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Slope invariant T -linear resistivity from local self-energy
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A theoretical understanding of the enigmatic linear-in-temperature (T ) resistivity, ubiquitous in strongly
correlated metallic systems, has been a long sought-after goal. Furthermore, the slope of this robust T -linear
resistivity is also observed to stay constant through crossovers between different temperature regimes: a
phenomenon we dub “slope invariance.” Recently, several solvable models with T -linear resistivity have been
proposed, putting us in an opportune moment to compare their inner workings in various explicit calculations. We
consider two strongly correlated models with local self-energies that demonstrate T linearity: a lattice of coupled
Sachdev-Ye-Kitaev models and the Hubbard model in single-site dynamical mean-field theory. We find that the
two models achieve T linearity through distinct mechanisms at intermediate temperatures. However, we also
find that these mechanisms converge to an identical form at high temperatures. Surprisingly, both models exhibit
“slope invariance” across the two temperature regimes. Thus not only do we reveal some of the diversity in the
theoretical inner workings that can lead to T -linear resistivity, but we also establish that different mechanisms
can result in “slope invarance.”

DOI: 10.1103/PhysRevResearch.2.033434

I. INTRODUCTION

The mysterious incoherent metallic states with T -linear re-
sistivity (ρDC ∝ T ) seen in many strongly correlated materials
[1–3] have long puzzled researchers, as such a temperature
dependence is inaccessible from Fermi liquid theory [4].
Particularly remarkable is the fact that the slope dρDC/dT
remains constant as T varies over two or three orders of
magnitude, while the temperature shoots through multiple
crossover energy scales: we dub this phenomenon “slope
invariance.” Recent progress [5–10] in solvable strongly inter-
acting models that yield T -linear resistivity and through com-
putational and experimental quantum simulation [11] have
injected renewed enthusiasm and hope into the community.
Given that “solvability” requires unrealistic limits, however,
theoretical insight into the common or unique mechanisms
of the T -linear resistivity obtained in these models is much
needed in making contact with experimental observations.

The unusual feature of local self-energy is at play in two of
the most studied microscopic models with T -linear resistivity:
lattice models of coupled Sachdev-Ye-Kitaev (SYK) quantum
dots [5–8] and its earlier incarnation of a doped random-bond
Heisenberg model [12] and the Hubbard model in single-site
dynamical mean-field theory (DMFT) [11,13,14]. Moreover,
in both models, exact nontrivial self-consistency equations
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enable an explicit computation. Yet no comparative study has
been carried out to our best knowledge. In fact, these models
have remained largely only of theoretical interest because
T -linear resistivity in these models is reached only at tempera-
tures above certain crossover scales that are too high for solid-
state systems. However, in a recent emulation of the Hubbard
model using ultracold atomic gases [11], T -linear resistivity
was observed at “intermediate temperatures” (t < T < U ,
where t and U are the hopping and interaction energies,
respectively) accessible in model calculations. Furthermore,
“slope invariance” is also evident in the data. This motivates
a fresh consideration of solvable models with T -linearity at
intermediate and high temperatures seeking an insight into
slope invariance. In this article we compare the inner workings
of transport in two models with local self-energy, coupled
SYK and DMFT, in two temperature ranges: intermediate
(t � T � U ) and high temperature (t � U � T ). We find
distinct mechanisms at intermediate temperatures converging
to a unifying picture at high temperature. Further we note how
the unifying picture ties to “slope invariance.”

For both models of interest, vertex corrections to the con-
ductivity vanish [6,7,15]. Hence the DC conductivity can be
compactly written in the spectral representation of the Kubo
formula

σDC = 2π

∫
dε φ(ε)

∫
βdωA(ε, ω)2

4 cosh2(βω/2)
, (1)

where ε = ε(k) is the band energy at momentum k, φ(ε) =∑
k

∂ε(k)
∂kx

2
δ[ε − ε(k)] is the transport function, and A(ε, ω) =

− 1
π

ImG(ε, ω) is the spectral function on the lattice, nor-
malized to

∫
dωA(ε, ω) = 1. Hence different mechanisms of
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T -linear resistivity arise from different functional forms of the
spectral function.

II. INTERMEDIATE TEMPERATURES

We first review recent results finding T -linear resistivity
in coupled SYK models [5–8]. These models are the best
understood among the solvable models with T -linear resis-
tivity, and they may be realizable in multiorbital systems
[16,17]. In the SYK models, disorder averaging enforces the
constraint that the self-energy of conduction electrons is local
�(�k, iω) ≡ �(iω), as long as the coupling between SYK dots
is perturbative. The self-consistent Dyson equations then arise
in closed form as the saddle-point equations of a large-N limit
(where each SYK dot consists of N flavors of fermions), in
which the self-energy diagrams are truncated at second order.
At intermediate and high temperatures, the hopping between
lattice sites is perturbative, so that the lattice Green’s function
is also local G(�k, iω) ≡ G(iω) and the Dyson equations take
the general form

G(iω)−1 = iω + μ − �(iω),

�(τ ) = −U 2G(τ )q/2G(−τ )q/2−1. (2)

Here q is the fermionic degree of the disordered SYK inter-
action in the Hamiltonian and μ is the chemical potential.
In the intermediate-temperature regime, where T � U , the
iω term in the first line can be ignored. At half-filling, these
equations then have the solution G(ω) ∝ −iβ1−2/qgq(βω),
where we have defined for convenience gq(x) = (1/q −
ix/2π )/(1 − 1/q − ix/2π ).

Due to the local spectral function, the Kubo expression (1)
then further simplifies to σDC ∝ ∫

βdωA(ω)2

4 cosh2(βω/2)
. Hence,

σDC ∝ t2β2(1−2/q)
∫

dx
[gq(x)]2

cosh2(x/2)
∝ t2β2(1−2/q), (3)

given the solution to the Dyson equation. This streamlined
derivation makes clear that T -linear resistivity requires q = 4
[7,18], in which case the complete expression for the conduc-
tivity at intermediate temperatures t2/U � T � U is

σDC = t2β
√

π

2U
√

cosh 2πE
(4)

[5,6], where E is a function solely of the fermion filling that
vanishes at half-filling [19,20]. Two features of this calcula-
tion offer clarifying insight: First, the SYK spectral function
is a scaling function of the dimensionless parameter βω and
extends broadly over the entire frequency range below the UV
cutoff |ω| < U (Appendix A 2). Second, although local self-
energy is a generic feature of SYK models, T -linear resistivity
in the intermediate-temperature range is a consequence of
the particular scaling exponent of the local Green’s function
within the “quantum dots” for q = 4. The same mechanism
was found earlier in a doped random Heisenberg model in
Ref. [12].

Now we turn to the DMFT study of the repulsive U
Hubbard model on the two-dimensional square lattice:

H = −t
∑

〈i, j〉,σ
c†

iσ c jσ + U
∑

i

ni↑ni↓ − μ
∑

iσ

niσ . (5)

FIG. 1. Resistivity ρDC as a function of temperature, in single-
site DMFT with U = 12 at electron filling n = 0.825, using an
ED impurity solver with ns = 8 total sites. Vertical spread of the
blue curve comes from varying the ED broadening parameter η =
0.01–0.08. Orange curve displays the approximation scheme of
Eq. (7).

In DMFT, we first integrate out all sites except one to
reduce the problem to a local impurity model. Then the
infinite-dimension approximation imposes a self-consistency
constraint where the bare propagator of the impurity model is
determined by the fully dressed two-point function computed
within the impurity model. Lacking an additional large-N
parameter of SYK, a closed-form Dyson equation is not
available, however. Hence the impurity model is solved com-
putationally. Despite intense efforts at computational studies
of the model and its extensions and observations of T -linear
resistivity upon certain approximations [13,14,21–23], new
interest in models with local self-energies warrants a close
contextual look at the DMFT solutions to the Hubbard model.
Here we carry out single-site DMFT using an exact diagonal-
ization (ED) impurity solver that frees us from the need of
analytic continuation.

We explored the range of 7.5 < U < 12 and 0.2 < T <

9 in units of hopping t , with the electron density per site
n = 0.825. In Fig. 1 we plot a representative result. Here
the width of the band represents the dependence of ρDC(T )
on the ED broadening parameter η [11,24]. The resulting
curve is clearly linear in the intermediate-temperature range
t � T � U [25].

In search of analytic insight into T -linear resistivity at
intermediate temperatures t � T � U , we examine the lat-
tice spectral function A(ε, ω) in detail for a suitable analytic
ansatz. The spectral function is largely T -independent at the
intermediate temperatures shown and consists of a lower and
an upper band of widths ∼t that are separated in frequency by
≈ U (see Fig. 2). Hence we approximate the DMFT spectral
function using the following ansatz:

A(ε, ω) = alh(ω; ωl , ηl ) + auh(ω; ωu, ηu), (6)

where the lower and upper bands Al,u(ε, ω) have weights
al,u, satisfying al + au = 1, and are localized in frequen-
cies at ωl,u with widths ηl,u � T . For simplicity, we model
each band h(ω) by a normalized Gaussian, centered at ωl,u
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FIG. 2. Lattice spectral function A(ε = 0, ω) vs frequency ω,
with U = 12 at electron filling n = 0.825, using ED impurity solver
with ns = 8 and η = 0.08. Frequency ω has been shifted by the
chemical potential.

with standard deviation ηl,u. Then the parameters for the
lower band al , ωl , ηl are fitted to the DMFT spectral func-
tion by

∫
dω Al (ε, ω) = al ,

∫
dω ωAl (ε, ω) = alwl , and∫

dω [Al (ε, ω)]2 = 1/2
√

πa2
l /ηl , and likewise for the upper

band parameters [26]. The parameters depend on ε but are
independent of T . With this ansatz, we arrive at a simplified
explicit expression for DC conductivity (see Appendix A 1 for
a detailed derivation)

σDC = β
Cl

4 cosh2(βμ/2)
+ Cu

4 cosh2[β(U − μ)/2]
, (7)

where Cl,u ≡ √
π

∫
dε φ(ε)a2

l,u/ηl,u. In the intermediate-
temperature range, Eq. (7) yields T -linear resistivity by the
first term in the parentheses approaching a constant (μ ∝ T )
and second term vanishing (T � U ). We note that similar
approximations were employed in previous works [27,28],
which yielded similar expressions for conductivity.

Figure 1 demonstrates that the ansatz Eq. (7) (shown in
orange) captures the DMFT results for resistivity excellently
over the whole temperature range. This fit reveals that key
mechanism for T -linear resistivity in DMFT is the broadening
of the spectral function by a T -independent scattering rate
1/τ controlled by a hopping scale ∼t . Such a highly localized
spectral function leads to σDC ∝ τ/T from a linearization of
the Fermi factor in the Kubo formula. We suspect the same
mechanism is at play for t � U modified Hubbard model
studied by Mousatov et al. [9] where the broadening in that
case is set by a longer-ranged repulsion V . This is in contrast
to the inner workings of coupled SYK, where the spectral
function is a broad, singly peaked scaling function of βω and
T -linear resistivity is specific to q = 4 (Appendix A 2).

Armed with the above analytic insight, we now turn to
the Lorenz ratio L = κ/σT . The Wiedemann-Franz law with
LW F = π2/3 is a well-known property of a Fermi liquid with
elastic scattering. Although it can be violated even in a Fermi

liquid in the presence of inelastic scattering [29–31], it is
nevertheless a useful quantity to evaluate. The thermal and
electrical conductivities can be expressed in terms of kinetic
coefficients

Ln =2π

∫
dε φ(ε)

∫
βdω(βω)nA(ε, ω)2

4 cosh2(βω/2)
(8)

as σ = L0 and κ = T (L2 − (L1)2/L0). Once again employing
our approximate spectral function (6), we find the violation of
the Wiedemann-Franz law with the Lorenz ratio vanishing as
a power law in temperature for t � T . In contrast, the coupled
SYK model of Ref. [5] violates the Wiedemann-Franz law
only through modification of the Lorenz ratio L = 0.375 ×
LWF [5,6] in the intermediate-temperature regime with T -
linear resistivity.

III. HIGH-TEMPERATURE LIMIT

We now consider the high-temperature regime, where T is
the largest scale in the problem. Resistivity at high tempera-
ture is often overlooked, as all Hamiltonians with a bounded
spectrum of states are known to have T -linear resistivity in
this temperature regime [32,33]. This argument is useful from
a formal perspective but offers little insight into T -linear
resistivity at intermediate temperatures or the lack of slope
change across the crossover T ∼ U . In this “weak coupling”
limit, we approximate single-site DMFT using self-consistent
second-order perturbation theory (GF2) [34–37]. Unlike bare
second-order perturbation theory, GF2 is �-derivable [38]
and therefore thermodynamically consistent and symmetry
conserving [39,40], implying that thermodynamic relations
and conservation laws are intrinsically satisfied. We find,
within this high-temperature limit, that the DMFT equations
become identical to the self-consistency equations of q = 4
SYK!

To see the convergence note that the self-energy �(iω)
is the sum of a tadpole diagram and a sunset diagram in
GF2, i.e., �(iω) = �(1)(iω) + �(2)(iω), where �(1)(iω) =
UG(τ = β−) = Un/2 and �(2)(τ ) = −U 2G(τ )2G(−τ ).
Now the Dyson equations take a closed form:

G(iω)−1 = iω + μeff − �(2)(iω),

�(2)(τ ) = −U 2G(τ )2G(−τ ), (9)

which are identical to the q = 4 SYK equations (2), with a
shifted chemical potential μeff = μ − nU/2. This discovery
allows us to simultaneously treat single-site DMFT and q = 4
SYK.

Interestingly, with T  U , we find, by numerical solu-
tion of the real-time version of (9), that the self-energy is
temperature-independent and Gaussian to a very good ap-
proximation (Fig. 3). Using a high-temperature expansion in
imaginary-time [41] and the “maximum entropy” ansatz for
analytic continuation [33], we further determine, for μeff = 0,

− 1

π
Im�(ω) ≈ U

2π

√
π

6
exp

(
− 2ω2

3U 2

)
. (10)

For μeff �= 0 we find a similar function with its peak shifted
to ω = μeff. A Gaussian self-energy of width ∼U leads to a
spectral function also of width ∼U . In the high-temperature

033434-3



CHA, PATEL, GULL, AND KIM PHYSICAL REVIEW RESEARCH 2, 033434 (2020)

-4 -2 0 2 4
0

0.03

0.06

0.09

0.12

FIG. 3. Comparison of the numerically obtained self-energy
(blue) in for the q = 4 SYK model in the high-temperature regime
with a Gaussian ansatz (orange) for analytically continuing a high-
temperature expansion (10). Here βU = 0.01, and the system is at
half-filling.

regime U � T , this leads to T -linear resistivity in the same
manner as (7), but with only one band at −μeff.

The divergence of the two models at intermediate tem-
peratures is visible in how the asymptotic form of self-
energy responds to the lowering of temperature. In DMFT,
the self-energy becomes increasingly sharply peaked at
lower temperatures. This trend is visible in Fig. 4, which
displays the self-energy in DMFT across a range of inter-
mediate temperatures for U = 12 and n = 0.825. We have
also plotted a Gaussian fit to the primary peak in dashed
lines in Fig. 4. Gaussian self-energy in DMFT at interme-
diate temperatures was suggested in Ref. [33] by maximum
entropy analytic continuation. In sharp contrast, the self-
energy in q = 4 coupled SYK undergoes a dramatic change in
form, departing from the Gaussian form at high temperatures
to −Im �(ω � U ) ∼ max (

√
UT ,

√
Uω) (Appendix A 2).

FIG. 4. Imaginary self-energy −Im �(ω) vs real frequency ω,
from DMFT with U = 12 at electron filling n = 0.825, using ED
impurity solver with ns = 8 and η = 0.08. Dashed line plots a
Gaussian fit to the central peak of self-energy at each temperature.
Frequencies have been shifted by μeff.
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FIG. 5. Normalized change in slope of linear-in-T resistivity for
the q = 4 SYK chain with infinitesimally weak quadratic hopping
at different fillings ν. The inset shows the same plot with the y axis
magnified.

Surprisingly, despite this qualitative shift in the single-particle
properties, the slope change in resistivity dρDC/dT remains
negligible across T ∼ U for all numerically accessible values
of the filling [42] and actually goes to zero within numerical
tolerances at fillings ≈0.5 ± 0.283 (Fig. 5).

The contrasting forms of the DMFT and SYK self-energies
below the high-temperature limit can be traced to the validity
of GF2. In the SYK incoherent metal, GF2 is exact indepen-
dently of temperature because the large number of degrees
of freedom N , with only disordered interactions among them,
explicitly makes all self-energy diagrams beyond second or-
der nonthermodynamic. This exact truncation cannot be done
in single-site DMFT where each local electron degree of
freedom has only self-interactions and there is no such large-
N limit. Thus GF2 is approximately valid in DMFT only in
the high-temperature limit where interactions are effectively
perturbative. As temperature is lowered across the crossover
scale U , higher order processes of O[(U/T )3] become rele-
vant and lead to a breakdown of GF2.

IV. DISCUSSION

At intermediate temperatures T � U , we observed that
single-site DMFT achieves T -linear resistivity by grouping
the spectrum of states into two narrow bands of widths far
below the interaction scale U . In the same temperature regime,
SYK lattice models have a broad spectrum that extends over
the entire range |ω| � U and give T -linear resistivity for mod-
els with q = 4, for which A(ω) ∼ 1/

√
Uω for T � ω � U .

Although the intermediate-temperature mechanisms behind
T -linear resistivity in these models are seemingly unrelated,
we have made the surprising observation that the models seem
to converge to an identical form at high temperature T  U .
We further observe that the q = 4 SYK model shows almost
no slope change in its T -linear resistivity across the crossover
scale T ∼ U (Fig. 5).

Our finding of “slope invariance” in lattice SYK despite
major changes in the single-particle spectral properties is
remarkably reminiscent of observations made in strongly
correlated materials. On the other hand, the slope in the
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two temperature regimes have distinct doping dependences
in DMFT and slope invariance requires fine tuning in doping
[33]. However, the crossover temperature is suppressed from
the naïve ∼U to ∼U/ log(1/δ2) at small dopings [33] due to
temperature dependence of chemical potential. This accounts
for the observation that the change in slope in Fig. 1 occurs
at T ≈ 2 = U/6, as opposed to at T ≈ U . Furthermore, the
slopes in the two temperature regimes differ by less than 11%
for all large enough doping d > 0.33 (see Appendix A 3). The
renomalized crossover scale can push the slope change outside
of range of observation which may explain the featureless
T -linear resistivity reported in Ref. [9]. Finally, the change
in T dependence of chemical potential that drives the slope
change in T -linear resistivity is also responsible for a slope
change in inverse compressibility χ−1 (see Appendix A 3),
which can further complicate any inference on diffusivity
from the Nernst-Einstein relation σDC = χD and calculation
of χ [9,21,43].
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APPENDIX

A. Detailed derivation of conductivity

In this section we derive the expression for conductivity (7)
from the Kubo formula

σDC = 2π

∫
dε φ(ε)

∫
βdωA(ε, ω)2

4 cosh2(βω/2)
. (A1)

From the DMFT spectral function in Fig. 2, we employ the
ansatz of (6)

A(ε, ω) = alh(ω; ωl , ηl ) + auh(ω; ωu, ηu), (A2)

where the lower and upper bands Al,u(ε, ω) have weights al,u,
satisfying al + au = 1, and are localized in frequencies at ωl,u

with widths ηl,u � T . Note that the ansatz parameters al,u,
ωl,u, and ηl,u can depend on the band energy ε.

We can now scale out β by changing the variable of
integration x ≡ βω. The spectral function in terms of x is

A(ε, x) = βal hx(x; βωl , βηl ) + auhx(x; βωu, βηu). (A3)

If the spectral function consists of widely separated narrow
peaks ηl,u � |ωu − ωl |, then interband processes will be sup-
pressed

A(ε, x)2 ≈ β2a2
l hx(x; βωl , βηl )

2 + a2
uhx(x; βωu, βηu)2.

(A4)

The x integral can now be carried out explicitly. We focus on
the lower band for brevity but the calculation for the upper
band is identical.∫

βdωA(ε, ω)2

4 cosh2(βω/2)
=

∫
dx β2a2

l hx(x; βωl , βηl )2

4 cosh2(x/2)
(A5)

= β2a2
l

4 cosh2(βωl/2)

1

2
√

πβηl
(A6)

= 1

2
√

π

βa2
l

4ηl cosh2(βωl/2)
(A7)

≈ 1

2
√

π

βa2
l

4ηl cosh2(βμ/2)
, (A8)

where in the final line we make the observation that |ωl +
μ| � T for all ε. The lower band contribution to the conduc-
tivity can thus be written

σDC,l = β
Cl

4 cosh2(βμ/2)
, (A9)

where we have defined Cl ≡ √
π

∫
dε φ(ε)a2

l,u/ηl,u. Sum-
ming the contribution from the upper band, we arrive at the
expression for conductivity (7).

B. Comparative Plot

In Fig. 6 we show typical plots of the self-energies and
spectral functions in the two temperature regimes from the
DMFT calculation and the coupled SYK calculation.

C. Compressibility

Recent works have proposed looking for insight into T -
linear resistivity by studying compressibility χ and diffu-
sivity D, related to transport by the Nernst-Einstein relation
σDC = χD, at intermediate and high temperatures. [9,21,43].
We obtain compressibility in DMFT using continuous-time
interaction-expansion QMC as the impurity solver. We com-
puted the DMFT solution for multiple values of μ near the
value corresponding to n = 0.825 and took the numerical
derivative to find χ−1 = dμ

dn . No analytical continuation is
necessary as n = −2G(τ = β−). We present the data from
DMFT in Fig. 7.

To gain further insight, we summarize analytical results
in the perturbative-hopping regime t � T,U , discussed in
Refs. [28,33]. In this limit, the chemical potential μ and DC
conductivity σDC can be calculated from the atomic Hubbard
model, i.e., a Hubbard model with t → 0. These expressions
are

eβμ =
√

δ2 + (1 − δ2)y − δ

(1 + δ)y
≡ x, (A10)

σDC = t

4T

(1 + δ)2

x + 1/x + 2
+ (1 − δ)2

xy + 1/xy + 2
, (A11)

where δ = 1 − n, y = e−U/T and the second expression is
valid up to dimensionless constants.

From these expressions, we can take further limits to
study the compressibility χ , DC conductivity σDC, and
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FIG. 6. Plots of self-energy (a), (c), (e) and spectral function (b), (d), (f) vs frequency shifted by μe f f . The dashed line in (a) displays the
gaussian fit of Fig. 4. The singly-peaked self-energy of DMFT at intermediate T (a) contrasts with the self-energy of SYK also at intermediate
T (c), which has a local minimum at ω + μe f f = 0, while the DMFT spectral function (b), which is highly localized in frequency, contrasts
with the broad scaling form of the SYK spectral function (d). Despite these contrasting forms at intermediate temperature, the two models
converge to the Gaussian self-energy form at high temperature (e), (f).

diffusivity D ≡ σDC/χ in the intermediate-temperature t �
T � U or high-temperature t � U � T limits. In the
intermediate-temperature regime, we find

μint = T log
n

2(1 − n)
, (A12)

FIG. 7. Inverse compressibility χ−1 at U = 7.5, n = 0.825.

χ−1
int = T

n(1 − n)
, (A13)

ρDC,int = 2T

n(1 − n)
, (A14)

D−1
int = 2. (A15)

On the other hand, in the high-temperature regime, we find

μhigh = T log
n

2 − n
, (A16)

χ−1
high = 2T

n(2 − n)
+ U

2
, (A17)

ρDC,high = 8T

1 − (1 − n)4
, (A18)

D−1
high = 4

1 + (1 − n)2
. (A19)

We remark that D saturates to different expressions in both
regimes. As noted in the main text, the crossover between
the two expressions is set by the change in the temperature
dependence of the chemical potential, which follows from
setting y � δ2

1−δ2 . At small doping, the crossover temperature
is therefore suppressed from the naïve ∼U to ∼U/ log((1 −
δ2)/δ2).
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Dobrosavljević, Phys. Rev. Lett. 114, 246402 (2015).
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