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Tests of nematic-mediated superconductivity applied to Ba1−xSrxNi2As2
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In many unconventional superconductors, nematic quantum fluctuations are strongest where the critical
temperature is highest, inviting the conjecture that nematicity plays an important role in the pairing mechanism.
Recently, Ba1−xSrxNi2As2 has been identified as a tunable nematic system that provides an ideal testing ground
for this proposition. We therefore propose several sharp empirical tests, supported by quantitative calculations
in a simple model of Ba1−xSrxNi2As2. The most stringent predictions concern experiments under uniaxial
strain, which has recently emerged as a powerful tuning parameter in the study of correlated materials. Since
uniaxial strain so precisely targets nematic fluctuations, such experiments may provide compelling evidence for
nematic-mediated pairing, analogous to the isotope effect in conventional superconductors.
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I. INTRODUCTION

Considerable debate remains regarding the pairing mech-
anisms of most unconventional superconductors. Many hy-
pothesize that fluctuations of some order parameter(s), such as
magnetism, mediate the bulk of the pairing interaction. These
hypotheses are plausible, in part, because the superconducting
region of the phase diagram is often close to various other
forms of long-range order. A ubiquitous form of such order is
nematicity, which breaks the discrete point group symmetry of
the crystal lattice. Theoretical studies have established, in the
abstract, that nematic fluctuations promote superconductivity
[1–13], but their relevance to the superconductivity of any
given material is difficult to assess. There is thus a need for
distinctive and testable predictions based on the hypothesis of
nematic-mediated pairing.

In addition to concrete predictions, testing the hypothesis
requires sufficiently simple material systems, preferably ones
with tunable nematic fluctuations. For instance, while the
Fe-based superconductors exhibit ubiquitous [14] and tunable
nematic fluctuations, these are (with rare exceptions [15,16])
accompanied by the confounding factor of a nearby magnetic
phase.

Happily, recent experiments have identified a tunable,
nonmagnetic model system in the Ba1−xSrxNi2As2 series
[17–20]. The nematic susceptibility in the B1g channel1 (mea-
sured by elastoresistance) grows as the Sr concentration x
is reduced from 1.0 to 0.7, from below the noise floor to

*Corresponding author: samuellederer@gmail.com
1We here use the crystallographic two-Ni unit cell. Note that the

channel of strong nematic fluctuations in iron-based superconductors
is B2g in this nomenclature.
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a large (dimensionless) value of nearly 20. Meanwhile, the
superconducting critical temperature, Tc, rises dramatically,
from 0.6 to 3.5K. The typical determining factors of Tc in
BCS superconductors—the Debye frequency and the density
of states—vary negligibly in this range of x, leading the
authors of Ref. [20] to suggest that nematic fluctuations are
responsible for the enhancement.

Here, we examine the influence of nematic fluctuations
on various superconducting properties, based on both general
considerations and explicit calculations for a simple model
of the Ba1−xSrxNi2As2 system, for 0.7 < x < 1.0. One set of
predictions follows from anisotropy (momentum dependence)
of the superconducting gap, which nematic fluctuations pro-
mote by virtue of their anisotropic coupling to electrons.
The other set concerns the effects of uniaxial strain, which
explicitly breaks lattice rotation symmetry and reduces the
strength of nematic fluctuations. Both sets of predictions are
essentially general, but those regarding strain are sharper, may
apply to a broader variety of materials, and are particularly
timely in light of the increasing use of strain as an experimen-
tal tuning parameter [21].

II. GENERAL CONSIDERATIONS

The influence of nematic fluctuations on superconductivity
can be comprehensively analyzed within a weak coupling
framework except asymptotically close to a nematic quantum
critical point [5]. Since there is no indication of a zero-
temperature divergence of the nematic susceptibility in the
x − T phase diagram of Ba1−xSrxNi2As2 [20], the weak cou-
pling approach may give qualitatively correct results in the
entire doping range under consideration. For our purposes,
the main results are that nematic fluctuations (1) enhance Tc,
potentially by a large amount, as shown in Fig. 1; (2) promote
a characteristic anisotropy of the superconducting gap, whose
consequences are shown in Figs. 2 and 3; and (3) dramatically
enhance the influence of uniaxial strain on superconductivity,
as shown in Fig. 4. In this section, we summarize some key
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FIG. 1. Tc vs doping: The pairing eigenvalue λ (in blue) grows
only modestly as strontium concentration x is reduced from 1.0
to the critical doping of 0.7 (where the triclinic phase onsets). By
contrast, Tc (in red) grows dramatically. This difference follows from
the essential singularity of Tc in the limit λ → 0 [Eq. (3)]. The
parameters used in the explicit calculations are given below Eq. (6).
Both the extent of Tc enhancement and the shape of the Tc(x) curve
are sensitive to the choice of λ0, so these results should be understood
only qualitatively when compared with experimental results.

results of the weak coupling approach of Ref. [5], to which
we refer the reader for further details.

Consider, for simplicity, a weak coupling s-wave supercon-
ductor with density of states ρ0 at the Fermi level. Assume
the superconductivity is due to a momentum-independent
attractive interaction of strength V0 operating at frequency
�0 (this would be the Debye frequency for conventional
phonon-mediated attraction). Then the gap and Tc are both
of order �0 exp(−1/λ0), where λ0 = ρ0V0 is the pairing
eigenvalue.

Now weakly couple the system to a separate nematic mode
with a long correlation length ξ . The nematic fluctuations
mediate an attractive interaction V (ind)

k,p that is dominated by
forward scattering, since the interaction is negligible for
momentum transfer greater than ξ−1. Accordingly, as ξ in-
creases, V (ind)

k,p becomes nearly diagonal in momentum and can
be approximated by a δ function:

V (ind)
k,p ≈ −h(k)δ(k − p). (1)

Here h(k) � 0 is a coupling function governed by the
symmetry of the nematic order parameter, and we will take
an explicit form in the next section; h increases as the strength
of nematic fluctuations increases. Because V (ind)

k,p is diagonal
in momentum, it is simple to compute its pairing eigenval-
ues. The largest is λind = max[h(k)/vF (k)], where vF (k) is
the Fermi velocity and the maximum is computed for k on
the Fermi surface. We assume that λind � λ0, so that the
“bare” attraction is still the dominant part of the pairing
interaction.2

2The opposite case λind � λ0 can also be analyzed straightfor-
wardly. We ignore the effect of retardation, namely that V ind operates
at a lower frequency scale than V0. This effect can easily be incorpo-
rated, but in weak coupling is parametrically less important than the
pairing eigenvalue effects considered here.
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FIG. 2. Density of states ρ (approximately proportional to tun-
neling conductance) vs energy V at selected values of doping for the
parameters of Fig. 1. ρ is measured in units of its normal state value
ρ0. Gap anisotropy increases as x is reduced and nematic fluctuations
increase. The anisotropy splits the peaks in the density of states,
which occur at local maxima of the gap. Slight broadening has been
applied for visual clarity.

With these assumptions, the changes in Tc and the gap
function can be computed using perturbation theory in V (ind),
applied to the linearized gap equation. The new pairing eigen-
value is λ = λ0 + δλ, where

δλ =
(∮

dk‖
v2

F (k‖)
h(k‖)

)(∮
dk‖

vF (k‖)

)−1

, (2)

with the integrals over the Fermi surface. The pairing eigen-
value has been increased by a suitably weighted average of the
coupling function, but by a small amount δλ < λ(ind) � λ0. Tc

has also been increased:

Tc

Tc,0
= exp

[
1

λ0
− 1

λ0 + δλ

]

≈ exp

[
δλ

λ2
0

+ O

(
δλ2

λ3
0

)]
. (3)

Note that the enhancement of Tc can be large despite the fact
that δλ/λ0 is small, provided δλ � λ2

0. The new gap function
can also be computed in perturbation theory. To leading order,

�(k)

�max
≈ 1 +

(
1

λ0

)(
h(k)

vF (k)
−

[
h(k)

vF (k)

]
max

)
. (4)

The gap function is now anisotropic, with the pattern of
anisotropy determined by the band structure and h(k), which
is in turn governed by the symmetry of the nematic order
parameter.

III. MODEL AND NUMERICAL RESULTS

Here we consider an effective model for the physics
of Ba1−xSrxNi2As2. In the absence of nematic fluctuations,
the model comprises a fermion band structure and a weak
attractive interaction, giving rise to conventional BCS su-
perconductivity. We then couple the fermions to a nematic
bosonic mode φ in a symmetry-appropriate way and specify
the “bare” fluctuation spectrum of φ. Explicit calculations
are performed using the perturbative renormalization group
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FIG. 3. Variation of the fractional specific heat jump and the
gap to Tc ratio with doping [the parameters used in the calculations
are given below Eq. (6)]. The blue and red dotted lines show the
conventional BCS values attained at x = 1.0. These quantities are
computed from formulas derived in Appendix A.

approach of Ref. [5]. We model the low-energy band structure
(as measured in angle-resolved photoemission [22]) with four
cylindrical sheets, two centered at the M point and of radius
k1 and one each at the X and Y points with radius k2 < k1.
We assume parabolic dispersion with masses m1,2. Before
coupling to nematic fluctuations, we take the interaction be-
tween fermions to be a momentum-independent attraction of
strength V0 > 0, so that there is BCS superconductivity with
Tc and gap proportional to exp(−1/λ0), where λ0 ∝ (m1 +
m2)V0 is the unperturbed eigenvalue. We couple the fermions
to the nematic mode φ with the term

Sint = α

∫
dτdqdk[ f (k)φqψ̄k+q/2ψk−q/2], (5)

where spin and band indices are implicit. The form factor
f (k) ≡ sin(kxa) sin(kya) (where a is the in-plane lattice con-
stant) specifies the the fermion bilinear to which φ couples, in
this case an anisotropic next-nearest-neighbor hopping. The
precise form of f (k) depends on microscopic details but must
respect the B1g symmetry of the nematic fluctuations. Since
f (k) must vanish at the high symmetry points X,Y, M, it
is natural that the smaller pockets at X and Y have overall
weaker coupling than the larger pocket at M.

We assume a mean-field form of D(q), the static correlation
function of φ:

D(q) = χ0

1 + ξ 2q2
(� − |q|). (6)

Here χ0 is the thermodynamic nematic susceptibility, ξ is the
correlation length, and we have introduced a hard momentum
cutoff � satisfying ξ−1 � � � k1, k2. We will tune the
strength of nematic fluctuations by tuning ξ and χ0, which are
related by χ0 ∼ ξ 2. Both ξ and χ0 will increase as strontium
concentration x is decreased from 1.0 to 0.7 (i.e., as nematic
correlations grow in strength). For explicitness, we take χ0

to equal the (linearly interpolated) nematic susceptibility
measured by elastoresistance [20]: χ0(x) ≈ χ0,max(1 − x),
valid for 0.7 � x � 1, where χ0,max = 72. In the explicit
calculations, we have assumed three-dimensional nematic
fluctuations and used the following parameters: λ0 = 0.1,
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FIG. 4. Strain sensitivity vs doping: Tc varies quadratically with
applied B1g strain ε, but with a coefficient whose magnitude grows
vastly with the strength of nematic fluctuations. The strength of the
nematic-mediated interaction is proportional to the ratio of suscep-
tibility χ0 to a power of the correlation length ξ [Eq. (9)]. Both of
these decrease with strain, so their ratio (and therefore Tc) can either
increase or decrease, as shown respectively in the blue and red curves
above. Parameters are as shown, with others as in Fig. 1.

g = 4.4, k1 = π/2, k2 = π/4, m1 = m2 = 1, χ0 = 0.1ξ 2, and
� = π/6.

Integrating out the boson, we obtain a four-fermion
interaction

V (ind)
k,p = −α2

4
f 2

(
k + p

2

)
D(k − p) (7)

For �ξ � 1, D(q) is sharply peaked at q = 0 and so can be
approximated by a δ function of weight W ≡ ∫

dd−1qD(q),
where the integral is over the Fermi surface. W depends on the
dimensionality of the nematic fluctuations, so we treat both
the two- and three-dimensional cases.3

Making these approximations, the full pairing interaction
is Vk,p = −V0 + V (ind)

k,p , or

Vk,p ≈ −V0 − α2

4
W f 2(k)δ(k − p)

≈ −V0

(
1 + gf 2(k)

[
δ(k − p)

a

])
, (8)

where g ≡ πχ0α
2a2−d

4V0

(
a

ξ

)d−1

. (9)

Here the dimensionless coupling constant g sets the scale
of fractional changes to the pairing eigenvalue. In d = 3, g
also contains a factor log[1 + (�ξ )2].

We discretize the Fermi surface and numerically diago-
nalize the linearized gap equation, yielding the maximum
pairing eigenvalue λ and therefore Tc, both shown in Fig. 1.
More details are given in Appendix A. Note that, in these

3Even in a system whose electronic structure is highly two dimen-
sional, nematic fluctuations may be rendered three dimensional by
coupling to the lattice. However, the coupling to acoustic phonons
introduces long-range interactions that qualitatively alter the low-
energy physics [23–26], a complexity we ignore here for simplicity.
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calculations, we have used the full momentum dependence
of the nematic propagator [Eq. (6)], rather than approximat-
ing it by a δ function [as in Eq. (8)].4 The corresponding
eigenfunction is the pair wave function, which is increasingly
anisotropic as nematic fluctuations grow with decreasing x, as
illustrated by Eq. (4). This anisotropy can be experimentally
identified by the splitting of peaks in the density of states,
which occur at local maxima in the gap. The density of
states for selected values of x is shown in Fig. 2 and can
be measured by tunneling spectroscopy in either planar or
scanning geometries. The gap anisotropy is also indirectly
measurable in the ratio of the zero-temperature gap maximum
to Tc, and in the fractional specific heat jump at Tc, as shown
in Fig. 3. The gap to Tc ratio increases, while the specific heat
jump decreases.5

IV. EFFECTS OF B1g STRAIN

When nematic fluctuations are strong, the system is highly
susceptible to the influence of a symmetry-breaking field such
as uniaxial strain. The effect of such strain on Tc becomes
increasingly dramatic at large χ0 but whether strain increases
or decreases Tc depends on microscopic details. Strain also
has two qualitatively distinct effects on Tc: (1) It alters the
band structure, leading to changes in Tc, as in Eq. (10) below;
and (2) it cuts off nematic fluctuations and alters the pairing
interaction, as shown in Eqs. (11) and (12).

Let strain couple to φ with coupling constant κ . At weak
strain, φ acquires an expectation value 〈φ〉 ≈ χ0(κε), with
χ0 the thermodynamic nematic susceptibility as previously
defined. Therefore, any physical quantity with B1g symmetry
takes on a value proportional to ε. In particular, the band struc-
ture acquires a (fractional) anisotropy of order αχ0κε/EF ,
where α is an O(1) coefficient. Such band structure effects
alter any quantity that is nonzero at ε = 0, such as the density
of states—and therefore Tc—by an amount proportional to the
square of this anisotropy (linear variation is forbidden since
such quantities are even under ε → −ε).6 In particular, this
effect changes Tc by

(δTc)band

Tc
∝

(
1

λ0

)(
ακ

EF

)2

χ2
0 ε2, (10)

where the proportionality constant is a dimensionless number
of order 1, whose magnitude and sign depend on microscopic
details.

The application of strain alters not only the band struc-
ture but also the interactions. This is because strain cuts

4The latter approximation is accurate near the critical point, since
typical momentum scale over which the gap function varies is
asymptotically larger than ξ−1. See Ref. [5].

5Though not obvious from the figure, the change in specific heat
is parametrically smaller (in the weak coupling limit) than the other
effects of the induced gap anisotropy, going as δλ2 instead of δλ, as
discussed in Appendix A.

6The discussion in this section is largely general, but here we
specialize to the case of a single-component order parameter. Multi-
component order parameters (for instance, the degenerate dxz and dyz

in a tetragonal system) permit a Tc which varies as |ε|.

off nematic fluctuations, reducing the susceptibility χ0 and
the correlation length ξ by amounts proportional to ε2. As
the (zero strain) χ0 increases, the coefficient of ε2 diverges
as χ

yε

0 , where yε ≡ 2 + 2β/γ = {2.26 in d = 2, 3 in d = 3}
and β, γ are the order parameter and susceptibility exponents,
respectively. See Appendix B for a derivation. Note that
yε > 2, so these effects are parametrically stronger than the
band structure effects described in Eq. (10). Accordingly, the
correlation length and susceptibility vary as

δχ0

χ0
≈ −(bχuκ2)χ yε

0 ε2,
δξ

ξ
≈ −(bξ uκ2)χ yε

0 ε2. (11)

Here u > 0 is a dimensionful scale related to the self-
interaction of φ (for instance, the quartic term in Landau
theory, as discussed in Appendix B), and bχ,ξ are dimension-
less quantities. None of these quantities are specified by our
model, but they are all positive since the symmetry-breaking
field ε cuts off nematic fluctuations.

Per (8), the relative strength g of the nematic-mediated
interaction varies as the ratio of χ0 to ξ d−1. Accordingly, g
(and therefore Tc) can either increase or decrease, since both
χ0 and ξ decrease with ε. The change in Tc is derived in
Appendix C. Up to logs,

(δTc)fluc

Tc
∝ +

(
[d − 1]bξ − bχ

λ0
guκ2

)
χ

yε

0 ε2, (12)

so that this effect increases (decreases) Tc for [d − 1]bξ > bχ

([d − 1]bξ < bχ ). We show in Fig. 4 the second derivative of
Tc with respect to ε, normalized by its value at ε = 0. Though
the sign depends on microscopic details, the magnitude grows
dramatically with decreasing x, much more so than the pairing
eigenvalue (Fig. 1) or the gap anisotropy (Figs. 2 and 3).

V. DISCUSSION

We have shown that even weak coupling of the electrons
near the Fermi surface to nematic fluctuations can explain
the observed increase in the Tc of Ba1−xSrxNi2As2 as x is
reduced from 1.0 to 0.7. If this explanation is correct, there are
a number of experimental consequences, as calculated above.
In brief, (1) nematic fluctuations promote gap anisotropy,
whose signatures are observable in tunneling conductance,
specific heat, and the gap to Tc ratio, among others; (2)
uniaxial strain substantially affects Tc and other superconduct-
ing properties, by altering both the band structure and the
strength of the nematic-mediated interaction. The predictions
regarding strain are asymptotically stronger effects than those
regarding gap anisotropy, which could itself have explanations
unrelated to nematic fluctuations. We therefore consider strain
experiments to be the sharpest tests of the hypothesis of
nematic-mediated pairing.

That said, it is intrinsically difficult to empirically establish
a pairing mechanism based on the exchange of electronic
fluctuations. In part, this is a matter of principle: Unlike the
phonons of BCS theory, the electronic fluctuations considered
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are generally not well-defined normal modes,7 so it is not clear
what it means for electrons to exchange them. But an even
greater difficulty is that most forms of electronic fluctuations
do not admit a simple tuning parameter to establish their
relevance, as the isotope effect establishes the relevance of
phonons. However, breaking the symmetry corresponding to
a nearly ordered mode is essentially guaranteed to affect
it much more than other aspects of the physics. As such,
strain experiments to assess nematic-mediated pairing provide
perhaps the most tightly controlled evaluations to date of
(nonphonon) fluctuation-mediated pairing.

We close with a brief speculation regarding normal-state
properties. We have not computed these properties directly,
but the symmetry of the nematic order parameter essentially
guarantees substantial anisotropy [27] of single-particle prop-
erties measurable in photoemission, such as the effective
mass and the linewidth. Such anisotropy is indeed found in
numerical simulations of simple models for nematic quantum
criticality [9]. The strength of this anisotropy should show
substantial dependence on the nematic fluctuation strength
χ0. We eagerly await further investigations of the normal and
superconducting state of this exciting material.

Note added. Recently, Ref. [28] appeared, where a dramatic
increase in ∂2Tc/∂ε2 was reported in Ba(Fe1−xCox )2As2 for
doping levels near the putative nematic quantum critical point.
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APPENDIX A: 2�0/Tc AND �C/C FOR AN ANISOTROPIC
GAP FUNCTION

Our basic tool will be the BCS gap equation for a singlet
superconductor:

�k =
∫

dd pVk,p
�p

2Ep
tanh

[
Ep

2T

]
, (A1)

where V is −1 times the (attractive) pairing interaction in the

Cooper channel, assumed to be weak, and Ep ≡
√

ε2
p + |�p|2

with εp being the single-particle dispersion. We assume that
Vk,p is zero unless |εk|, |εp| < �, where � is some cutoff
much smaller than UV scales such as EF and is the analog of
the Debye frequency. We also assume that, besides this cutoff,
there is no dependence of Vk,p on the components of k and p
perpendicular to the Fermi surface.

7Order parameter fluctuations are well defined near a quantum
critical point at which they order. This is essentially the scenario
considered here, since we assume large χ0.

1. Critical temperature Tc

At Tc, �k = 0 and we can linearize the gap equation to
determine Tc as well as the pair wave function:

�k =
∫

dd pVk,p
�p

2εp
tanh

[
εp

2Tc

]
. (A2)

We first integrate over p⊥, the component of momentum
perpendicular to the Fermi surface:

�k =
∫

dd−1 p‖Vk,p�p

∫
d p⊥
2εp

tanh

[
εp

2Tc

]

=
∫

dd−1 p‖
vF (p)

Vk,p�p

∫ �

0

dε

ε
tanh

[
ε

2Tc

]

=
∫

dd−1 p‖
vF (p)

Vk,p�p

∫ �/Tc

0

dx

x
tanh

[ x

2

]

≈ log

[
1.134�

Tc

] ∫
dd−1 p‖
vF (p)

Vk,p�p, (A3)

where by vF (p) we mean the norm of the Fermi velocity, and
in the final line the approximation becomes exact in the limit
�/Tc → ∞. We now rewrite the above, defining the pair wave
function φk ∝ �k/

√
vF (k)

φk = log

[
1.134�

Tc

] ∫
dd−1 p‖�k,pφp, where (A4)

�k,p ≡ Vk,p√
vF (k)vF (p)

. (A5)

�k,p is a Hermitian matrix and therefore has real eigenvalues.
Now let φk be the eigenfunction of � with largest eigenvalue
λ:

φk ≈ log

[
1.134�

Tc

]
λφk , so

Tc ≈1.134� × exp

[
−1

λ

]
. (A6)

Unless �k,p has unusual structure, the splitting between its
largest eigenvalue λ and smaller ones will be of order λ.
Therefore, the effective Tc of other channels will be exponen-
tially smaller than the Tc of the optimal channel, and the gap
function at all temperatures will be determined by φk . From
now on, we will assume that φk is normalized and that the
other pairing channels of �k,p can be neglected:∫

dd−1 p‖|φp|2 = 1,

�k,p ≈ λφkφ
∗
p. (A7)

2. Zero-temperature gap function

At temperature T , the gap function will be given by
�0(T ) f (k), for some real �0(T ) and a dimensionless func-
tion f (k) determined by the pair wave function. Explicitly,

f (k) = φk

√
vF (k)/α,

φk = α
f (k)√
vF (k)

,
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∫
dd−1k‖|φk|2 = 1 = α2

∫
dd−1k‖
vF (k)

| f (k)|2,

α2 =
(∫

dd−1k‖
vF (k)

| f (k)|2
)−1

. (A8)

At zero temperature, the tanh in the gap equation is equal to 1
and we can write

�0 f (k) = �0

∫
dd pVk,p

f (p)

2Ep
. (A9)

As before, we proceed to integrate over p⊥:

f (k) =
∫

dd−1 p‖
vF (p)

Vk,p f (p)
∫ �

0
dε

1√
ε2 + |�p|2

=
∫

dd−1 p‖
vF (p)

Vk,p f (p)
∫ �/|�p|

0

dx√
x2 + 1

=
∫

dd−1 p‖
vF (p)

Vk,p f (p) sinh−1

[
�

|�p|
]

≈
∫

dd−1 p‖
vF (p)

[
�k,p

√
vF (k)vF (p) f (p)

×
(

log

[
2�

�0

]
− log[| f (p)|]

)]
, (A10)

where the approximation in the final line is exact in the weak
coupling limit �/�0 → ∞, and we have used the definition
of � for convenience. With some rewriting,

f (k)√
vF (k)

≈
∫

dd−1 p‖�k,p
f (p)√
vF (p)

(
log

[
2�

�0

]
− log[| f (p)|]

)
.

(A11)

Now we rewrite � using Eq. (A7):

�k,p ≈ λφkφ
∗
p = λ

α f (k)√
vF (k)

α f ∗(p)√
vF (p)

, (A12)

and substitute this equation into the previous one:

f (k)√
vF (k)

≈ λα2
∫

dd−1 p‖
f (k)√
vF (k)

f ∗(p)√
vF (p)

f (p)√
vF (p)

×
(

log

[
2�

�0

]
− log[| f (p)|]

)
. (A13)

Now we can divide the equation by the quantity on the left,
and use the expression for α of Eq. (A8):

1 ≈ λ

(∫
dd−1k‖
vF (k)

| f (k)|2
)−1 ∫

dd−1 p‖
vF (p)

| f (p)|2

×
(

log

[
2�

�0

]
− log | f (p)|

)

= λ

(
log

[
2�

�0

]
− 〈| f |2 log | f |〉FS

〈| f |2〉FS

)
, (A14)

where the angle brackets indicate a Fermi surface average
weighted by the density of states:

〈h〉FS ≡
∫ dd−1 p‖

vF (p) h(p)∫ dd−1 p‖
vF (p)

. (A15)

Now we can solve for �0:

�0 = 2� exp

[
−1

λ
− 〈| f |2 log | f |〉FS

〈| f |2〉FS

]
. (A16)

As expected, �0 ∝ Tc, and

2�0

Tc
≈ 3.527 exp

[
−〈| f |2 log | f |〉FS

〈| f |2〉FS

]
. (A17)

For the case f (k) = 1, the bracketed exponent is zero, and we
recover the standard BCS result.

3. Temperature dependence of gap near Tc

Near Tc, the gap magnitude has a mean-field temperature
dependence proportional to

√
Tc − T . We now derive the

prefactor, which, like 2�0/Tc, will depend on the momentum
space structure of �k ≡ �0 f (k):

�k =
∫

dd pVk,p
�p

2Ep
tanh

[
Ep

2T

]
,

f (k) =
∫

dd pVk,p
f (p)

2Ep
tanh

[
Ep

2T

]
. (A18)

We now differentiate both sides with respect to temperature.
It is convenient to introduce x ≡ Ep/(2T ):

0 =
∫

dd pVk,p f (p)

[
∂Ep

(
1

2Ep
tanh

[
Ep

2T

])
(∂T Ep)

+ 1

2Ep
∂x tanh(x)(∂T x)

]
. (A19)

Now we rearrange, and use ∂T x = −Ep/(2T 2), ∂T Ep =
(∂T E2

p )/(2Ep) = (∂T |�p|2)/(2Ep):

∫
dd pVk,p f (p)

[
1

4T 2
∂x tanh(x)

]
=

∫
dd pVk,p f (p)

{
1

2Ep
∂Ep

(
1

2Ep
tanh

[
Ep

2T

])}
∂T |�p|2

=∂T
(
�2

0

) ∫
dd pVk,p f (p)| f (p)|2

{
1

2Ep
∂Ep

(
1

2Ep
tanh

[
Ep

2T

])}
(A20)
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We can now evaluate ∂T (�2
0) at Tc by taking the ratio of the left to the right integrals. At Tc, Ep becomes |εp| and we can do the

p⊥ integrals. First on the left side,∫
d p⊥

[
1

4T 2
∂x tanh(x)

]
= 1

2T vF

∫
dx∂x tanh(x) = 1

T vF
tanh

[
�

2T

]
≈ 1

T vF
. (A21)

For the right side, ∫
d p⊥

{
1

2Ep
∂Ep

(
1

2Ep
tanh

[
Ep

2T

])}
= 1

vF (p)

∫
dε

{
1

2ε
∂ε

(
1

2ε
tanh

[ ε

2T

])}

= 1

16T 2vF (p)

∫
dx

x
∂x

(
tanh(x)

x

)
= −0.107

T 2vF (p)
, (A22)

where the integral has been computed numerically. Putting these results back into equation (A20) yields∫
dd−1 p‖
vF (p)

Vk,p f (p)

[
1

T

]
= −∂T

(
�2

0

) ∫
dd−1 p‖
vF (p)

Vk,p f (p)| f (p)|2
[

0.107

T 2

]
. (A23)

We now rewrite Vk,p using Eqs. (A7) and (A12) and take the quotient

1

Tc
∂T (�0)2 = −9.384

(∫
dd−1 p‖
vF (p)

| f (p)|2
)(∫

dd−1 p‖
vF (p)

| f (p)|4
)−1

= −9.384

( 〈| f |2〉FS

〈| f |4〉FS

)
. (A24)

4. Specific heat jump

First, we write entropy density for a gas of spin-degenerate Bogoliubov quasiparticles with dispersion Ek . At a given
momentum k, there is a probability f (Ek/T ) that the state is occupied and 1 − f (Ek/T ) = f (−Ek/T ) that the state is
unoccupied, where f (x) = [1 + exp(x)]−1 is the Fermi distribution function. Accordingly the entropy density is

S = −2
∫

dd k( f (Ek ) log[ f (Ek )] + f (−Ek ) log[ f (−Ek )]). (A25)

The specific heat C = T ∂T S, so we differentiate the above with respect to T introducing x = Ek/T :

∂T S = −2
∫

dd k∂x
(

f (x) log[ f (x)] + f (−x) log[ f (−x)]
)
∂T x = −2

∫
dd k(∂x f (x)) log

[
f (x)

f (−x)

]
∂T x

= −2
∫

dd k

(
− ex

(1 + ex )2

)
(−x)∂T x. (A26)

Now use ∂T x = ∂T Ek/T − x/T , with ∂T Ek = (∂T E2
k )/(2Ek ) = (∂T |�k|2)/(2T x):

∂T S = 2

T

∫
dd k

(
ex

(1 + ex )2

)(
x2 − ∂T |�k|2

2T

)
= 1

2T

∫
dd k cosh−2

[ x

2

](
x2 − ∂T |�k|2

2T

)
. (A27)

We now evaluate this just below Tc, where Ek = |εk|, performing the k⊥ integrals first:

∂T S = 1

2

∫
dd−1k‖
vF (k)

∫
dx cosh−2

[ x

2

](
x2 − ∂T |�k|2

2T

)
=

∫
dd−1k‖
vF (k)

{
2π2

3
− ∂T |�k|2

T

}
. (A28)

We now substitute (A24):

∂T S =
∫

dd−1k‖
vF (k)

{
2π2

3
+ 9.384| f (k)|2

( 〈| f |2〉FS

〈| f |4〉FS

)}

C

T
= ∂T S = 2π2

3
ρ(EF )

{
1 + 1.425

( 〈| f |2〉2
FS

〈| f |4〉FS

)}
. (A29)

The first term in brackets is the same just above and just below Tc, whereas the second term is only present in the superconducting
state. The fractional jump in specific heat is therefore

�C

C
= 1.425

( 〈| f |2〉2
FS

〈| f |4〉FS

)
, (A30)
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where 1.425 is, as expected, the BCS result. Generally, anisotropy will reduce this value. Suppose the gap is weakly anisotropic,
with f (k) = 1 + δ(k) for some small, real δ(k). Then

�C

C
= 1.425

ρ(EF )

{∫
dk‖
vF

[1 + δ(k)]2

}2{∫
dk‖
vF

[1 + δ(k)]4

}−1

= 1.425

ρ(EF )

{∫
dk‖
vF

[1 + 2δ(k) + · · · ]

}2{∫
dk‖
vF

[1 + 4δ(k) + · · · ]

}−1

= 1.425

ρ(EF )

{
ρ(EF ) + 2

∫
dk‖
vF

δ(k) + · · · ]

}2{
ρ(EF ) + 4

∫
dk‖
vF

δ(k) + · · · ]

}−1

= 1.425 + O(δ2), (A31)

where the dots in the middle lines mean terms of order δ2. So
the deviation of the specific heat jump from its BCS value is
proportional to the square of the anisotropy. For the situation
discussed in the paper, this means the change in specific heat
is of order δλ2 and therefore parametrically smaller than the
other effects discussed.

APPENDIX B: SCALING OF BOSONIC OBSERVABLES
WITH SYMMETRY-BREAKING FIELD

Let φ be the bosonic field in question, r the tuning pa-
rameter, and h the symmetry-breaking field. We are ultimately
interested in W , the integral of the bosonic correlator over the
(d − 1)-dimensional Fermi surface, i.e., the weight of the δ

function that approximates the forward scattering interaction
mediated by φ. This will be proportional to the thermody-
namic susceptibility χ0 divided by some increasing function
of the correlation length ξ . At nonzero r and for small h, W
must depend quadratically on h, and we are interested in the
scaling of the coefficient of that quadratic dependence with r.
We begin with mean field theory.

1. Mean field theory

Start with the Ginzburg-Landau free energy,

f = κ

2
(∇φ)2 + r

2
φ2 + u

4
φ4 − hφ. (B1)

Taking a spatially uniform solution and minimizing the free
energy with respect to φ yields

rφ + uφ3 = h. (B2)

In the small-h limit, and for r > 0, it follows that φ =
χ0(r, 0)h + O(h3), with χ0(r, 0) = 1/r. Now implicitly differ-
entiate with respect to h, with ∂hφ = χ0:

(r + 3uφ2)χ0(r, h) = 1

⇒ χ0(r, h) = 1

r + 3uφ2
≈ 1

r

(
1 − 3uφ2

r

)

= χ0(r, 0)

{
1 − 3u

r
[χ0(r, 0)h]2

}

= χ0(r, 0)[1 − 3uχ0(r, 0)3h2]. (B3)

So the fractional change in susceptibility goes like h2χ3.
Restoring the gradients gives the same result for the correla-
tion length. This a limiting case of the general scaling theory
discussed below.

2. Scaling of symmetry-breaking field with tuning parameter

Suppose we are in a spatial dimension for which the “bare”
critical theory of the nematic boson obeys scaling. Then the
magnetization has the form

M(r, h) ∼ rβm(hrxh ), (B4)

where β is the order parameter critical exponent, m(u) is a
universal function which goes to a nonzero value as u → 0,
and xh is an exponent we will now relate to the standard
critical exponents. The susceptibility is

χ = ∂

∂h
M(r, h) = rβ+xh m′(hrxh )

∼ r−γ ⇒ xh = −(γ + β ). (B5)

3. Scaling of weight W

Form the static correlation function of φ in momentum
space, which will satisfy a multi-variable scaling function:

G(q, r, h) ≡
∫

dτ

∫
dxe−qx〈φ(x, τ )φ(0, 0)〉∼ r−γ g[qξr, hrxh ].

(B6)

Here γ is the susceptibility critical exponent, ξr ∼ r−ν is the
h = 0 correlation length, xh is as in the previous section,
and g[u, v] is a universal function, and g[0, v] (g[u, 0]) is
an analytic function of v (u). Since G(q, r, h) is a scaling
function of two variables, there are actually two different
length scales which diverge in the h, r → 0 limit, ξr ∼ r−ν

and ξh ∼ h−ν/(γ+β ). At finite r, and in the h → 0 limit, the
relevant length scale is ξr , whereas the relevant length scale is
ξh in the r → 0 limit at finite h.

For purposes of understanding the electronic forward
scattering interaction mediated by φ, we are interested in
G(q, r, h) integrated over the d − 1 dimensions transverse to
the Fermi surface:

W ≡
∫

dd−1qG(q, r, h)

∼ r−γ

∫
[dd−1q]g(qξr, hrxh )

= r−γ

ξ d−1
r

∫
[dd−1(qξr )]g(qξr, hrxh )

≡ r−γ+ν(d−1)w(hrxh ), (B7)

where in the final line we have defined a scaling function w,
assuming the integral is convergent. This is true in d = 2 and
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marginally false in d = 3, so that the function w also depends
logarithmically on �ξ , with � is a momentum cutoff. In either
case, W must depend quadratically on h for finite r and in the
limit h → 0:

W (r, h) ≈ W (r, 0)[1 + aW (hrxh )2]

= W (r, 0)[1 + aW (hr−(γ+β ) )2]

= W (r, 0)[1 + aW h2χ2(γ+β )/γ ], (B8)

where aW is a nonuniversal coefficient. For the nematic case,
h ∝ ε, where ε is the appropriate uniaxial strain, so that
yε = 2xh/γ = 2 + β/γ . If the propagator is a free boson with
susceptibility χ0 and correlation length ξ , W ∝ χ0ξ

1−d and
therefore

W (r, h) − W (r, 0)

W (r, 0)
∝ dχ0

χ0
− (d − 1)

dξ

ξ
, (B9)

corresponding to Eq. (11) of the main text.

APPENDIX C: STRAIN EFFECTS ON Tc

Here, we compute the leading dependence of Tc on strain,
including the effects of retardation. Let the energy scales of
the “bare” and nematic-mediated interaction be �0 and �,
respectively. Tc is given by

Tc = � exp

[
− 1

λ∗

]
, with (C1)

λ∗ = λ∗
0 + δλ, λ∗

0 = λ0

1 − λ0 log[�0/�]
. (C2)

With the eigenvalue shift

δλ ≈ λ0 × gF ×
{

ξ

a , d = 2

log[1 + (�ξ )2], d = 3
, (C3)

F ≡
(

1

a

)(∫
FS

dk

vF

f 2(k)

vF

)(∫
FS

dk

vF

)−2

, g ≡ πα2χ0a4−d

4V0ξ 2
.

(C4)

The fractional change in Tc is

dTc

Tc
= d�

�
+ dλ∗

(λ∗)2
+ · · · , (C5)

where · · · represents higher order terms. We will compute the
above in terms of several microscopic parameters, some of
them of known sign:

dξ

ξ
= −1

z

d�

�
= −bξ (uκ2)χ2(γ+β )/γ

0 ε2,

dχ0

χ0
= −bχ (uκ2)χ2(γ+β )/γ

0 ε2, (C6)

dλ0

λ0
= aλ

(
ακ

EF

)2

χ2
0 ε2,

dF

F
= aF

(
ακ

EF

)2

χ2
0 ε2. (C7)

In the upper line, z is the dynamical critical exponent of the
proximate nematic QCP (z = 1 when this QCP is governed
by the transverse-field Ising fixed point). For the upper line,
the sign is determined, since strain cuts off the nematic fluc-
tuations; the magnitude is unknown. In the lower line, neither
sign nor magnitude are known without a microscopic model.

1. Change in logs

d log

[
�0

�

]
= log

[
�0

�(1 + d�/�)

]
− log

[
�0

�

]≈
− d�

�
. (C8)

Similarly,

d log[1 + (�ξ )2] ≈ 2dξ

ξ
. (C9)

2. Change in λ∗
0

Now we are in a position to compute the change in λ∗
0:

dλ∗
0 = ∂λ∗

0

∂�
d� + ∂λ∗

0

∂λ0
dλ0. (C10)

Straightforward differentiation yields

∂λ∗
0

∂�
= − (λ∗

0 )2

�
, (C11)

∂λ∗
0

∂λ0
=

(
λ∗

0

λ0

)2

. (C12)

All told,

dλ∗
0 = −(λ∗

0 )2

(
d�

�
− 1

λ0

dλ0

λ0

)
. (C13)

3. Change in δλ

Start with Eq. (C3):

dδλ = δλ ×
⎧⎨
⎩

dχ0

χ0
+ dF

F − dξ

ξ
, d = 2

dχ0

χ0
+ dF

F − 2 dξ

ξ
+ d log[1+(�ξ )2]

log[1+(�ξ )2] , d = 3

= δλ ×
⎧⎨
⎩

dχ0

χ0
+ dF

F − dξ

ξ
, d = 2

dχ0

χ0
+ dF

F − 2 dξ

ξ
+ dξ

ξ log[�ξ ] , d = 3
.

(C14)

4. Net change

Now for the full eigenvalue,

dλ∗ = dλ∗
0 + dδλ

= −(λ∗
0 )2

(
d�

�
− 1

λ0

dλ0

λ0

)
+ δλ ×

{ dχ0

χ0
+ dF

F − dξ

ξ
, d = 2

dχ0

χ0
+ dF

F − 2 dξ

ξ
+ dξ

ξ log[�ξ ] , d = 3
, (C15)
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dTc

Tc
= d�

�
+ dλ∗

(λ∗)2

= d�

�

[
1 −

(
λ∗

0

λ∗

)2
]

+
(

λ∗
0

λ∗

)2 1

λ0

dλ0

λ0
+ δλ

(λ∗)2
×

{ dχ0

χ0
+ dF

F − dξ

ξ
, d = 2

dχ0

χ0
+ dF

F − 2 dξ

ξ
+ dξ

ξ log[�ξ ] , d = 3
. (C16)

There are a number of small parameters in this expression, and therefore several parametrically broad regimes in which various
terms above might be important. Keeping only the parametrically largest terms and substituting the expressions of Eqs. (C6) and
(C7) yields

dTc

Tc
= aλ

λ0

(
ακ

EF

)2

χ2
0 ε2 + δλ

(λ∗
0 )2

(
(d − 1)bξ − bχ

)
(uκ2)χ2(γ+β )/γ

0 ε2

=
{

aλ

λ0

(
ακ

EF

)2

χ2
0 + δλ

(λ∗
0 )2

(
(d − 1)bξ − bχ

)
(uκ2)χ2(γ+β )/γ

0

}
ε2. (C17)

The first term is the contribution from the induced nematic order parameter, and the second from the cutting off of nematic
fluctuations. The latter comes with a larger power of χ0 than the first, but with a coefficient that may be parametrically smaller.
Note that terms proportional to the change in the frequency scale � are negligible compared to terms involving changes in the
pairing eigenvalue.
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