions. This
chiral Majorana mode always possessing a zero-energy state is
distinct from a normal chiral mode and the energy spectrum is
related to the circumference of the region with Zeeman fields
(see the Appendix B). With a large thermal smearing in STM
measurements, the LDOS at the domain wall exhibits a broad
peak around zero energy. While the external magnetic field
cannot gap out the CMM, changing its magnitude will shift
the location of the CMM as the hQAH region expands while
the TSC region contracts or vice versa. The Zeeman gap dom-
inates in vortices of the hQAH regions with only including
surface states [Fig. 4(b)]. As there are additional bulk bands
in FeSeTe, normal vortex-core states can still appear in such
vortices.

V. CONCLUSION

To summarize, we reveal that interstitial Fe impurities can
create hQAH regions on the surface of FeSeTe, where vor-
tex MZMs are absent but CMM will occur at the boundary.
With increasing magnetic field, there will be increasing Fe
impurities with magnetic moments being aligned with the
external field. It will enlarge the size of magnetic domains and
increase the number of magnetic domains (hQAH). Therefore,
our theory naturally explains the experimental observation
that zero-bias peaks in some vortices are absent at a weak
magnetic field and the fraction of “full” vortices decreases
with increasing magnetic fields [27,28]. Our mechanism is
purely local, i.e., a vortex is “empty” because of its in-
tersecting the surface inside the hQAH domain rather than
the long-range MZM interaction effects. It has been known
that there should be the CMM localized at the domain wall
between regions with dominant superconducting gap and
regions with dominant exchange gap. Through an explicit
calculation on a minimalistic lattice model of topological
bands, we showed that MZM in the vortex core of topological
superconductor transforms into the domain wall CMM upon
an increase in the exchange field on the region supporting the
vortex.

Our proposal is distinct from an earlier proposal in
Ref. [29] that relies on pair-wise extinction of MZMs through
tunneling between vortices. In our proposal, the MZM re-
locates and extends to the domain wall CMM instead of
disappearing. A clear signature of the proposed mechanism
will be the existence of the domain wall CMM between
an “empty” vortex and a “full” vortex, which can be de-
tected through STM measurements along a line connecting
an “empty” vortex to a nearby “full” vortex. Note that the
proposed CMM is distinct from the recent report on the ev-
idence of 1D dispersing helical Majorana modes at the twin
boundaries of Fe(Te0.55Se0.45) [21], which is attributed to the
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FIG. 5. The profiles of Majorana mode for top (001) surface as a function of Iex (on a 17 × 17 × 16 lattice). �0 = 0.2 and μ = 0 are
adopted.

π junction formed across the crystalline domain wall. Given
the clear distinction between the domain wall and the vortex
core as shown in Fig. 4(b), our proposal suggests that the
CMM detection in Fe(Te0.55Se0.45) through the STM measure-
ment may be relatively easy compared to the recent transport
experiments [51,52]. Another prediction that should be easy
to check is that we anticipate the “full” vortices and “empty”
vortices to segregate as their segregation will represent the
regions dominated by TSC or by hQAH.
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APPENDIX A: EVOLUTION OF MAJORANA MODES
ON TOP (001) SURFACE

We include a Zeeman field on the (001) surface to in-
vestigate its effect the on Majorana states. With increasing
magnetic field, a topological phase transition on (001) surface
states will occur, as shown in Fig. 3 in the main text. If the

magnetic field is large enough (larger than
√

�2
0 + μ2), the

(001) surface becomes topologically trivial. As the other sides
surface states are topologically nontrivial, chiral Majorana
modes should occur. Figure 5 shows the profiles of Majorana
modes as a function of Zeeman field Iex. With increasing
Zeeman field, the localized Majorana mode at vortex core
gradually becomes extended and finally transforms into a
chiral Majorana mode (on a 17 × 17 × 16 lattice), as demon-
strated in Fig. 5.

APPENDIX B: VORTEX STATES IN THE
SUPERCONUTING 2D DIRAC SURFACE STATES

Now we consider the Dirac surface states on the surface of
a topological insulator in proximity to a superconductor with
an exchange field B. The corresponding BdG Hamiltonian
reads

Hs = vF τz(pxσx + pyσy) − μτz + Bσz + �(r, θ )τx =

⎛
⎜⎜⎝

−μ + B px − ipy �(r, θ ) 0
px + ipy −μ − B 0 �(r, θ )
�†(r, θ ) 0 μ + B −px + ipy

0 �†(r, θ ) −px − ipy μ − B

⎞
⎟⎟⎠, (B1)

where the basis is �p = (c†
p↑, c†

p↓, c−p↓,−c−p↑). Here τ and σ are Pauli matrices in Nambu and spin space and the gap function
�(r, θ ) = �0 f (r)einθ = �0 tanh r

ξ0
einθ (n is the vorticity of the vortex). With the above basis, the time reversal operation is T =

−iσyK and the particle-hole operation C = τyσyK. The above Hamiltonian satisfies T Hs(p)T −1 = Hs(−p) and CHs(p)C−1 =
−Hs(−p). In the real space, we use the substitution px,y → −i∂x,y and we have the following equations:

px − ipy = −i(∂x − i∂y) = −ie−iθ ∂r − e−iθ

r
∂θ , (B2)

px + ipy = −i(∂x + i∂y) = −ieiθ ∂r + eiθ

r
∂θ . (B3)

As there is a rotational symmetry, the angular momentum is conserved and we can express the above BdG equations as a set of
1D radial equations separated into angular momentum modes. In the following we consider the vortex with n = 1 and assume
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the trial wave function has the following form:

�(r, θ ) = eiνθ

√
r

⎛
⎜⎜⎝

ei π
4 u↑(r)

eiθ−i π
4 u↓(r)

e−iθ+i π
4 v↓(r)

e−i π
4 v↑(r)

⎞
⎟⎟⎠ = eiνθ− iθ

2 σz+i π
4 σz+ iθ

2 τz

√
r

⎛
⎜⎝

u↑(r)
u↓(r)
v↓(r)
v↑(r)

⎞
⎟⎠. (B4)

With the above trial wave function, the eigenequation is Hs(r, θ, ∂r, ∂θ )�(r, θ ) = E�(r, θ ) and the matrix form reads

⎛
⎜⎜⎝

−μ + B P− �(r, θ ) 0
P+ −μ − B 0 �(r, θ )

�†(r, θ ) 0 μ + B −P−
0 �†(r, θ ) −P+ μ − B

⎞
⎟⎟⎠eiνθ

√
r

⎛
⎜⎜⎝

ei π
4 u↑(r)

eiθ−i π
4 u↓(r)

e−iθ+i π
4 v↓(r)

e−i π
4 v↑(r)

⎞
⎟⎟⎠ = E

eiνθ

√
r

⎛
⎜⎜⎝

ei π
4 u↑(r)

eiθ−i π
4 u↓(r)

e−iθ+i π
4 v↓(r)

e−i π
4 v↑(r)

⎞
⎟⎟⎠, (B5)

where P− = −ie−iθ ∂r − e−iθ

r ∂θ and P+ = −ieiθ ∂r + eiθ

r ∂θ . From the above eigenvalue equation, we can get

(−μ + B)
u↑√

r
+ vF

(
−∂r − ν + 1

r

)
u↓√

r
+ �0 f (r)

v↓√
r

= E
u↑√

r
, (B6)

vF

(
∂r − ν

r

) u↑√
r

− (μ + B)
u↓√

r
+ �0 f (r)

v↑√
r

= E
u↓√

r
, (B7)

�0 f (r)
u↑√

r
+ (μ + B)

v↓√
r

+ vF

(
∂r + ν

r

) v↑√
r

= E
v↓√

r
, (B8)

�0 f (r)
u↓√

r
− vF

(
∂r − ν − 1

r

)
v↓√

r
+ (μ − B)

v↑√
r

= E
v↑√

r
. (B9)

Now the radial equations can be further written as

⎛
⎜⎜⎝

−μ + B vF
( − ∂r − ν+1

r

)
�0 f (r) 0

vF
(
∂r − ν

r

) −μ − B 0 �0 f (r)
�0 f (r) 0 μ + B vF

(
∂r + ν

r

)
0 �0 f (r) −vF

(
∂r − ν−1

r

)
μ − B

⎞
⎟⎟⎠ 1√

r

⎛
⎜⎝

u↑(r)
u↓(r)
v↓(r)
v↑(r)

⎞
⎟⎠ = E

1√
r

⎛
⎜⎝

u↑(r)
u↓(r)
v↓(r)
v↑(r)

⎞
⎟⎠. (B10)

Here we notice that the Hamiltonian matrix is not symmetric. For a Majorana state, its antiparticle is itself and the corresponding
wave function should satisfy C� ∝ �, which leads to ν = 0.

We define ρ = r
ξ0

= r
h̄vF /�0

and follow the above definition by setting h̄ = 1 and we further have d
dr = �0

vF

d
dρ

and d
dr

h√
r

=
∂r h√

r
− 1

2r
h√
r
. Therefore, the eigenfunction can be further written as

⎛
⎜⎜⎜⎜⎜⎝

−μ̄ + B̄ −∂ρ − ν+ 1
2

ρ
f (ρ) 0

∂ρ − ν+ 1
2

ρ
−μ̄ − B̄ 0 f (ρ)

f (ρ) 0 μ̄ + B̄ ∂ρ + ν− 1
2

ρ

0 f (ρ) −∂ρ + ν− 1
2

ρ
μ̄ − B̄

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

u↑(ρ)
u↓(ρ)
v↓(ρ)
v↑(ρ)

⎞
⎟⎠ = Ē

⎛
⎜⎝

u↑(ρ)
u↓(ρ)
v↓(ρ)
v↑(ρ)

⎞
⎟⎠, (B11)

with μ̄ = μ/�0, B̄ = B/�0 and Ē = E/�0.
When discretizing a Dirac equation on a lattice one encounters the problem of fermion doubling. One standard approach is to

use a forward-backward difference scheme for approximating the partial derivatives in the above equations [53–55]:

∂ρu↓ ≈ u↓(ρ + h) − u↓(ρ)

h
(u↓ → v↓), (B12)

∂ρu↑ ≈ u↑(ρ) − u↑(ρ − h)

h
(u↑ → v↑), (B13)
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with h being the discretization step. Here we use the same differential form for uσ and vσ to preserve the particle-hole symmetry.
With discretization on 1D radial geometry with radius R, the above equation can be written as⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ̄ + B̄ 1
h − ν+ 1

2
ρ j

f (ρ j ) 0 0 − 1
h 0 0 · · ·

1
h − ν+ 1

2
ρ j

−μ̄ − B̄ 0 f (ρ j ) 0 0 0 0 · · ·
f (ρ j ) 0 μ̄ + B̄ 1

h + ν− 1
2

ρ j
0 0 0 0 · · ·

0 f (ρ j ) 1
h + ν− 1

2
ρ j

μ̄ − B̄ 0 0 − 1
h 0 · · ·

0 0 0 0 −μ̄ + B̄ 1
h − ν+ 1

2
ρ j+1

f (ρ j+1) 0 · · ·
− 1

h 0 0 0 1
h − ν+ 1

2
ρ j+1

−μ̄ − B̄ 0 f (ρ j+1) · · ·
0 0 0 − 1

h f (ρ j+1) 0 μ̄ + B̄ 1
h + ν− 1

2
ρ j+1

· · ·
0 0 0 0 0 f (ρ j+1) 1

h + ν− 1
2

ρ j+1
μ̄ − B̄ · · ·

...
...

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u↑(ρ j )
u↓(ρ j )
v↓(ρ j )
v↑(ρ j )

u↑(ρ j+1)
u↓(ρ j+1)
v↓(ρ j+1)
v↑(ρ j+1)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Ē

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u↑(ρ j )
u↓(ρ j )
v↓(ρ j )
v↑(ρ j )

u↑(ρ j+1)
u↓(ρ j+1)
v↓(ρ j+1)
v↑(ρ j+1)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B14)

The above matrix has a general form as⎛
⎜⎜⎝

H00(ρ j ) H01 0 0 · · ·
H†

01 H00(ρ j+1) H01 0 · · ·
0 H†

01 H00(ρ j+2) H01 · · ·
...

...
...

...
...

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ψ (ρ j )
ψ (ρ j+1)
ψ (ρ j+2)

...

⎞
⎟⎟⎠ = Ē

⎛
⎜⎜⎝

ψ (ρ j )
ψ (ρ j+1)
ψ (ρ j+2)

...

⎞
⎟⎟⎠, (B15)

H00(ρ j ) =

⎛
⎜⎜⎜⎜⎜⎝

−μ̄ + B̄ 1
h − ν+ 1

2
ρ j

f (ρ j ) 0
1
h − ν+ 1

2
ρ j

−μ̄ − B̄ 0 f (ρ j )

f (ρ j ) 0 μ̄ + B̄ 1
h + ν− 1

2
ρ j

0 f (ρ j ) 1
h + ν− 1

2
ρ j

μ̄ − B̄

⎞
⎟⎟⎟⎟⎟⎠, (B16)

H01 =

⎛
⎜⎜⎝

0 − 1
h 0 0

0 0 0 0
0 0 0 0
0 0 − 1

h 0

⎞
⎟⎟⎠, (B17)

where h = R−Rmin
N−1 and ρ j = Rmin + ( j − 1)h with j = 1, 2, ..., N . In the calculations, we adopt Rmin = 0.01, N = 1001, and

R = 50. For the calculations of CMMs, the Zeeman field is assumed to be

B(r) =
{

B0 r � R0,

0 r > R0,
(B18)

with B0 = 2.2 >

√
μ2 + �2

0. After solving the eigenvalue equation, we calculate the local density of states (LDOS) to simulate
the tunneling conductance measured by STM using,

dI

dV
(r, E ) ∝ LDOS(r, E ) = 1

r

∑
νnσ

[∣∣uν
nσ (r)

∣∣2
δ
(
E − E ν

n

) + ∣∣vν
nσ (r)

∣∣2
δ
(
E + E ν

n

)]
. (B19)

The spectrum of a vortex in the superconducting Dirac state is
displayed in Fig. 6(a). We discard the artificial CMM localized
at the outer boundary of the disk. The pink circles denote

the bound states inside the vortex and the zero-energy state
is the Majorana mode. With including a Zeeman filed B for
|r| � R0 = 5 region, the spectrum is displayed in Fig. 6(b)

013066-7
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FIG. 6. Energy spectra for a vortex in the superconducting Dirac surface states: (a) B = 0, B(r) = B0	(R0 − r) (b) R0 = 5 and (c) R0 = 3.
The adopted chemical potential μ = 1 and �(r) = �0 tanh r

ξ0
with �0 = 1 and ξ0 = 1. The profiles of MZMs as a function of Zeeman field

along the z direction.

and the local Majorana mode of the vortex transforms into
a CMM (orange circles) localized at the domain wall. The
energy quantum of the CMM is proportional to 1

L with L being
the circumference of the region with exchange field, as shown
in Fig. 6(c).

APPENDIX C: ESTIMATION OF AVERAGE ZEEMAN
SPLITTING FROM INTERSTITIAL FE IMPURITIES

About the interstitial iron impurity in Fe(Te,Se), neutron
scattering measurements suggest that an interstitial Fe can
induce a magnetic Friedel-like oscillation and involves >50
neighboring Fe sites [38]. Therefore, an interstitial Fe im-
purity can form a ferromagnetic domain and the magnetic
moment of the interstitial Fe is larger than 2 μB. We per-
formed first-principles calculations to estimate the Zeeman
splitting from interstitial Fe impurities. We adopted a 6 ×
6 FeTe0.5Se0.5 supercell and put an interstitial Fe impurity in
the center. The initial magnetic configuration is taken from

Ref. [38] and is stabilized in the self-consistent calculations,
suggesting that an interstitial Fe impurity can indeed induce
a magnetic Friedel-like oscillation. The magnetic moment
of the interstitial Fe impurity is about 2.5 μB. The mag-
netic moments of the nearest-neighbor (NN), second NN and
third NN Fe sites are 1.9, −2.0 and 2.0 μB, respectively.
The Zeeman splitting of dxz/yz orbitals on the NN Fe site
is about 200 meV. According to our calculations, the av-
erage magnetic moment for this cluster is 0.35 μB per Fe
site. Therefore, the Zeeman splitting parameter for the bulk
topological bands Bex is about 18 meV. The corresponding
Zeeman splitting parameter for the surface states in Fe(Te,Se)
depends on the details of their wave functions and can be rea-
sonably estimated to be Iex = αBex. Assuming that α > 0.5,
Iex is of the order of 10 meV and this value is greater than
the critical value Iex,c = 4.7 meV provided in the main text.
Therefore, interstitial Fe impurities in Fe(Te,Se) can create
magnetic domains and further induce hQAH regions on the
surface.
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