PHYSICAL REVIEW B 69, 115117 (2004

Phase transitions in models for coupled charge-density waves

Minchul Lee! Eun-Ah Kim?2 Jong Soo Lint and M. Y. Choi®*
!Department of Physics, Korea University, Seoul 136-701, Korea
2Department of Physics, University of Illinois, Champaign, lllinois 61801, USA
3Department of Physics, Seoul National University, Seoul 151-747, Korea
“Korea Institute for Advanced Study, Seoul 130-722, Korea
(Received 16 October 2003; published 22 March 2004

Various phase transitions in models for coupled charge-density waves are investigated by means of the
expansion, mean-field theory, and Monte Carlo simulations. At zero temperature the effective action for the
system with appropriate commensurability effects is mapped onto the three- or four-dimeixstonaidel,
depending on spatiotemporal fluctuations, under the corresponding symmetry-breaking fields. It is revealed that
the three- and four-dimensional systems display a single transition between the clockwotiddmrokenzy,
symmetry and disorder. The nature of the phase transition depends crucially on the commensurability factor
M: For M=4, in particular, the transition belongs to the same university class a§¥haodel. On the other
hand, in the presence of misfit causing frustration in the charge-density wave, the interchain coupling is
observed to favor either the commensurate state or the incommensurate state depending on the initial configu-
ration; this gives rise to hysteresis around the commensurate-incommensurate transition. Boundaries separating
such phases with different symmetries are obtained in the parameter space consisting of the temperature,
symmetry-breaking field, fluctuation strength, interchain coupling, and misfit.
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[. INTRODUCTION tem is given by four if both spatial and temporal fluctuations
are significant, otherwise it is three. The phase transition in
A large number of organic and inorganic solids have crysthe resulting 3DXY model under the appropriate symmetry-
talline structures in which fundamental structural units formbreaking field is examined via the expansion and the
linear chaing. In these materials, largely different overlaps Monte Carlo method. It is found that there emerges in the
of the electronic wave functions in various crystallographicsystem the clock ordered phaieith the Z,, symmetry bro-
directions lead to strongly anisotropic, so-called quasi-oneken) via a second-order transition, the nature of which de-
dimensional(quasi-1D electron bands. Among the exotic pends on the commensurability factivl In particular, the
physical phenomena in quasi-1D materials, charge-densitgritical behavior forM=4 appears to be the same as that of
waves(CDW'’s) are of much continual interest. Research intothe 3D XY model. For the 4DXY model, on the other hand,
this topic has been stimulated by recent advances in experinean-field theory is expected to be accurate and reveals a
mental techniques, which now allow direct observation ofsingle transition, which is of the first order ftt =3 and of
CDW's and measurement of various static and dynamidhe second order otherwise. We then examine the effects of
properties of CDW systenfsIn general the material of misfit, which not only change the nature of the order-disorder
quasi-1D structure is expected to exist in the form of atransition but also brings about a CI transition. In the pres-
bundle of chains rather than of a single chain. In such ance of the misfit, correlations due to the interchain coupling
bundle of chains, interchain tunneling of electrons leads ta@re observed to favor, depending on the initial configuration,
coupling of the fluctuations on neighboring chains, whicheither the commensurate state or an incommensurate state,
may affect the behavior of the system in a crucial way. Fowhich gives rise to hysteresis behavior: While in the cooling
example, the system of two coupled incommensurate chairgrocess the incommensurate CDW's persist near zero tem-
in the weak-coupling limit has been reported to exhibit aperature, in the heating process large portions of the system
complicated commensurate-incommensui@® transition, remain in the commensurate state at rather high tempera-
reminiscent of devil's staircaseObviously, the opening of tures.
the gap at the Fermi surface implies that each separate chain This paper is organized as follows. In Sec. Il, the effective
is an insulator at low temperatures. However, with the couaction at zero temperature is derived for the coupled CDW
pling between chains taken into account, expected are varsystem and mapped onto the appropri&té model accord-
ous transitions between insulating and metallic phases, thieg to whether spatial and/or temporal fluctuations are taken
extensive investigation of which is still lacking in spite of the into consideration. Section Il is devoted to the investigation
ubiquity of the CDW. of the phase transition in the 3IXY model under the
In this paper, we investigate nature of the phase transisymmetry-breaking field, which introduces thg symmetry
tions in the coupled CDW system. In the absence of misfito the system. Here two independent approaches are em-
the effective action for thécommensurajesystem at zero ployed: thee expansion in Sec. lll A and the Monte Carlo
temperature with suitable commensurability effects ismethod in Sec. Il B. Section IV presents the mean-field
mapped onto theXY model under the corresponding analysis of the 4DXY model, demonstrating the first- and
symmetry-breaking field. The effective dimension of the syssecond-order nature of the transition under the appropriate
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symmetry-breaking field. In Sec. V the effects of the inter- Note that in the presence of the commensurability energy,
chain coupling in the presence of misfit are investigated vighe misfit cannot be simply gauged away and introduces frus-
Monte Carlo simulations, which discloses properties of thetration to the system. For the time being we consider the case
Cl transition in the system. Combining the results for the Clof strictly commensurate CDW systems without any misfit.
transition with those for the 3D and 4KY models obtained To investigate the quantum phase transition in this case,
in Secs. Il and IV, we construct in Sec. VI schematic phaselriven by quantum fluctuations at zero temperature, we fol-
diagrams for general coupled CDW systems in the 3D spackw the standard proceduréo map ad-dimensional quan-
consisting of the temperature, interchain coupling, and mistum system to ad+ 1)-dimensional classical system and

fit. Finally, Sec. VII gives a brief summary. obtain the corresponding effective action. In Sec. Il A, the
system with negligible spatial fluctuations along the chain
Il. EFFECTIVE ACTION direction is considered and the corresponding effective ac-

) tion at zero temperature is mapped onto the 8P model,

We consider a system of coupled near-commensuraighere commensurability effects are described by the appro-
CDW chains along the direction, each of which is charac- priate symmetry-breaking field. Section I B discusses the
terized by the commensurability facttt and the position-  gystem in the presence of spatial fluctuations. We first pay
dependent misfi, with r=(x,y,z). On thex-y plane, the  attention to the classical limit, where temporal fluctuations
chains are assumed for simplicity to constitute a square arrayay be neglected. Here the system is intrinsically 3D, and
of lattice constana(=1). Disregarding amplitude fluctua- the effective action is again mapped onto the 8® model.
tions of the complex CDW order parameter and consideringyext, with both spatial and temporal fluctuations considered,

spatial and temporal fluctuations of the phase Onigg write  the appropriate effective action at zero temperature is identi-
the Hamiltonian in terms of the phage of the order param-  fied with the 4DXY model.

eter at positiorr and the momenturp,=Cdd, /dt:

2 U
lef dzxzy _(&(ﬁr

A. Homogeneous case

L
2C 2\ gz

2
—5,) —VycosM q’;r}, o .
Although it is in general expected that strong fluctuations
(1) are present, we for the moment assume that spatial fluctua-

where for the moment the interchain coupling has been omi tions along each chain are negligible, which gives a 2D sys-

ted. The first term and the second term correspond to th%arrgaa'r:hoﬁélz ddgﬁgnt%eggﬁr:}g:}gﬁrgzﬁﬁncag trgzjg'erz”:gtry'
change of the total electron kinetic energy due to tempor 9 Y,

and spatial fluctuations, respectively, whereas the third ter e 2DXY model with kinetic energy:
represents the commensurability energy. The dimensionless

coupling constant€, Vo, and U depend on such detailed pf

microscopic structure of the system as the density of states at H=2, ol > U cos ¢ — o), 3

the Fermi level, the effective electron mass renormalized due ' (r.r’)

to the lattice vibration, the electron-phonon coupling

strength, and the cutoff enerdy. where the summation in the second term is to be performed
We now consider interchain tunneling of electrons be-over all nearest-neighboring pairs in the 2D space with

tween nearest-neighboring chains BIW and at é(’,y’) on E(X,y). The Hamiltonian in EQ(3) has been studied in the

the x-y plane, i.e., at the same positianthis gives rise to ~context of quantum arrays of Josephson junctfbis.par-
the interaction of the forn | cos(é, — ¢,/), whereU, isthe ticular, at zero temperature the 2D quantum system in&q.
dimensionless interchain coupling constant and higher-ordép Well known to map onto a 3D classical system via the
harmonics have been disregarded. With this included, thétandard loré. Introducing the imaginary time- axis and
Hamiltonian  for the coupled near-commensurate CDW dividing the interval between=0 and7=T"" into N slices

chains reads of equal widthAr=1/NT, in the zero-temperature limifT(
—0) we arrive at the partition function of the anisotropic 3D
2 2 )
pr u|((9¢r ) } XY model:
H=fdz [—+— — =4, —VycoM
{xzy 2C 2lgz T 0 4
z= f)glwexr{ > Kpcodg— )|, 4
- 2 Ucod¢—d), ) ()
(xy.x"y")

where theposition ¢, and the conjugatenomentum pare  wherer=(r,x,y) represents the position in the 3D space,
considered to observe the commutation relatjaf} ,p,] consisting of théimaginary time = and the 2D spacex(y).
=id ./, suggesting the position representatiop,  The anisotropic coupling is defined on each bond:

=—idld¢,. In the second summatiofxy,x’y’) stands for
the nearest-neighbor pairs on they plane at fixedz C/A P
Throughout this work, we set=1, c=1, and the Boltz- K, = T forr r_TAT’ .
mann constankg=1 . U A7 forr'=r=xorr+y.
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Strictly speaking, we should keepr infinitesimal. Without described by the same 3BXY model under symmetry-
affecting the universality, however, we can rescale the spadereaking fields. Quantum fluctuations in the former play the
and time and obtain the partition function of an isotropic 3Drole of thermal fluctuations in the latter, tending to restore
XY model symmetry.

We finally consider the general case, where both spatial
and temporal fluctuations are significant. Adding the kinetic-
energy term to the 3D effective action in E@) and follow-
ing the same procedure as that in Sec. Il A at zero tempera-
ture, we obtain the 4IXY model with the effective action

Z= ?g Dgpe M, (5)

with the desired effective action

—H=K cog . — ¢y1),
;fr,) L= ¢rr) “H=3 Kjjcodd—di)+h cosMey, (8
’ (")
-1_— —1/2
where K—"=(CU,) measures the amount of quantum wherei=(r,x,y,z) denotes 4D space-time lattice sites and

fluctuations. . ; - ; -
. he anisotropic coupling and the symmetry-breaking field are
We then accommodate the commensurability effects aé P Ping y Y 9

zero temperature, taking advantage of the fact that th iven by
symmetry-breaking field term is diagonal in the position ba- AT .
sis. Via the same procedure and rescaling as in the absence of EU” fori’'=i*tzAz
the symmetry-breaking field, the effective action for the 3D
XY model obtains K= C A
’ — fori'=ix7A7
AzA
—H=K > cod¢,— ¢, )+h>, cosMep,, (6 AzA7U, for other nearest neighbors,
(r,r’) '
where the symmetry-breaking field is given by=V,A T h=VoAzAT.
=VovC/U,. In this manner, the coupled near-commensurate CDW
systemgwithout misfit) can be described by the appropriate
B. General Case XY models under symmetry-breaking fields. Depending on

We now turn to the system in which spatial fluctuations inwhether spatial and/or temporal fluctuations are present, the
the z direction are presertbut still without the misfit, and effective dimension of the system is determined to be three
first consider the case of on|y Spatia| fluctuations, with tem-Or four: It is four if both fluctuations are Significant at zero
poral fluctuations negligible. This corresponds to the classitemperature and three otherwise. The commensurability ef-
cal limit in the sense that the momentum and the positiorfects are described by the symmetry-breaking field, which
decouple and the momentum part, which can be integratelitroducesZy, symmetry to the system. Such a symmetry-
out, does not affect the relevant physics. In this intrinsicallybreaking field affects the ground-state symmetry and is ex-
3D case, it is revealing to resort to the discrete formulatioriPected to be relevant in the sense of the renormalization-
and replace the integratigid z by the summatio ,Az with ~ group (RG) theory. In the limitM—, however, theZy,
sufficiently small Az. Regarding spatial fluctuation- Symmetry is hardly distinguishable from the underlyingLJ
dependent energy as the continuum form of the cosine intesymmetry in theXY model. Therefore we expect the phase

action in the discrete representation, we obtain from(@p. transition to be crucially dependent upon the commensura-
the effective Hamiltonian for the 3XY model: bility factor M, and devote the following two sections to the

investigation of the phase transitions in the 3D and 4D
models under symmetry-breaking fields.

—H= 2, K, codd,—¢)+h> cosMe,, (7)
(r,r’) r

. 3D XY MODEL
wherer=(x,y,z) represents lattice sites in the 3D space, and UNDER SYMMETRY-BREAKING FIELD
the coupling strength and the symmetry-breaking field are
given by In this section we investigate the phase transition in the
3D XY model whose effective action is given by E). In
U Az forr’'=r+xorrxy the absence of the symmetry-breaking fietd=(0), the 3D
K = , . XY model has been studied both analyticalfy and
o Uj/Az forr'=r+zAz numerically'® revealing that vortex loops do exist and pro-
liferate at the phase transition. Accordingly, the topological
h=V,Az. scaling idea has been extended to the 3D transition with

conventional long-range order, with the scaling procedure of
Interestingly enough, Eqg6) and (7) show that both the Ref. 11 generalized appropriately for 3D directed lobps.
(zero-temperatujequantum phase transition in the absenceOne may then be tempted to extend the study of the 2D
of spatial fluctuations and théinite-temperatureclassical model in Ref. 12 to incorporate the symmetry-breaking term
phase transition in the absence of temporal fluctuations ar@ the 3DXY model, and combine recursion relations for the
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vortex fugacityy, and the field perturbation, according to 1

the duality relation between them. However, in contrast to ~ —H=— Zj (rx+9? UEUX ——f (ry +9%)
the 2D case, the geometric scaling of the coupling constant

in three dimensions results in nonzero valueypandy,, at

the fixed point +V1J j f,,"é")c; oy ”qu a-q"

On the other hand, the expansiof® is well known to
provide a mathematical formalism for calculating critical ex-
ponents of the Q{) model near four spatial dimensions, al- +2V2J j J,,U
lowing classification of the universality class of the system.
Here we extend the expansion approach to incorporate the
effects of the symmetry-breaking field. The expansion +V3Jj J" Ué OO _q—q' —q""
turns out to be useful only for small commensurability factor
M; we thus supplement its limitations with the Monte Carlo where the coefficients are given by
numerical method. In Sec. Il A, the symmetry-breaking per-
turbation is treated within the expansion and Sec. IlI B is 1
devoted to the Monte Carlo simulations of the XI¥ model rx=——>(b—dK=2h),
under symmetry-breaking fields. Ka

(11

1
A. € Expansion ry——(b dK),
. . Ka?
We consider thes expansion for the 3DXY model, ex-

tending the original formulation for the @ model® to in- V.=V
corporate the symmetry-breaking field. To begin with, we 1T
employ the two-component continuous local variable or spirand [ ;= fdg/(2)%= (1IN ad)E with the lattice constara
S=(S,9) at each 3D lattice site, the total number of restored for clarity. Here it is shown that thel=2
which is denoted byN. The constraint that each spin has thesymmetry-breaking field gives rise to anisotropy in the qua-
unit magnitude is relaxed by the additional weight factordratic term, making, less tharr, . Following the standard

introduced to the partition function procedure, we obtain the recursion relations to the leading
order ine=4—d:
z=|11 foo dSr)e_[H+W(Sf)], (9) ary 12C v 4C v
B @A T, T, Ve
with the weight factor (> 0) or 4C 12C
—F=2r — —V,————V
al Yodldr, 7 L4ry ¥

exp[—W(S)]zexp[— ;bsz—us4 ,

—= =€V, + ver S e
=€ ,
AT (Lr)? Tt (L4ry)? 2

which has been expanded up®{S*). At the physicalXyY

fixed point the sixth-order term is less relevant in dimension .\, 16C 12C
14 \pf ; ok oX 2 2
d=4- e thand=4."" With the identificationS; = cos¢, and 7:6V2+ A+r(itr )V2+ A+ (i+r )V1V2
S/=sin¢, , the original action in Eq(6) is written in terms X y X y
of the continuous spif%, : 12C
T arro(ier,) V2Ve
h
= .S, M_ X\ M —2
: E,KS'SJrzE{(ZS') 77(25) Vs 6C , 4C
rr —I= eVit+ 2V3+ 2V21 (12
M(M— J (1+ry) (1+r1y)
———(28HM - (10 , - 1-d_di2
with the spatial scale factdrandC=2-"“7%/(d/2—1)!.

In the absence of the symmetry-breaking figdd=Q), the
Note that forM <4 the order of the action does not exceedparameter space reduces to the 2D spac¥)( sincery
0O(S%, leading to the Ginzburg-Landau-Wilsd@GLW) ef-  =ry=r and V;=V,=V;=V. In this case the nontrivial
fective HamiltonianH=H +W to O(S%). fixed point of the recursion relation in E(L2) is simply the
We first examine the cadéd =2. In the momentum space XYfixed point, given by
representation, keeping only relevant termsQog?) and
scaling the spin variable according 8= (Ka®"?) 2o € €

q: * — *—
we express the GLW Hamiltonian as ' 5’ v 40C (13

115117-4



PHASE TRANSITIONS IN MODELS FOR COUPLED. .. PHYSICAL REVIEW B89, 115117 (2004

to O(e). As the symmetry-breaking field is turned on, how- stability. Unfortunately, such calculation of higher cumulants
ever, we have,<r, at the initial locus and need to examine is quite a formidable job, and it is very difficult to extend the
the RG flow in the full 5D parameter space e expansion to the case of a high commensurability factor.
(ry.ry,V1,V2,V3). To investigate the stability of th&Y

fixed point in the 5D parameter space, we linearize (#8) B. Monte Carlo simulations

about this point and obtain a stability matrix which yields

five eigenvalues together with corresponding scaling expo- This section presents the Monte Carlo study of thex3D

model in symmetry-breaking fields. To estimate the critical

nents: ) "
temperatures and determine critical exponents, we have per-
€ 2¢ formed Monte Carlo simulations at “temperature§’e.,
y1=2— 5 Y,=2— 5 quantum or temporal fluctuationsanging fromK ~1=0.5 to
K~1=5 on lattices of linear sizé =4 up toL =32 for sev-
6 de eral commensurability factors and field strengths. Measured
Ys=—€ Y=g, Ys=~ g (14  in simulations are the order parameteand the susceptibil-
ity x defined to be
Since the exponents;, y,, andys, which correspond to the
three eigenvectors spanning the 3D subspactg\(,,Vs), mE< ‘ 1 2 el >
are all strictly negative, it is concluded that &|'s (for i N 7 ’

=1,2,3) are irrelevant at th¢Yfixed point. In contrast, both

y, andy, are positive, indicating that th¥ Yfixed point is /1 2 |2 1 E i
unstable in the 2D subspace, (r,). The initial locus, which X=\n<= € T\ IN= €T
is kept off theX Yfixed point by the symmetry-breaking field,

should flow far off theX Yfixed point. Instead it is expected WhereN is the number of sites. We have employed the mul-

2
> : (18)

to flow toward the Ising fixed point located at tiple histogram methdd to interpolate the quantities calcu-
lated sparsely in a given range of the temperature to any
€ . € temperature inside the range. It not only saves a great deal of

=—5 ry=% Vi=- Vi=V3=0.

computing time but also provides the values of quantities at
(15) arbitrary temperatures for finite-size scaling, resulting in
critical exponents of better accuracy. In fact we have ob-
tained the best collapse of the scaling function such as

36C’
At this point it is more appropriate to tal{g’l as the scaling
field, giving the scaling exponents

m(L¥t)=LF"m(t), (19

with the reduced temperature=T/T.— 1=K ./K—1, by
minimizing the measure of errbr

€
yrx=2—§, Yr}jl:_z- (16)

Thus the initial locus withr,<r, indeed flows toward the
Ising fixed point along the stabtg direction. In this manner, 1
Xmax— Xminf

A (FR(0)) — (M)

Xmin

the symmetry-breaking field favl =2 introduces anisotropy aﬁq
in the quadratic term, making th€Yfixed point unstable and
generating an Ising or two-state clock fixed point. Revealed (20
accordingly is a single second-order transition between twoover the critical temperature and exponents. Hgre - ))
state clock order and disorder. stands for the average over the lattice size and similar rela-
We next turn to the cadd =3, where Eq(10) shows that  tions for the susceptibility have also been considered. We
terms of linear and third order in thecomponent of the spin  have taken the rang€Xmin,Xmax=[—AX,Ax] and at-
come into play; power counting suggests that these fields ate@mpted a series of collapses/&s is diminished. The result
relevant nead=4. Owing to the anisotropy associated with has then been extrapolated to the lidit—0.
the absence o8 terms, in particular, the cubic terng()* Figure 1 presents typical collapse of the scaling function
here may not be removed by mere shift and is not redundanyyith the best-estimated critical temperatiiieand exponents
in contrast to the case of the Ising model. The symmetrys and »; nice collapse behavior can be observed near the
breaking field is thus expected to drive the transition betweegritical temperaturet=0). The inset in Fig. 1 discloses how
the disordered phase and the three-state clock ordered phagge corresponding error% depends on the value of the ex-
Finally the symmetry-breaking field fal =4 introduces  ponenty. We have thus estimated the error in the obtained
anisotropy in the quartic term: critical exponent from the standard deviation of the minimiz-
V.= —u+8a% 4K ~2h ing values over the sample ensemble. In this way, the phase
1 ' transition forM =2 is found to be of the second order with
the critical exponents=0.63+0.01 andB=0.34+0.04 for

Va=Vs=—u. A9 h=12 and »=0.627+0.004 and B=0.32+0.01 for h
This leads the action in Eq1l) to be unstable for suffi- =2.7. These results coincide perfectly with the known criti-
ciently large values of the fielth, making it necessary to cal exponents for the 3D Ising model=0.630 andpg
consider higher-order terms in the weight functd(S) for =0.324, thus demonstrating the validity of theexpansion
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FIG. 1. Data collapse of the order parametefor three differ- FIG. 2. Critical temperatur&_® in the 3D XY model under

ent values of the system sidg with the best-estimated critical symmetry-breaking fields vs the symmetry-breaking field strength
temperature and exponents given in the text. The inset shows thg for the commensurability factdvl =2,3,4, and 5. Typical error

dependence of the errer;, on the value ofv, with T, and3 fixed  pars are smaller than the symbol size and lines are merely guides to
at their best-estimated values. The data have been takev o2 eyes.

and ath=2.7; typical error bars are not larger than the symbol
sizes. =4. With the space and time rescaled appropriately, the
(mean-field self-consistent equation reads

analysis in Sec. lll A. Here it is of interest that the same

universality class was also reported in the quantum Monte

Carlo study of a tight-binding model of spinless fermion

chains coupled by intrachain and interchain Coulomb ] - )

interactions® The tight-binding model analysis, though be- Where Zy is the partition function,

ing restricted to théVl =2 case, could incorporate amplitude o

fluctuations of the CDW order parameter directly. Indeed the ZyE= d¢ e Hwr

accordance between the two analyses manifests that fluctua- 0

tions. in the phasérather than ilt].the amplitudlanostly de- corresponding to the mean-field action

termine the nature of the transition.
For M =3, on the other hand, we have found no evidence — Hur=4K({cos¢)cosp+(sin¢))sing+h cosM ¢,

for the first-order transition, and obtained the estimation (22

=0.596+0.007 andB=0.3=0.01; this is to be compared . . —_— '

with the Iong—standiﬁg controversy as to whether thep transi\—NIth the rescaled coupling constaki=CU, and fieldh

tion in the 3D three-state Potts model is of the first order orEV0 VCIU .. . .
continuous'’ It is also of interest that the critical behavior !N the absence of the symmetry-breaking field, the self-

for M=4 is similar to that of the 3DXY model without any consistent equation leads to the equation of state for the or-
symmetry-breaking field. Figure 2 shows the critical tem-der parametem= \(cos¢)"+(sin )"

perature(i.e., the critical fluctuation strengthK . versus the |,(4Km)

field strengthh for 2<M=<5. It is observed that foM <3 = 1—7
the critical temperature increases with the field strength lo(4Km)

while for M=4 the commensurability energy appears tOynerel, is thenth modified Bessel function. The system is
have no effect on the critical temperature, in the ranggy the disordered phase fér<K.(h=0)=1/2 characterized

probed. Such critical behavior fovl =4, similar to that of by m=0; beyondK.(h=0) the ordered phase with+0 is
the ordinary 3DXY model, reflects that, as noted in Sec. I, f3y0red. Similarly CtheM =1 case can be analyzed easily.

the Zy, symmetry for largeM is indiscernible from the W) \here arbitrarily small but positivé results in{cos$)>0

. 2m .
()= 2yt | dgelte s, 2

(23

symmetry underlying in th&Y model. and(sin¢)=0. The equation of state is thus
IV. 4D XY MODEL (cosg)= |1(4K<Cos¢>+h). (24)
UNDER SYMMETRY-BREAKING FIELD lo(4K(cos¢)+h)
We now study the phase transition in the AIY model, For larger values oM, Eq. (21) may be solved numeri-

described by the effective action in E@), through the use cally with the parameter& and h varied. It is found that

of the mean-field approximation. Here the mean-field apthere exists a field-dependent transition coupling strength
proximation, developed for superconducting arrays in apK.(h) below which Eq.(21) bears only the null solution
plied magnetic fields® is expected to be accurate since the(cos¢)=(sin$)=0. As K is increased beyon# .(h), non-
upper critical dimension of th&XY model is given byd, zero stable solutions emerge. Due to #)g symmetry, i.e.,
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the invariance of the action under the shift in the angle by
27n/M for any integern, the solution of Eq.(21) can be
expressed in terms of thkl-state clock order parameter
m(K,h):

(ei¢’>=m(K,h)e2”i”/M, (25)

m(K,h)

with integer n=0,1,... M—1. The critical coupling
strengthK.(h) is defined to be the largest value léfsatis-
fying m(K,h)=0.

Figure 3 shows how the order parametedepends on the . .
parame_ztersk( andh_ for different \_/alues oM. It is observed 0.25 0.5 0.75 1 1.5
that m in general increases rapidly from zero lesexceeds
K. and then saturates to unity, with the increase more rapid (@)
for larger h. While for M=2 and M=4 the transition is
found to be of the second order, numerical results Nor
=3 indicate a first-order transition, which is expected from
the appearance of the third-order term in thexpansion. g =
For M=<3, the critical coupling strengtiK.(h), starting f D
from K.(h=0)=1/2, decreases with almost exponentially o
to the asymptotic values, 0.250 and 0.462Nb+=2 and for
M =3, respectively. FoM =4, on the other hand, the tran-
sition point does not depend on the strength of the
symmetry-breaking field, givind<,=1/2 regardless oh.
Again manifested is the crucial role of commensurability in
the phase transition. 0 :

The resulting phase diagram for the 20¢ model under 0.25 0.5 0.75 1 1.25
the symmetry-breaking field is displayed in Fig. 4, where the  (b) K
boundarch_1 versush is plotted for different values df/.

When K~ 1<K_!, the Z,, symmetry as well as the () 1
symmetry is broken and identified is tié-state clock or-
dered phase, with one of the minima-eh cosM ¢ favored.
WhenK 1> K;l, unlike the U1) symmetry broken explic-
itly for h=#0, theZy, symmetry remains unbroken, leading to
the disordered phase.

m(K,h)
G,

m(K,h)

V. COMMENSURATE-INCOMMENSURATE TRANSITION

Up to the present, we have assumed the absence of misfit,
so that only the transition between the disordered phase and 0 ; .
the M-state clock ordered phase, where commensurate 0.25 0.5 0.75 1 1.25
CDW's are developed, has been considered in several ideal- (c) K
ized cases described in Sec. Il. However, the misfit, being a
key ingredient to bring about the commensurate- FIG.3. Order parameten as a function of the coupling and
incommensurate transition in a near-commensurate CDWhe field strengtth for (&) M=2, (b) M=3, and(c) M=4. Main
chain, must be taken into consideration in understandingraPhs showmvsKfor h=0(+),0.5(x),1(t),5(O), and 10¢2)
various transitions in the coupled CDW system. rom below. Insets displayn(K,h) vs h for various values oK:
It is well known from the study of the 1D Frenkel- From below (@ K=0.27503037505, and 0.75() K

Kontorova modéf at zero temperature that a single near-— 0-47,0.475,0.4875,0.5, and 0.75. The overall behavior of the or-

commensurate CDW changes from the commensurate sta?gr parameter foM>4 is the same as that fod =4.

to the incommensurate state when the misfit exceeds a criti-

cal value depending on the commensurability energy. At fifected by the interchain coupling in that the interactions fa-
nite temperatures the 1D CDW system is always in the invor either the commensurate state or the incommensurate
commensurate staf®.0n the other hand, in the coupled state, as explained below. To investigate the phase transition
CDW system, interactions between the CDW chains mayf the coupled CDW system, we consider the Hamiltonian in
alter the nature of the transition. First of all, the effective Eq. (2) without temporal fluctuations, which makes the prob-
dimensions of the system grow to three, giving rise to thdem simpler and allows us to focus on the static properties
persistence of long-range order, as observed in the previously.

sections. Moreover, the CI transition itself can also be af- At zero temperature the problem is rather simple to solve.
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FIG. 4. Phase diagram for the 4XY model under the FIG. 5. Behavior of the order-disorder transition temperaiiye

symmetry-breaking field, displaying the boundaries between thdVith the misfitd in the M =2 coupled CDW system fdd; =1 and

M-state clock order phas@V) and the disordered phasp) for V0=_ 0.2. Ea_ch symbol corresponds to a different value of the inter-
different values oM. Lines forM=2 and 3 are merely guides to Chain coupling strength, =0.01(1),0.02(),0.05(0),0.1(®),
eyes. 0.2(A),0.3(A),0.4(V), and 0.5¥). Typical error bars are smaller

than the symbol sizes and lines are merely guides to eyes.

The interchain coupling term in EQR) reaches the minimum

when all the phaseg, in thexy plane become equal to each phase but also in the commensurate phase; in the system of
other. All the CDW chains, therefore, follow the same phasdinite size it may remain nonzero even in the perfectly com-
configurations determined by the 1D Frenkel-Kontorovamensurate state. We also compute the soliton depsit§*
model, thus undergo the CI transition at the critical misfiti-e., the soliton number per site per chain, which character-

given by’l9 izes the CI transition. For the detection of any hysteresis,
these two physical quantities have been measured in two

4 |V, different ways: in the cooling-down process with randomized

5(::; U_‘| (26) initial phase configurations and in the heating-up process
_ _ ) starting from the zero-temperature ground state. In each pro-

regardless of the interchain coupling strength. cess the system has been equilibrated sufficiently while the

The system at finite temperatures is examined by meangmperature is varied gradually.

Of the Monte Cal‘lo methOd. For th|S we discretize ﬂwﬂs Shown in F|g 5 iS the dependence Of the order-disorder

in Eq. (2) as in Sec. Il B, and obtain the lattice Hamiltonian ;ansition temperatur&, on the misfits in theM =2 CDW
U system at various interchain coupling strengths. It is ob-
H=, _”(ngZ_ b, — 8)2— D, VocosM ¢, served that the misfit tends to reduce the transition tempera-
ro2 r ture: The transition temperature first decreases as the misfit is
increased from zero, then saturates when the misfit reaches a
_E E U, cod e, — /), (27)  value comparable té.. Here stronger interchain coupling,
Z (xyx'y") which helps to increase the transition temperature, in general

where Az has been absorbed into the coupling ConstantsWeakens the effects of the misfit. Besides the transition tem-

Since the dimension along the CDW chain is usually Icmgelpera.tures, the critica_l-exponents also. change with the misfit.
than the lateral dimensions, the lattice slzgalong thez For instance, the critical exponents in the system With

axis is kept to be two times larger than the other linear sizes_ O-1 are found to bes=0.79+0.02 andy=1.33+0.01 at

in our simulations, and accordingly the interchain coupling®~0-2; »=0.77£0.03 andy=1.64+0.05 at5=0.4. This

U, is restricted to be smaller thali; to avoid inessential suggests that the mtroductlon.of the m'ISfIt changes the nature
finite-size effects. We further set the parameterdJie=1 onthg orgerﬁd phlaseH n;gktl)ng. dlt q:cffedrent ‘;:0”.‘ the 3D
andVy= 0.2 and sweep the interchain coupling strength from O: eé%v\? ﬁse. ts gu etl ?né' f | as the incommen-
0.01 to 0.5 and the misfif, which is assumed to be uniform S pnhase, as demonstrated below.

throughout the system, from zero to 0.8 beyond the critical We now draw our attention to the Cl trans!t|on oceurring
misfit 5.(=0.569). at lower temperatures. In the absence of misfitQ) the

The order-disorder transition is described conveniently bySOIIton densityps is ob;eryed _to vanish on ave'rage at all
the (incommensurateorder parameter defined to be temperatures below, , mdmatmg that the CDW'’s formed
are commensurate even in the presence of thermal fluctua-
1 , tions. Such a commensurate phase is destroyed by the intro-
mE< ’ N > e > (28)  duction of misfit, even fo< 5., with the help of thermal
' fluctuations. Figure 6 exhibits the behaviors of the order pa-
and its susceptibilityy. Note that in the thermodynamic limit rameter and of the soliton density as the temperature is var-
this order parameter vanishes not only in the disordereded in the system with misfie=0.2. It is shown that the
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order parameter reaches its maximum at temperaturelpgar 0.2

and decreases to zero as the temperature is reduced while the

soliton density begins to decrease from its maximum value at

T~Tp and vanishes almost to zero at very low temperatures.

Nonzero values of the order parameter and of the soliton

density together in the regime<T correspond to the for- 2

mation of incommensurate CDW'’s. Thus the order-disorder

transition atT =Ty, is identified as the transition between the

incommensurate CDW state and the disordered state. In ad-

dition, the vanishing soliton densitjee the inset in Fig.)6

is a sign of the commensurate CDW phase; this indicates the 0 ) .

presence of a CI transition driven by thermal fluctuations. 0 1 9 3

The CI transition temperaturg,c is defined to be the tem-

perature at which the soliton density begins to be nongaro (a) kgT

the thermodynamic limjt Although our computing ability

disallows us to determine the precise valuélef, Fig. 6b) 0.07

manifests thatT,c increases with the interchain coupling

strength. In this sense the interchain interactions favor the

commensurate state. In contrast, it is also observed that the

interchain interactions prefer the incommensurate state at the

misfit values somewhat largébut still smaller thans). s
Figure 7 compares the order parameter and the soliton

density at6=0.4, measured in two different processes: the

cooling process and the heating one. Unlike the cése

=0.2, a hysteresis is evident 4=0.4 (and also in the un-

displayed case 06=0.3), as shown in Figs.(@ and 7b)

for the order parameter and in FigicY and Fig. 7d) for the

soliton density. In the heating process starting from the com-

mensurate ground state at zero temperature, the commensu- (b)

rate CDW's survive some thermal fluctuations and experi- ) )

ence the Cl transition at a finite transition temperature. In F!G. 6. (@) The order parameten and (b) the soliton densitys

contrast, as the temperature is lowered in the cooling proYS € temperaturé in the M =2 system of misfity=0.2 and size

cess, the order parameter keeps increasing and the solitba— 32- Each symbol corresponds to a different value of the inter-

density saturates to a finite value, unless the interchain cofz'an COUp“ng.Strength as .“Sted In Fig. 5. The inset is an enlarged
S . . L - view of the soliton density in the range &TI<0.5.

pling is sufficiently weakii.e., for U, >0.02). This implies

that the system still consists of the incommensurate CDW'’s . . )

at temperatures where commensurate CDW’s are suppos&€@Mes stronger. In addition, in the same narrow region the

to be more stable. For weak coupling (<0.02), on the sol!ton number and the .order paramt_ater fluctuate ;trongly

other hand, no discrepancy between the two processes is owhile the_energy qu_ctuatl_ons are relatllvely weak. This sug-

served. gests a kind of configurational fluctuations over many meta-
It is of interest to compare the hysteresis observed hergt@ble states. o _

with the one reported in the specific heat around the Cl tran- FOr 1arge values of the misfit&= &), neither commen-

sition in a number of incommensurate systéfithe latter is ~ Suraté CDW nor hysteresis is observed and the soliton den-

attributed to the effects of pinning of the incommensurates'y d0€s not vanish even at zero temperature in any process.

modulation due to defects or impurities; our observation, inONlY the transition separating the incommensurate CDW

contrast, shows that the hysteresis can appear even in tiftat€ from the disordered state is thus identified.

absence of defects, for which interchain interactions are re- Ve have also performed similar simulations for the com-

sponsible. Namely, the interchain coupling operates in differmensurability factorM =3, only to obtain results qualita-

ent ways depending on the process: In the cooling procesiVely the same as those fé =2 presented above. Quanti-

correlations between CDW chains due to the interchain inlative differences observed include that fdr=3 the misfit

teractions hinder each CDW chain from getting into the com-affécts the transition temperature more weakly and the hys-

mensurate state. On the contrary, in the heating process, ti@resis takes place even at smaller misfit sucld-ag.2.

interchain correlations hold each chain close to the zero-

temperature ground state until thermal fluctuations become

comparable to the interchain interaction energy. This argu-

ment is supported by the observation that the order parameter Combining the results for the 3D and 40Y models un-

and the soliton density increase abruptly in a narrow regiorer symmetry-breaking fields, studied in Secs. lll and IV, and

of the temperature, as shown in Figghj7and 1d), and such those for the near-commensurate CDW model, studied in

discrepancy becomes manifest as the interchain coupling b&ec. V, we are ready to describe the phase transition in the

VI. PHASE DIAGRAM
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1 1

oz, o
1: :ﬂi‘ Ef? :".‘, .
g 05 . g 05
L FIG. 7. The order parameten [(a) and (b)]
0 Mﬁoﬂ 3 0 and the soliton density [(c) and (d)] vs the
0 2 temperatureT in the M=2 system of misfits
(a) (b) =0.4 and sizd_,=32. The left figured(a) and
(c)] and the right onefb) and(d)] show the data
0.14 0.14 obtained in the cooling process and in the heating
A e process, respectively. Each symbol corresponds
L s e : : ; ;
-tk A to a different value of the interchain coupling
& 007 b & < o007l f | P strength as listed in Fig. 5.
0
0 1 2 2
{c) kgT (@

coupled CDW system. First, we focus on the system in theeplaced by theéM-state clock ordered phase fhr0. For
absence of any misfit{=0). For this purpose, it is adequate M=4, however, the commensurability energy affects neither
to consider the 3D space consisting of the three parametertfie transition temperature nor the nature of the transition.
the temperaturel, the strength of the symmetry-breaking  We next take into consideration the effects of misfit and
field h, and the amount of quantum or temporal fluctuationsshow in Fig. 9 the schematic phase diagram in the 3D space
K™*. On each of the three plane§ €0, K™*=0, andh  consisting ofT, U, *, and &, with U; and V,, fixed. At &

=0) in the 3D space, appropriate boundaries separating vari=0, the system belongs to the same university class as the
ous phases can be plotted through the use of the known
results, as shown in Fig. 8. The phase at a given point in the

3D space can then be speculated by means of finite-size sca
ing in the region neaf =0 or the semi-classical methods in
the K~ 1~0 region.

We first consider the homogeneous case, where spatie
fluctuations along each chain are negligible, and show the
phase diagram in Fig. 8 fde) M=4 and(b) M=5. At zero K
temperature, the system is mapped onto thex3Dmodel as M b
discussed in Sec. Il, and the corresponding phase diagran f
obtained in Sec. lll, is sketched on theK ~* plane. On the
other hand, in the absence of temporal fluctuatioks ¥
=0), the system maps onto the classical ¥ model un- T
der symmetry-breaking fields, for which the phase diagram ©
in Ref. 12 is drawn on thé-T plane. Finally, on thad-K 1
plane withh=0, the system is described by the Hamiltonian
in Eq. (3) and expected to display the Berezinskii-Kosterlitz- XS
Thouless transition renormalized by quantum fluctuatftfis.

Note that the caseldl =2 and 3 are not shown here. In this K1
case presumably Ising/Potts critical lines exist on thé M D
plane; however, it is not known how these lines connect up

to the phase boundary for=0. h

In the general case with spatial fluctuations present, we(€) (d
obtain the phase d'agra”.‘ shown n Figéc)gand 8d) for . FIG. 8. Schematic phase diagram for the coupled commensurate
Ms3. andM =4, respgctlyely. _meg to the additional di- CDW system in theT,h,K ) space, depending on spatiotemporal
mension along the chain direction, the system maps onto thl‘ﬁjctuations and commensurability: the homogeneous ¢astor
3D XY model in the classical limit, i.e., on the-T plane, =4 and(b) for M=5; the general cage) for M=2 or 3 and(d)
whereas 4DXY model is obtained at zero temperature. AC-for M=4. Plotted on each plane are boundaries between various
cordingly, on then-K ! plane, the phase diagram of the 4D phases, including the disordered phaB®, the M-state clock or-

XY model obtained in Sec. IV is drawn. It is observed thatdered phaséM), the algebraically ordered phase present in the 2D
the 3D XYordered phase does not survive the field and is<Y model (2D XY), and the 3DX Yordered phaséD XY).

2D XY

4y

E
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=0 can then be speculated through the use of finite-size scal-
ing and semiclassical methods, respectively, thus giving a
schematic phase diagram in tHE,K ~1,h) space.

We have also found via Monte Carlo simulations that the
system with nonzero misfit undergoes a commensurate-
incommensurate transition. The interchain interactions give
rise to the correlations between neighboring CDW'’s in such
a way that either the commensurate state or the incommen-
surate state is favored depending on the initial configuration:
In the cooling process the CDW'’s remain incommensurate
down to almost zero temperature while in the heating process
a substantial amount of the commensurate CDW’s survive
thermal fluctuations.

FIG. 9. Schematic phase diagram for the coupled CDW system At strong thermal or quantum fluctuations, i.e., at high
in the (T,U*,8) space, with the effects of the misfit taken into or smallK, the system is in the disordered phase. No CDW is
account. The surfaces depicted by thick solid lines and dashed linggrmed and the system is expected to be metallic. On the
separate the incommensurate CDW ph@d&g from the disordered contrary, weak fluctuationfow T and largeK) favor the
phase(D) and from the commensurate CDW pha$®), respec-  \1_state clock ordered phase, in which commensurate CDW'’s
tively. are developed as long @s< &, . Accordingly, the interaction

o ~ between the periodicity of the CDW and the underlying lat-
3D XY model under the symmetry-breaking field, for which tice periodicity drives the collective excitation to develop a
the phase diagram is drawn on tieU;* plane. On the gap, and the system becomes insulating. At moderate fluc-
other hand, at zero temperature, each CDW chain undergo@gations or for large misfit §>4.), on the other hand, in-
the CI transition with the critical mleIﬁc which is indepen- commensurate CDW'’s emerge. In this case the System may
dent of the interchain coupling strength, . The order- remain conducting through collective Tilich conduction,
disorder transition temperatufig, and the Cl transition tem- j.e,, via sliding of the CDW’s. Usually, the conductivity via
peratureT ¢ obtained in Sec. V produce surfaces depicted bysuch collective modes is lower than that via uncondensated
(thick) solid and dashed lines, respectively, in theelectrons in the disordered phaséthout CDW). In particu-
(T,U1,8) space. The phase diagram shows thatfers, lar, the CDW may be pinned in the presence of impurities,
the system undergoes double transitions as the temperaturesisarply decreasing the conductivity. As the temperature is
lowered: first, the order-disorder transition into the incom-lowered, therefore, the system for weak quantum or thermal
mensurate CDW phase and then, the CI transition into théuctuations becomes insulating via three possible routes, de-
commensurate CDW phase. As revealed in Sec. V, a hystepending on the misfit and the interchain interaction: First, the
esis takes place around the CI transition point, which manicommensurate CDW phase emerges directly from the high-
fest itself more clearly as the interchain coupling becomesemperature disordered phase; second, only the incommensu-
stronger. rate CDW phase appears, reducing the conductivity; third,
the incommensurate CDW phase appearing first is followed
by the commensurate phase emerging via the commensurate-
incommensurate transition.

To study phase transitions in coupled CDW systems, we Note that beginning with the Hamiltonian in E(l), we
have mapped the systems at zero temperature onto three- lvave taken into account only phase fluctuations and disre-
four-dimensionaX Y models, depending on the spatiotempo-garded amplitude fluctuations. The latter are in general irrel-
ral fluctuations, under symmetry-breaking fields which ariseevant in the RG sense, expected not to affect nature of the
from the commensurability energy. Such techniques as- phase transition. On the other hand, there still lacks conclu-
pansion, mean-field theory, and the Monte Carlo methodive understanding of the dynamic properties in various
have then been applied to the obtain€d models. Revealed phases. It is thus desirable to consider the responses to ex-
is a single second-order transition betweenNhstate clock ternal electromagnetic fields, and, for example, compute the
order and disorder in both the three-dimensional and fourconductivity, which can be obtained from the current or the
dimensional systems, except for the caée=3 in the four- ~average momentum in the presence of appropriate misfit. De-
dimensional system where the transition is of the first ordertailed investigation of such dynamic responses is left for fur-
In particular, the commensurability witkl =4 has been ob- ther study.
served not to change the properties of the transition including
the critical temperature and exponents. Combining these
zero-temperatureT(=0) results with the existing results in
the absence of quantuftemporal fluctuations K ~*=0) or We thank G.S. Jeon for helpful discussions and acknowl-
of the symmetry-breaking fieldh(=0), we have constructed edge the partial support from the Korea Science and Engi-
boundaries separating various phases on the three pl@nes feering Foundation through the SKOREA Program and from
=0, K '=0, and h=0) in the three-dimensional the Ministry of Education of Korea through the BK21 Pro-
(T,K~1,h) space. The boundaries neék#=0 and neakk "1  gram.
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