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Phase transitions in models for coupled charge-density waves
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Various phase transitions in models for coupled charge-density waves are investigated by means of thee
expansion, mean-field theory, and Monte Carlo simulations. At zero temperature the effective action for the
system with appropriate commensurability effects is mapped onto the three- or four-dimensionalXY model,
depending on spatiotemporal fluctuations, under the corresponding symmetry-breaking fields. It is revealed that
the three- and four-dimensional systems display a single transition between the clock order~with brokenZM

symmetry! and disorder. The nature of the phase transition depends crucially on the commensurability factor
M: For M>4, in particular, the transition belongs to the same university class as theXY model. On the other
hand, in the presence of misfit causing frustration in the charge-density wave, the interchain coupling is
observed to favor either the commensurate state or the incommensurate state depending on the initial configu-
ration; this gives rise to hysteresis around the commensurate-incommensurate transition. Boundaries separating
such phases with different symmetries are obtained in the parameter space consisting of the temperature,
symmetry-breaking field, fluctuation strength, interchain coupling, and misfit.

DOI: 10.1103/PhysRevB.69.115117 PACS number~s!: 71.45.Lr, 64.60.Cn, 64.70.Rh
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I. INTRODUCTION

A large number of organic and inorganic solids have cr
talline structures in which fundamental structural units fo
linear chains.1 In these materials, largely different overlap
of the electronic wave functions in various crystallograp
directions lead to strongly anisotropic, so-called quasi-o
dimensional~quasi-1D! electron bands. Among the exot
physical phenomena in quasi-1D materials, charge-den
waves~CDW’s! are of much continual interest. Research in
this topic has been stimulated by recent advances in exp
mental techniques, which now allow direct observation
CDW’s and measurement of various static and dyna
properties of CDW systems.2 In general the material o
quasi-1D structure is expected to exist in the form of
bundle of chains rather than of a single chain. In suc
bundle of chains, interchain tunneling of electrons leads
coupling of the fluctuations on neighboring chains, whi
may affect the behavior of the system in a crucial way. F
example, the system of two coupled incommensurate ch
in the weak-coupling limit has been reported to exhibit
complicated commensurate-incommensurate~CI! transition,
reminiscent of devil’s staircase.3 Obviously, the opening of
the gap at the Fermi surface implies that each separate c
is an insulator at low temperatures. However, with the c
pling between chains taken into account, expected are v
ous transitions between insulating and metallic phases,
extensive investigation of which is still lacking in spite of th
ubiquity of the CDW.

In this paper, we investigate nature of the phase tra
tions in the coupled CDW system. In the absence of mi
the effective action for the~commensurate! system at zero
temperature with suitable commensurability effects
mapped onto theXY model under the correspondin
symmetry-breaking field. The effective dimension of the s
0163-1829/2004/69~11!/115117~12!/$22.50 69 1151
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tem is given by four if both spatial and temporal fluctuatio
are significant, otherwise it is three. The phase transition
the resulting 3DXY model under the appropriate symmetr
breaking field is examined via thee expansion and the
Monte Carlo method. It is found that there emerges in
system the clock ordered phase~with the ZM symmetry bro-
ken! via a second-order transition, the nature of which d
pends on the commensurability factorM: In particular, the
critical behavior forM>4 appears to be the same as that
the 3DXY model. For the 4DXY model, on the other hand
mean-field theory is expected to be accurate and revea
single transition, which is of the first order forM53 and of
the second order otherwise. We then examine the effect
misfit, which not only change the nature of the order-disor
transition but also brings about a CI transition. In the pr
ence of the misfit, correlations due to the interchain coupl
are observed to favor, depending on the initial configurati
either the commensurate state or an incommensurate s
which gives rise to hysteresis behavior: While in the cooli
process the incommensurate CDW’s persist near zero t
perature, in the heating process large portions of the sys
remain in the commensurate state at rather high temp
tures.

This paper is organized as follows. In Sec. II, the effect
action at zero temperature is derived for the coupled CD
system and mapped onto the appropriateXY model accord-
ing to whether spatial and/or temporal fluctuations are ta
into consideration. Section III is devoted to the investigati
of the phase transition in the 3DXY model under the
symmetry-breaking field, which introduces theZM symmetry
to the system. Here two independent approaches are
ployed: thee expansion in Sec. III A and the Monte Carl
method in Sec. III B. Section IV presents the mean-fie
analysis of the 4DXY model, demonstrating the first- an
second-order nature of the transition under the appropr
©2004 The American Physical Society17-1
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symmetry-breaking field. In Sec. V the effects of the int
chain coupling in the presence of misfit are investigated
Monte Carlo simulations, which discloses properties of
CI transition in the system. Combining the results for the
transition with those for the 3D and 4DXY models obtained
in Secs. III and IV, we construct in Sec. VI schematic pha
diagrams for general coupled CDW systems in the 3D sp
consisting of the temperature, interchain coupling, and m
fit. Finally, Sec. VII gives a brief summary.

II. EFFECTIVE ACTION

We consider a system of coupled near-commensu
CDW chains along thez direction, each of which is charac
terized by the commensurability factorM and the position-
dependent misfitd r with r5(x,y,z). On thex-y plane, the
chains are assumed for simplicity to constitute a square a
of lattice constanta ([1). Disregarding amplitude fluctua
tions of the complex CDW order parameter and consider
spatial and temporal fluctuations of the phase only,4 we write
the Hamiltonian in terms of the phasef r of the order param-
eter at positionr and the momentumpr5C]f r /]t:

H15E dz(
x,y

F pr
2

2C
1

U i

2 S ]f r

]z
2d r D 2

2V0cosMf rG ,
~1!

where for the moment the interchain coupling has been o
ted. The first term and the second term correspond to
change of the total electron kinetic energy due to tempo
and spatial fluctuations, respectively, whereas the third t
represents the commensurability energy. The dimension
coupling constantsC, V0, and U i depend on such detaile
microscopic structure of the system as the density of state
the Fermi level, the effective electron mass renormalized
to the lattice vibration, the electron-phonon coupli
strength, and the cutoff energy.4

We now consider interchain tunneling of electrons b
tween nearest-neighboring chains at (x,y) and at (x8,y8) on
the x-y plane, i.e., at the same positionz; this gives rise to
the interaction of the formU'cos(fr2f r8), whereU' is the
dimensionless interchain coupling constant and higher-o
harmonics have been disregarded. With this included,
Hamiltonian H for the coupled near-commensurate CD
chains reads

H5E dzH (
x,y

F pr
2

2C
1

U i

2 S ]f r

]z
2d r D 2

2V0cosMf rG
2 (

^xy,x8y8&

U'cos~f r2f r8!J , ~2!

where theposition f r and the conjugatemomentum pr are
considered to observe the commutation relation@f r ,pr8#
5 id r ,r8 , suggesting the position representationpr

5̇2 i ]/]f r . In the second summation̂xy,x8y8& stands for
the nearest-neighbor pairs on thex-y plane at fixedz.
Throughout this work, we set\[1, c[1, and the Boltz-
mann constantkB[1 .
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Note that in the presence of the commensurability ene
the misfit cannot be simply gauged away and introduces f
tration to the system. For the time being we consider the c
of strictly commensurate CDW systems without any mis
To investigate the quantum phase transition in this ca
driven by quantum fluctuations at zero temperature, we
low the standard procedure5 to map ad-dimensional quan-
tum system to a (d11)-dimensional classical system an
obtain the corresponding effective action. In Sec. II A, t
system with negligible spatial fluctuations along the ch
direction is considered and the corresponding effective
tion at zero temperature is mapped onto the 3DXY model,
where commensurability effects are described by the ap
priate symmetry-breaking field. Section II B discusses
system in the presence of spatial fluctuations. We first
attention to the classical limit, where temporal fluctuatio
may be neglected. Here the system is intrinsically 3D, a
the effective action is again mapped onto the 3DXY model.
Next, with both spatial and temporal fluctuations consider
the appropriate effective action at zero temperature is ide
fied with the 4DXY model.

A. Homogeneous case

Although it is in general expected that strong fluctuatio
are present, we for the moment assume that spatial fluc
tions along each chain are negligible, which gives a 2D s
tem withoutz dependence. In the absence of the symme
breaking field due to commensurability, Eq.~2! reduces to
the 2DXY model with kinetic energy:

H5(
r

pr
2

2C
2 (

^r ,r8&

U'cos~f r2f r8!, ~3!

where the summation in the second term is to be perform
over all nearest-neighboring pairs in the 2D space withr
[(x,y). The Hamiltonian in Eq.~3! has been studied in th
context of quantum arrays of Josephson junctions.6 In par-
ticular, at zero temperature the 2D quantum system in Eq.~3!
is well known to map onto a 3D classical system via t
standard lore.5 Introducing the imaginary timet axis and
dividing the interval betweent50 andt5T21 into N slices
of equal widthDt51/NT, in the zero-temperature limit (T
→0) we arrive at the partition function of the anisotropic 3
XY model:

Z5 R DfexpF (
^r ,r8&

K r ,r8cos~f r2f r8!G , ~4!

where r[(t,x,y) represents the position in the 3D spac
consisting of the~imaginary! time t and the 2D space (x,y).
The anisotropic coupling is defined on each bond:

K r ,r85H C/Dt for r 85r6 t̂Dt,

U'Dt for r 85r6 x̂ or r6 ŷ.
7-2
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Strictly speaking, we should keepDt infinitesimal. Without
affecting the universality, however, we can rescale the sp
and time and obtain the partition function of an isotropic 3
XY model

Z5 R Dfe2H, ~5!

with the desired effective action

2H5K (
^r ,r8&

cos~f r2f r8!,

where K21[(CU')21/2 measures the amount of quantu
fluctuations.

We then accommodate the commensurability effects
zero temperature, taking advantage of the fact that
symmetry-breaking field term is diagonal in the position b
sis. Via the same procedure and rescaling as in the absen
the symmetry-breaking field, the effective action for the 3
XY model obtains

2H5K (
^r ,r8&

cos~f r2f r8!1h(
r

cosMf r , ~6!

where the symmetry-breaking field is given byh[V0Dt
5V0AC/U'.

B. General Case

We now turn to the system in which spatial fluctuations
the z direction are present~but still without the misfit!, and
first consider the case of only spatial fluctuations, with te
poral fluctuations negligible. This corresponds to the cla
cal limit in the sense that the momentum and the posit
decouple and the momentum part, which can be integra
out, does not affect the relevant physics. In this intrinsica
3D case, it is revealing to resort to the discrete formulat
and replace the integration*dz by the summation(zDz with
sufficiently small Dz. Regarding spatial fluctuation
dependent energy as the continuum form of the cosine in
action in the discrete representation, we obtain from Eq.~2!
the effective Hamiltonian for the 3DXY model:

2H5 (
^r ,r8&

K r ,r8cos~f r2f r8!1h(
r

cosMf r , ~7!

wherer[(x,y,z) represents lattice sites in the 3D space, a
the coupling strength and the symmetry-breaking field
given by

K r ,r8[H U'Dz for r 85r6 x̂ or r6 ŷ

U i /Dz for r 85r6 ẑDz

h[V0Dz.

Interestingly enough, Eqs.~6! and ~7! show that both the
~zero-temperature! quantum phase transition in the absen
of spatial fluctuations and the~finite-temperature! classical
phase transition in the absence of temporal fluctuations
11511
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described by the same 3DXY model under symmetry-
breaking fields. Quantum fluctuations in the former play t
role of thermal fluctuations in the latter, tending to resto
symmetry.

We finally consider the general case, where both spa
and temporal fluctuations are significant. Adding the kinet
energy term to the 3D effective action in Eq.~7! and follow-
ing the same procedure as that in Sec. II A at zero temp
ture, we obtain the 4DXY model with the effective action

2H5 (
^ i ,i 8&

Ki ,i 8cos~f i2f i 8!1h(
i

cosMf i , ~8!

where i[(t,x,y,z) denotes 4D space-time lattice sites a
the anisotropic coupling and the symmetry-breaking field
given by

Ki ,i 8[5
Dt

Dz
U i for i 85 i 6 ẑDz

C

DzDt
for i 85 i 6 t̂Dt

DzDtU' for other nearest neighbors,

h[V0DzDt.

In this manner, the coupled near-commensurate CD
systems~without misfit! can be described by the appropria
XY models under symmetry-breaking fields. Depending
whether spatial and/or temporal fluctuations are present,
effective dimension of the system is determined to be th
or four: It is four if both fluctuations are significant at ze
temperature and three otherwise. The commensurability
fects are described by the symmetry-breaking field, wh
introducesZM symmetry to the system. Such a symmetr
breaking field affects the ground-state symmetry and is
pected to be relevant in the sense of the renormalizat
group ~RG! theory. In the limit M→`, however, theZM
symmetry is hardly distinguishable from the underlying U~1!
symmetry in theXY model. Therefore we expect the pha
transition to be crucially dependent upon the commensu
bility factor M, and devote the following two sections to th
investigation of the phase transitions in the 3D and 4DXY
models under symmetry-breaking fields.

III. 3D XY MODEL
UNDER SYMMETRY-BREAKING FIELD

In this section we investigate the phase transition in
3D XY model whose effective action is given by Eq.~6!. In
the absence of the symmetry-breaking field (h50), the 3D
XY model has been studied both analytically7–9 and
numerically,10 revealing that vortex loops do exist and pr
liferate at the phase transition. Accordingly, the topologi
scaling idea has been extended to the 3D transition w
conventional long-range order, with the scaling procedure
Ref. 11 generalized appropriately for 3D directed loops8,9

One may then be tempted to extend the study of the
model in Ref. 12 to incorporate the symmetry-breaking te
in the 3DXY model, and combine recursion relations for t
7-3
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vortex fugacityy0 and the field perturbationyh according to
the duality relation between them. However, in contrast
the 2D case, the geometric scaling of the coupling cons
in three dimensions results in nonzero values ofy0 andyh at
the fixed point.9

On the other hand, thee expansion13 is well known to
provide a mathematical formalism for calculating critical e
ponents of the O(n) model near four spatial dimensions, a
lowing classification of the universality class of the syste
Here we extend thee expansion approach to incorporate t
effects of the symmetry-breaking field. Thee expansion
turns out to be useful only for small commensurability fac
M; we thus supplement its limitations with the Monte Ca
numerical method. In Sec. III A, the symmetry-breaking p
turbation is treated within thee expansion and Sec. III B is
devoted to the Monte Carlo simulations of the 3DXY model
under symmetry-breaking fields.

A. e Expansion

We consider thee expansion for the 3DXY model, ex-
tending the original formulation for the O(n) model13 to in-
corporate the symmetry-breaking field. To begin with,
employ the two-component continuous local variable or s
Sr5(Sr

x ,Sr
y) at each 3D lattice siter , the total number of

which is denoted byN. The constraint that each spin has t
unit magnitude is relaxed by the additional weight fac
introduced to the partition function

Z5S)
r
E

2`

`

dSr D e2[H1W(Sr)] , ~9!

with the weight factor (u.0)

exp@2W~S!#5expF2
1

2
bS22uS4G ,

which has been expanded up toO(S4). At the physicalXY
fixed point the sixth-order term is less relevant in dimens
d542e thand54.14 With the identificationSr

x5cosfr and
Sr

y5sinfr , the original action in Eq.~6! is written in terms
of the continuous spinSr :

2H5(
r ,r8

KSr•Sr81
h

2 (
r

F ~2Sr
x!M2

M

1!
~2Sr

x!M22

1
M ~M23!

2!
~2Sr

x!M242•••G . ~10!

Note that forM,4 the order of the action does not exce
O(S4), leading to the Ginzburg-Landau-Wilson~GLW! ef-
fective HamiltonianH5H1W to O(S4).

We first examine the caseM52. In the momentum spac
representation, keeping only relevant terms toO(q2) and
scaling the spin variable according toSq5(Kad12)21/2sq ,
we express the GLW Hamiltonian as
11511
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2H52
1

2Eq
~r x1q2!sq

xs2q
x 2

1

2Eq
~r y1q2!sq

ys2q
y

1V1E
q
E

q8
E

q9
sq

xsq8
x sq9

x s2q2q82q9
x

12V2E
q
E

q8
E

q9
sq

xsq8
x sq9

y s2q2q82q9
y

1V3E
q
E

q8
E

q9
sq

ysq8
y sq9

y s2q2q82q9
y , ~11!

where the coefficients are given by

r x5
1

Ka2
~b2dK22h!,

r y5
1

Ka2
~b2dK!,

V15V25V352u,0,

and*q[*dq/(2p)d5(1/Nad)(q with the lattice constanta
restored for clarity. Here it is shown that theM52
symmetry-breaking field gives rise to anisotropy in the qu
dratic term, makingr x less thanr y . Following the standard
procedure, we obtain the recursion relations to the lead
order ine[42d:

]r x

] l
52r x2

12C

11r x
V12

4C

11r y
V2 ,

]r y

] l
52r y2

4C

11r x
V22

12C

11r y
V3 ,

]V1

] l
5eV11

36C

~11r x!
2

V1
21

4C

~11r y!2
V2

2 ,

]V2

] l
5eV21

16C

~11r x!~11r y!
V2

21
12C

~11r x!~11r y!
V1V2

1
12C

~11r x!~11r y!
V2V3 ,

]V3

] l
5eV31

36C

~11r x!
2

V3
21

4C

~11r y!2
V2

2 , ~12!

with the spatial scale factorl andC[212dpd/2/(d/221)!.
In the absence of the symmetry-breaking field (h50), the

parameter space reduces to the 2D space (r ,V) since r x
5r y[r and V15V25V3[V. In this case the nontrivia
fixed point of the recursion relation in Eq.~12! is simply the
XYfixed point, given by

r * 52
e

5
, V* 52

e

40C
~13!
7-4
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to O(e). As the symmetry-breaking field is turned on, ho
ever, we haver x,r y at the initial locus and need to examin
the RG flow in the full 5D parameter spac
(r x ,r y ,V1 ,V2 ,V3). To investigate the stability of theXY
fixed point in the 5D parameter space, we linearize Eq.~12!
about this point and obtain a stability matrix which yiel
five eigenvalues together with corresponding scaling ex
nents:

y1522
e

5
, y2522

2e

5
,

y352e, y452
e

5
, y552

4e

5
. ~14!

Since the exponentsy3 , y4, andy5, which correspond to the
three eigenvectors spanning the 3D subspace (V1 ,V2 ,V3),
are all strictly negative, it is concluded that allVi ’s ~for i
51,2,3) are irrelevant at theXYfixed point. In contrast, both
y1 and y2 are positive, indicating that theXYfixed point is
unstable in the 2D subspace (r x ,r y). The initial locus, which
is kept off theXYfixed point by the symmetry-breaking field
should flow far off theXYfixed point. Instead it is expecte
to flow toward the Ising fixed point located at

r x* 52
e

6
, r y* 5`, V1* 52

e

36C
, V2* 5V3* 50.

~15!

At this point it is more appropriate to taker y
21 as the scaling

field, giving the scaling exponents

yr x
522

e

3
, yr

y
21522. ~16!

Thus the initial locus withr x,r y indeed flows toward the
Ising fixed point along the stabler y direction. In this manner
the symmetry-breaking field forM52 introduces anisotropy
in the quadratic term, making theXYfixed point unstable and
generating an Ising or two-state clock fixed point. Revea
accordingly is a single second-order transition between t
state clock order and disorder.

We next turn to the caseM53, where Eq.~10! shows that
terms of linear and third order in thex component of the spin
come into play; power counting suggests that these fields
relevant neard54. Owing to the anisotropy associated wi
the absence ofSy terms, in particular, the cubic term (Sx)3

here may not be removed by mere shift and is not redund
in contrast to the case of the Ising model. The symme
breaking field is thus expected to drive the transition betw
the disordered phase and the three-state clock ordered p

Finally the symmetry-breaking field forM54 introduces
anisotropy in the quartic term:

V152u18ad24K22h,

V25V352u. ~17!

This leads the action in Eq.~11! to be unstable for suffi-
ciently large values of the fieldh, making it necessary to
consider higher-order terms in the weight functionW(S) for
11511
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stability. Unfortunately, such calculation of higher cumulan
is quite a formidable job, and it is very difficult to extend th
e expansion to the case of a high commensurability facto

B. Monte Carlo simulations

This section presents the Monte Carlo study of the 3DXY
model in symmetry-breaking fields. To estimate the critic
temperatures and determine critical exponents, we have
formed Monte Carlo simulations at ‘‘temperatures’’~i.e.,
quantum or temporal fluctuations! ranging fromK2150.5 to
K2155 on lattices of linear sizeL54 up toL532 for sev-
eral commensurability factors and field strengths. Measu
in simulations are the order parameterm and the susceptibil-
ity x defined to be

m[K U 1

N (
r

eifrU L ,

x[K U 1

N (
r

eifrU2L 2K U 1

N (
r

eifrU L 2

, ~18!

whereN is the number of sites. We have employed the m
tiple histogram method15 to interpolate the quantities calcu
lated sparsely in a given range of the temperature to
temperature inside the range. It not only saves a great de
computing time but also provides the values of quantities
arbitrary temperatures for finite-size scaling, resulting
critical exponents of better accuracy. In fact we have o
tained the best collapse of the scaling function such as

m̃~L1/nt !5Lb/nm~ t !, ~19!

with the reduced temperaturet[T/Tc21[Kc /K21, by
minimizing the measure of error15

sm
2 [

1

xmax2xmin
E

xmin

xmax
dx@^^m̃2~x!&&2^^m̃~x!&&2#

~20!

over the critical temperature and exponents. Here^^•••&&
stands for the average over the lattice size and similar r
tions for the susceptibility have also been considered.
have taken the range@xmin ,xmax#5@2Dx,Dx# and at-
tempted a series of collapses asDx is diminished. The result
has then been extrapolated to the limitDx→0.

Figure 1 presents typical collapse of the scaling funct
with the best-estimated critical temperatureTc and exponents
b and n; nice collapse behavior can be observed near
critical temperature (t50). The inset in Fig. 1 discloses how
the corresponding errorsm

2 depends on the value of the ex
ponentn. We have thus estimated the error in the obtain
critical exponent from the standard deviation of the minim
ing values over the sample ensemble. In this way, the ph
transition forM52 is found to be of the second order wit
the critical exponentsn50.6360.01 andb50.3460.04 for
h51.2 and n50.62760.004 and b50.3260.01 for h
52.7. These results coincide perfectly with the known cr
cal exponents for the 3D Ising model:n50.630 andb
50.324, thus demonstrating the validity of thee expansion
7-5
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analysis in Sec. III A. Here it is of interest that the sam
universality class was also reported in the quantum Mo
Carlo study of a tight-binding model of spinless fermio
chains coupled by intrachain and interchain Coulo
interactions.16 The tight-binding model analysis, though b
ing restricted to theM52 case, could incorporate amplitud
fluctuations of the CDW order parameter directly. Indeed
accordance between the two analyses manifests that flu
tions in the phase~rather than in the amplitude! mostly de-
termine the nature of the transition.

For M53, on the other hand, we have found no eviden
for the first-order transition, and obtained the estimationn
50.59660.007 andb50.360.01; this is to be compare
with the long-standing controversy as to whether the tra
tion in the 3D three-state Potts model is of the first order
continuous.17 It is also of interest that the critical behavio
for M>4 is similar to that of the 3DXY model without any
symmetry-breaking field. Figure 2 shows the critical te
perature~i.e., the critical fluctuation strength! Kc versus the
field strengthh for 2<M<5. It is observed that forM<3
the critical temperature increases with the field stren
while for M>4 the commensurability energy appears
have no effect on the critical temperature, in the ran
probed. Such critical behavior forM>4, similar to that of
the ordinary 3DXY model, reflects that, as noted in Sec.
the ZM symmetry for largeM is indiscernible from the U~1!
symmetry underlying in theXY model.

IV. 4D XY MODEL
UNDER SYMMETRY-BREAKING FIELD

We now study the phase transition in the 4DXY model,
described by the effective action in Eq.~8!, through the use
of the mean-field approximation. Here the mean-field
proximation, developed for superconducting arrays in
plied magnetic fields,18 is expected to be accurate since t
upper critical dimension of theXY model is given bydu

FIG. 1. Data collapse of the order parameterm for three differ-
ent values of the system sizeL, with the best-estimated critica
temperature and exponents given in the text. The inset shows
dependence of the errorsm

2 on the value ofn, with Tc andb fixed
at their best-estimated values. The data have been taken forM52
and ath52.7; typical error bars are not larger than the symb
sizes.
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54. With the space and time rescaled appropriately,
~mean-field! self-consistent equation reads

^eif&5ZMF
21 E

0

2p

dfeife2HMF, ~21!

whereZMF is the partition function,

ZMF5E
0

2p

df e2HMF

corresponding to the mean-field action

2HMF54K~^cosf&cosf1^sinf&!sinf1h cosM f,
~22!

with the rescaled coupling constantK[ACU' and fieldh
[V0AC/U'.

In the absence of the symmetry-breaking field, the s
consistent equation leads to the equation of state for the
der parameterm[A^cosf&21^sinf&2:

m5
I 1~4Km!

I 0~4Km!
, ~23!

whereI n is thenth modified Bessel function. The system
in the disordered phase forK,Kc(h50)51/2 characterized
by m50; beyondKc(h50) the ordered phase withmÞ0 is
favored. Similarly, theM51 case can be analyzed easi
where arbitrarily small but positiveh results in^cosf&.0
and ^sinf&50. The equation of state is thus

^cosf&5
I 1~4K^cosf&1h!

I 0~4K^cosf&1h!
. ~24!

For larger values ofM, Eq. ~21! may be solved numeri-
cally with the parametersK and h varied. It is found that
there exists a field-dependent transition coupling stren
Kc(h) below which Eq.~21! bears only the null solution
^cosf&5^sinf&50. As K is increased beyondKc(h), non-
zero stable solutions emerge. Due to theZM symmetry, i.e.,

he

l

FIG. 2. Critical temperatureKc
21 in the 3D XY model under

symmetry-breaking fields vs the symmetry-breaking field stren
h, for the commensurability factorM52,3,4, and 5. Typical error
bars are smaller than the symbol size and lines are merely guid
eyes.
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the invariance of the action under the shift in the angle
2pn/M for any integern, the solution of Eq.~21! can be
expressed in terms of theM-state clock order paramete
m(K,h):

^eif&5m~K,h!e2p in/M, ~25!

with integer n50,1, . . . ,M21. The critical coupling
strengthKc(h) is defined to be the largest value ofK satis-
fying m(K,h)50.

Figure 3 shows how the order parameterm depends on the
parametersK andh for different values ofM. It is observed
that m in general increases rapidly from zero asK exceeds
Kc and then saturates to unity, with the increase more ra
for larger h. While for M52 and M>4 the transition is
found to be of the second order, numerical results forM
53 indicate a first-order transition, which is expected fro
the appearance of the third-order term in thee expansion.
For M<3, the critical coupling strengthKc(h), starting
from Kc(h50)51/2, decreases withh almost exponentially
to the asymptotic values, 0.250 and 0.462 forM52 and for
M53, respectively. ForM>4, on the other hand, the tran
sition point does not depend on the strength of
symmetry-breaking field, givingKc51/2 regardless ofh.
Again manifested is the crucial role of commensurability
the phase transition.

The resulting phase diagram for the 4DXY model under
the symmetry-breaking field is displayed in Fig. 4, where
boundaryKc

21 versush is plotted for different values ofM.
When K21,Kc

21 , the ZM symmetry as well as the U~1!
symmetry is broken and identified is theM-state clock or-
dered phase, with one of the minima of2h cosMf favored.
WhenK21.Kc

21 , unlike the U~1! symmetry broken explic-
itly for hÞ0, theZM symmetry remains unbroken, leading
the disordered phase.

V. COMMENSURATE-INCOMMENSURATE TRANSITION

Up to the present, we have assumed the absence of m
so that only the transition between the disordered phase
the M-state clock ordered phase, where commensu
CDW’s are developed, has been considered in several id
ized cases described in Sec. II. However, the misfit, bein
key ingredient to bring about the commensura
incommensurate transition in a near-commensurate C
chain, must be taken into consideration in understand
various transitions in the coupled CDW system.

It is well known from the study of the 1D Frenke
Kontorova model19 at zero temperature that a single ne
commensurate CDW changes from the commensurate
to the incommensurate state when the misfit exceeds a
cal value depending on the commensurability energy. At
nite temperatures the 1D CDW system is always in the
commensurate state.20 On the other hand, in the couple
CDW system, interactions between the CDW chains m
alter the nature of the transition. First of all, the effecti
dimensions of the system grow to three, giving rise to
persistence of long-range order, as observed in the prev
sections. Moreover, the CI transition itself can also be
11511
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fected by the interchain coupling in that the interactions
vor either the commensurate state or the incommensu
state, as explained below. To investigate the phase trans
of the coupled CDW system, we consider the Hamiltonian
Eq. ~2! without temporal fluctuations, which makes the pro
lem simpler and allows us to focus on the static proper
only.

At zero temperature the problem is rather simple to sol

FIG. 3. Order parameterm as a function of the couplingK and
the field strengthh for ~a! M52, ~b! M53, and~c! M54. Main
graphs showm vs K for h50(1),0.5(3),1(h),5(s), and 10(n)
from below. Insets displaym(K,h) vs h for various values ofK:
From below ~a! K50.275,0.3,0.375,0.5, and 0.75;~b! K
50.47,0.475,0.4875,0.5, and 0.75. The overall behavior of the
der parameter forM.4 is the same as that forM54.
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The interchain coupling term in Eq.~2! reaches the minimum
when all the phasesf r in thexy plane become equal to eac
other. All the CDW chains, therefore, follow the same pha
configurations determined by the 1D Frenkel-Kontoro
model, thus undergo the CI transition at the critical mis
given by19

dc5
4

p
AV0

U i
, ~26!

regardless of the interchain coupling strengthU' .
The system at finite temperatures is examined by me

of the Monte Carlo method. For this we discretize thez axis
in Eq. ~2! as in Sec. II B, and obtain the lattice Hamiltonia

H5(
r

U i

2
~f r1z2f r2d!22(

r
V0cosMf r

2(
z

(
^xy,x8y8&

U'cos~f r2f r8!, ~27!

where Dz has been absorbed into the coupling consta
Since the dimension along the CDW chain is usually lon
than the lateral dimensions, the lattice sizeLz along thez
axis is kept to be two times larger than the other linear si
in our simulations, and accordingly the interchain coupli
U' is restricted to be smaller thanU i to avoid inessentia
finite-size effects. We further set the parameters toU i51
andV050.2 and sweep the interchain coupling strength fr
0.01 to 0.5 and the misfitd, which is assumed to be uniform
throughout the system, from zero to 0.8 beyond the crit
misfit dc(50.569).

The order-disorder transition is described conveniently
the ~incommensurate! order parameter defined to be

m[K U 1

N (
r

ei (fr2dz)U L ~28!

and its susceptibilityx. Note that in the thermodynamic limi
this order parameter vanishes not only in the disorde

FIG. 4. Phase diagram for the 4DXY model under the
symmetry-breaking field, displaying the boundaries between
M-state clock order phase~M! and the disordered phase~D! for
different values ofM. Lines for M52 and 3 are merely guides t
eyes.
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phase but also in the commensurate phase; in the syste
finite size it may remain nonzero even in the perfectly co
mensurate state. We also compute the soliton densityrs ,21

i.e., the soliton number per site per chain, which charac
izes the CI transition. For the detection of any hystere
these two physical quantities have been measured in
different ways: in the cooling-down process with randomiz
initial phase configurations and in the heating-up proc
starting from the zero-temperature ground state. In each
cess the system has been equilibrated sufficiently while
temperature is varied gradually.

Shown in Fig. 5 is the dependence of the order-disor
transition temperatureTD on the misfitd in the M52 CDW
system at various interchain coupling strengths. It is o
served that the misfit tends to reduce the transition temp
ture: The transition temperature first decreases as the mis
increased from zero, then saturates when the misfit reach
value comparable todc . Here stronger interchain coupling
which helps to increase the transition temperature, in gen
weakens the effects of the misfit. Besides the transition te
peratures, the critical exponents also change with the mi
For instance, the critical exponents in the system withU'

50.1 are found to ben50.7960.02 andg51.3360.01 at
d50.2; n50.7760.03 andg51.6460.05 atd50.4. This
suggests that the introduction of the misfit changes the na
of the ordered phase, making it different from the 3
XYordered phase. It should be identified as the incomm
surate CDW phase, as demonstrated below.

We now draw our attention to the CI transition occurrin
at lower temperatures. In the absence of misfit (d50) the
soliton densityrs is observed to vanish on average at
temperatures belowTD , indicating that the CDW’s formed
are commensurate even in the presence of thermal fluc
tions. Such a commensurate phase is destroyed by the i
duction of misfit, even ford,dc , with the help of thermal
fluctuations. Figure 6 exhibits the behaviors of the order
rameter and of the soliton density as the temperature is
ied in the system with misfitd50.2. It is shown that the

FIG. 5. Behavior of the order-disorder transition temperatureTD

with the misfitd in the M52 coupled CDW system forU i51 and
V050.2. Each symbol corresponds to a different value of the in
chain coupling strength:U'50.01(h),0.02(j),0.05(s),0.1(d),
0.2(n),0.3(m),0.4(¹), and 0.5(.). Typical error bars are smalle
than the symbol sizes and lines are merely guides to eyes.
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order parameter reaches its maximum at temperature neaTD

and decreases to zero as the temperature is reduced whi
soliton density begins to decrease from its maximum valu
T'TD and vanishes almost to zero at very low temperatu
Nonzero values of the order parameter and of the sol
density together in the regimeT&TD correspond to the for-
mation of incommensurate CDW’s. Thus the order-disor
transition atT5TD is identified as the transition between th
incommensurate CDW state and the disordered state. In
dition, the vanishing soliton density~see the inset in Fig. 6!
is a sign of the commensurate CDW phase; this indicates
presence of a CI transition driven by thermal fluctuatio
The CI transition temperatureTIC is defined to be the tem
perature at which the soliton density begins to be nonzero~in
the thermodynamic limit!. Although our computing ability
disallows us to determine the precise value ofTIC , Fig. 6~b!
manifests thatTIC increases with the interchain couplin
strength. In this sense the interchain interactions favor
commensurate state. In contrast, it is also observed tha
interchain interactions prefer the incommensurate state a
misfit values somewhat larger~but still smaller thandc).

Figure 7 compares the order parameter and the so
density atd50.4, measured in two different processes:
cooling process and the heating one. Unlike the casd
50.2, a hysteresis is evident atd50.4 ~and also in the un-
displayed case ofd50.3), as shown in Figs. 7~a! and 7~b!
for the order parameter and in Fig. 7~c! and Fig. 7~d! for the
soliton density. In the heating process starting from the co
mensurate ground state at zero temperature, the comme
rate CDW’s survive some thermal fluctuations and exp
ence the CI transition at a finite transition temperature.
contrast, as the temperature is lowered in the cooling p
cess, the order parameter keeps increasing and the so
density saturates to a finite value, unless the interchain c
pling is sufficiently weak~i.e., for U'.0.02). This implies
that the system still consists of the incommensurate CD
at temperatures where commensurate CDW’s are supp
to be more stable. For weak coupling (U'<0.02), on the
other hand, no discrepancy between the two processes i
served.

It is of interest to compare the hysteresis observed h
with the one reported in the specific heat around the CI tr
sition in a number of incommensurate systems.22 The latter is
attributed to the effects of pinning of the incommensur
modulation due to defects or impurities; our observation
contrast, shows that the hysteresis can appear even in
absence of defects, for which interchain interactions are
sponsible. Namely, the interchain coupling operates in dif
ent ways depending on the process: In the cooling proc
correlations between CDW chains due to the interchain
teractions hinder each CDW chain from getting into the co
mensurate state. On the contrary, in the heating process
interchain correlations hold each chain close to the ze
temperature ground state until thermal fluctuations beco
comparable to the interchain interaction energy. This ar
ment is supported by the observation that the order param
and the soliton density increase abruptly in a narrow reg
of the temperature, as shown in Figs. 7~b! and 7~d!, and such
discrepancy becomes manifest as the interchain coupling
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comes stronger. In addition, in the same narrow region
soliton number and the order parameter fluctuate stron
while the energy fluctuations are relatively weak. This su
gests a kind of configurational fluctuations over many me
stable states.

For large values of the misfit (d*dc), neither commen-
surate CDW nor hysteresis is observed and the soliton d
sity does not vanish even at zero temperature in any proc
Only the transition separating the incommensurate CD
state from the disordered state is thus identified.

We have also performed similar simulations for the co
mensurability factorM53, only to obtain results qualita
tively the same as those forM52 presented above. Quant
tative differences observed include that forM53 the misfit
affects the transition temperature more weakly and the h
teresis takes place even at smaller misfit such asd50.2.

VI. PHASE DIAGRAM

Combining the results for the 3D and 4DXY models un-
der symmetry-breaking fields, studied in Secs. III and IV, a
those for the near-commensurate CDW model, studied
Sec. V, we are ready to describe the phase transition in

FIG. 6. ~a! The order parameterm and~b! the soliton densityrs

vs the temperatureT in the M52 system of misfitd50.2 and size
Lz532. Each symbol corresponds to a different value of the in
chain coupling strength as listed in Fig. 5. The inset is an enlar
view of the soliton density in the range 0.1<T<0.5.
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FIG. 7. The order parameterm @~a! and ~b!#
and the soliton densityrs @~c! and ~d!# vs the
temperatureT in the M52 system of misfitd
50.4 and sizeLz532. The left figures@~a! and
~c!# and the right ones@~b! and~d!# show the data
obtained in the cooling process and in the heat
process, respectively. Each symbol correspon
to a different value of the interchain couplin
strength as listed in Fig. 5.
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2D
coupled CDW system. First, we focus on the system in
absence of any misfit (d50). For this purpose, it is adequa
to consider the 3D space consisting of the three parame
the temperatureT, the strength of the symmetry-breakin
field h, and the amount of quantum or temporal fluctuatio
K21. On each of the three planes (T50, K2150, andh
50) in the 3D space, appropriate boundaries separating v
ous phases can be plotted through the use of the kn
results, as shown in Fig. 8. The phase at a given point in
3D space can then be speculated by means of finite-size
ing in the region nearT50 or the semi-classical methods
the K21'0 region.

We first consider the homogeneous case, where sp
fluctuations along each chain are negligible, and show
phase diagram in Fig. 8 for~a! M54 and~b! M>5. At zero
temperature, the system is mapped onto the 3DXY model as
discussed in Sec. II, and the corresponding phase diag
obtained in Sec. III, is sketched on theh-K21 plane. On the
other hand, in the absence of temporal fluctuations (K21

50), the system maps onto the classical 2DXY model un-
der symmetry-breaking fields, for which the phase diagr
in Ref. 12 is drawn on theh-T plane. Finally, on theT-K21

plane withh50, the system is described by the Hamiltoni
in Eq. ~3! and expected to display the Berezinskii-Kosterli
Thouless transition renormalized by quantum fluctuations6,23

Note that the casesM52 and 3 are not shown here. In th
case presumably Ising/Potts critical lines exist on theh-T
plane; however, it is not known how these lines connect
to the phase boundary forh50.

In the general case with spatial fluctuations present,
obtain the phase diagram shown in Figs. 8~c! and 8~d! for
M<3 andM>4, respectively. Owing to the additional d
mension along the chain direction, the system maps onto
3D XY model in the classical limit, i.e., on theh-T plane,
whereas 4DXY model is obtained at zero temperature. A
cordingly, on theh-K21 plane, the phase diagram of the 4
XY model obtained in Sec. IV is drawn. It is observed th
the 3D XYordered phase does not survive the field and
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replaced by theM-state clock ordered phase forhÞ0. For
M>4, however, the commensurability energy affects neit
the transition temperature nor the nature of the transition

We next take into consideration the effects of misfit a
show in Fig. 9 the schematic phase diagram in the 3D sp
consisting ofT, U'

21 , and d, with U i and V0 fixed. At d
50, the system belongs to the same university class as

FIG. 8. Schematic phase diagram for the coupled commensu
CDW system in the (T,h,K21) space, depending on spatiotempor
fluctuations and commensurability: the homogeneous case~a! for
M54 and~b! for M>5; the general case~c! for M52 or 3 and~d!
for M>4. Plotted on each plane are boundaries between var
phases, including the disordered phase~D!, the M-state clock or-
dered phase~M!, the algebraically ordered phase present in the
XY model ~2D XY), and the 3DXYordered phase~3D XY).
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3D XY model under the symmetry-breaking field, for whic
the phase diagram is drawn on theT-U'

21 plane. On the
other hand, at zero temperature, each CDW chain under
the CI transition with the critical misfitdc which is indepen-
dent of the interchain coupling strengthU' . The order-
disorder transition temperatureTD and the CI transition tem
peratureTIC obtained in Sec. V produce surfaces depicted
~thick! solid and dashed lines, respectively, in t
(T,U'

21 ,d) space. The phase diagram shows that ford,dc

the system undergoes double transitions as the temperatu
lowered: first, the order-disorder transition into the inco
mensurate CDW phase and then, the CI transition into
commensurate CDW phase. As revealed in Sec. V, a hy
esis takes place around the CI transition point, which ma
fest itself more clearly as the interchain coupling becom
stronger.

VII. CONCLUSION

To study phase transitions in coupled CDW systems,
have mapped the systems at zero temperature onto thre
four-dimensionalXY models, depending on the spatiotemp
ral fluctuations, under symmetry-breaking fields which ar
from the commensurability energy. Such techniques ase ex-
pansion, mean-field theory, and the Monte Carlo meth
have then been applied to the obtainedXY models. Revealed
is a single second-order transition between theM-state clock
order and disorder in both the three-dimensional and fo
dimensional systems, except for the caseM53 in the four-
dimensional system where the transition is of the first ord
In particular, the commensurability withM>4 has been ob-
served not to change the properties of the transition includ
the critical temperature and exponents. Combining th
zero-temperature (T50) results with the existing results i
the absence of quantum~temporal! fluctuations (K2150) or
of the symmetry-breaking field (h50), we have constructed
boundaries separating various phases on the three planeT
50, K2150, and h50) in the three-dimensiona
(T,K21,h) space. The boundaries nearT50 and nearK21

FIG. 9. Schematic phase diagram for the coupled CDW sys
in the (T,U'

21 ,d) space, with the effects of the misfit taken in
account. The surfaces depicted by thick solid lines and dashed
separate the incommensurate CDW phase~IC! from the disordered
phase~D! and from the commensurate CDW phase~C!, respec-
tively.
11511
es

y

e is
-
e
r-

i-
s

e
or

-
e

d

r-

r.

g
e

(

50 can then be speculated through the use of finite-size s
ing and semiclassical methods, respectively, thus givin
schematic phase diagram in the (T,K21,h) space.

We have also found via Monte Carlo simulations that t
system with nonzero misfit undergoes a commensur
incommensurate transition. The interchain interactions g
rise to the correlations between neighboring CDW’s in su
a way that either the commensurate state or the incomm
surate state is favored depending on the initial configurat
In the cooling process the CDW’s remain incommensur
down to almost zero temperature while in the heating proc
a substantial amount of the commensurate CDW’s surv
thermal fluctuations.

At strong thermal or quantum fluctuations, i.e., at highT
or smallK, the system is in the disordered phase. No CDW
formed and the system is expected to be metallic. On
contrary, weak fluctuations~low T and largeK) favor the
M-state clock ordered phase, in which commensurate CD
are developed as long asd,dc . Accordingly, the interaction
between the periodicity of the CDW and the underlying l
tice periodicity drives the collective excitation to develop
gap, and the system becomes insulating. At moderate fl
tuations or for large misfit (d.dc), on the other hand, in-
commensurate CDW’s emerge. In this case the system
remain conducting through collective Fro¨hlich conduction,
i.e., via sliding of the CDW’s. Usually, the conductivity vi
such collective modes is lower than that via uncondensa
electrons in the disordered phase~without CDW!. In particu-
lar, the CDW may be pinned in the presence of impuriti
sharply decreasing the conductivity. As the temperature
lowered, therefore, the system for weak quantum or ther
fluctuations becomes insulating via three possible routes,
pending on the misfit and the interchain interaction: First,
commensurate CDW phase emerges directly from the h
temperature disordered phase; second, only the incomme
rate CDW phase appears, reducing the conductivity; th
the incommensurate CDW phase appearing first is follow
by the commensurate phase emerging via the commensu
incommensurate transition.

Note that beginning with the Hamiltonian in Eq.~1!, we
have taken into account only phase fluctuations and di
garded amplitude fluctuations. The latter are in general ir
evant in the RG sense, expected not to affect nature of
phase transition. On the other hand, there still lacks con
sive understanding of the dynamic properties in vario
phases. It is thus desirable to consider the responses to
ternal electromagnetic fields, and, for example, compute
conductivity, which can be obtained from the current or t
average momentum in the presence of appropriate misfit.
tailed investigation of such dynamic responses is left for f
ther study.
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