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Recent experiments demonstrating large spin-transfer torques in topological-insulator (TI)–ferromagnetic-
metal (FM) bilayers have generated a great deal of excitement due to their potential applications in spintronics.
The source of the observed spin-transfer torque, however, remains unclear. This is because the large charge transfer
from the FM to the TI layer would prevent the Dirac cone at the interface from being anywhere near the Fermi level
to contribute to the observed spin-transfer torque. Moreover, there is still not much understanding of the impact
on the Dirac cone at the interface from the metallic bands overlapping in energy and momentum, where strong
hybridization could take place. Here, we build a simple microscopic model and perform first-principles-based
simulations for such a TI-FM heterostructure, considering the strong hybridization and charge-transfer effects.
We find that the original Dirac cone is destroyed by hybridization, as expected. Instead, we find an interface state
that we dub a “descendent state” that forms near the Fermi level due to the strong hybridization with the FM
states at the same momentum. Such a descendent state carries a sizable weight of the original Dirac interface
state, and thus it inherits the localization at the interface and the same Rashba-type spin-momentum locking. We
propose that the descendent state may be an important source of the experimentally observed large spin-transfer
torque in the TI-FM heterostructure.
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I. INTRODUCTION

Topological insulator (TI)-based heterostructures have be-
come appealing candidates for spintronics due to the Dirac
surface states, which exhibit spin-momentum locking with
opposite Rashba spin-windings at opposite surfaces [1]. In
particular, large spin-transfer torques comparable to conven-
tional heavy-metal-based structures have been reported in
three-dimensional (3D) TI-based bilayers [2–4]. Although
large signals from the spin-momentum-locked Dirac surface
states on the interface have been predicted in TI-ferromagnetic
insulator heterostructures [5], the materials involved in ex-
periments are often ferromagnetic metals (FMs) [2,4] since
ferromagnetic insulators are rare. Data analyses attributed
the observed spin-transfer torques to an interface state with
the same spin-winding as the Dirac surface state, when a
pristine TI is in contact with a ferromagnetic layer [2,6]. The
identity of this state, however, remains elusive. This is because
this Dirac surface state is very likely to be buried way below the
raised chemical potential or even destroyed when hybridized
with a large amount of FM states under an Ohmic contact [7].

The effect of heterostructure formation on the primitive
Dirac surface state localized at the interface (henceforth
referred to as the “Dirac interface state”) has been investigated
for various materials. In the cases of TI-insulator bilayers, first-
principles studies have found that interface states localized a bit
deeper into the interface appear near the Fermi level EF with
Dirac-like dispersion, while the original Dirac surface states
are shifted way below EF due to band-bending potentials,
which are induced by the mismatch between chemical poten-
tials [8–11]. As for TI-metal heterostructures, effective model
studies have found Dirac interface states becoming diffusive

under weak TI-metal coupling [12] while first-principles stud-
ies have reported no spin-momentum-locked interface states
for various metals [7,13]. In particular, severe hybridization
is expected for cases in which electrons in the Dirac interface
states are coupled to many itinerant electrons with similar
momenta and energies from a metal slab with a much higher
chemical potential. Such a scenario in which itinerant electrons
couple with a localized state has been generically described by
the Fano-Anderson model to the lowest order [14–16]. Fano
coupling involving enough extended states can produce a new
long-lived localized state sitting outside of the metal band,
which carries a substantial weight of the original localized
state [14]. This “descendent state” suggests the identity of
the interface state with the same spin-winding as the Dirac
interface state, which leads to the large spin-transfer torque
probed in the TI-FM heterostructure.

Our goal is to study the fate of the Dirac interface state
in contact with an FM slab that has a much higher EF and
many states overlapping with the Dirac interface state in energy
and momentum. In this article, we take two complementary
approaches: we construct a simple microscopic model and we
perform first-principles calculations, including the hybridiza-
tion between the metal states and the Dirac cone in such a
TI-FM bilayer. By examining spectroscopic properties, we
identify the new interface state near EF as the descendent
state, which is localized slightly deeper into the TI layer and
inherits the spin texture of the original Dirac cone. The features
obtained from the microscopic model agree with those from
the first-principles-based simulations of the TI-FM bilayer.
We propose that the descendent states may be an important
source of the recently observed large spin-transfer torque
in a Bi2Se3-Py heterostructure [2]. The article is structured
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as follows: In Sec. II, we construct a lattice model for a
TI-FM heterostructure with hybridization in the spirit of the
Fano-Anderson model. In Sec. III, we study the spectroscopic
properties of the model and the properties of the newly formed
interface states. In Secs. IV and V, we present a first-principles
study on a Bi2Se3-Ni bilayer using density-functional theory
(DFT), and we compare the results to those from our lattice
model. In Sec. VI, we summarize our results and address open
questions.

II. LATTICE MODEL FOR A TI-FM BILAYER
IN THE PRESENCE OF HYBRIDIZATION

Generically the coupling between a localized state f with
energy ε0 and itinerant electrons ck with energy Ek can be de-
scribed by the Fano model [14] HF = ε0f †f + ∑

k E0
k c

†
kck +

gk(c†kf + f †ck), where gk is the coupling strength. Bergman
and Refael [15] pointed out that HF can be used to model the
lowest-order interaction between a helical surface state and a
metal bulk band, i.e., hybridization. As shown in Refs. [14,15],
the hybridized spectral function of the surface state f contains
a broadened peak in the metallic band and two new δ functions
with a reduced weight above and below the edges of the
metallic band. The δ functions represent a part of the spectral
weight associated with the original surface state that got
pushed away from the metallic band through level repulsion as
a result of coupling to extended states. These states form new
long-lived surface states albeit with smaller spectral weight.
We thus dub the new surface states the “descendent states”
of the mother surface state. As the hybridization strength gk

increases, the lifetime of the original surface state shortens
while both the weights of the mother state carried by the
descendent states and the gap to the metal band edges increase.

To examine the formation of descendent states in a TI-
FM bilayer, we construct a tight-binding model capturing the
coupling between the Dirac interface state with the extended
states in the spirit of the Fano model. The model for an (NTI +
NFM)-layer heterostructure reads H0 = ∑

k‖ H0(k‖) with

H0(k‖) =
NTI∑

j=1

HTI(k‖,j ) +
NTI+NFM∑

j=NTI+1

HFM(k‖,j ), (1)

where k‖ = (kx,ky) is the in-plane momentum, j labels the
layers stacked in the z direction, and HTI and HFM are
Hamiltonians for an NTI-layer TI slab and an NFM-layer FM
slab stacked in the z direction.

HTI(k‖,j ) is a four-band microscopic model describing a
quintuple layer (QL) j of pristine TI [16] in the presence of a
band-bending potential created by the mismatch between the
Fermi levels of the TI and FM:

HTI(k‖,j ) = (M + V)c†k‖,j ck‖,j + Tc
†
k‖,j+1ck‖,j + H.c., (2)

where M, T, and V are 4 × 4 matrices in the basis of |↑,P1〉,
|↑,P2〉, |↓,P1〉, and |↓,P2〉, with ↑/ ↓ being spin and P1/2

being pz orbitals of Bi/Se atoms. Here M and T contain
tight-binding parametrization for pure Bi2Se3 [16,17], while
V = V (k‖,j )I4×4 is the potential well that forms near the
interface when the TI has a lower Fermi level than the FM.
For simplicity, we assume the potential to be momentum

k‖-independent and that it has a spatial profile of V (j ) =
V0e

−η(NTI−j ) based on the potential shapes in various TI-based
bilayers obtained in ab initio calculations [11,13]. The depth
of the well V0 is approximately the Fermi level difference
between the two materials. For our purpose of demonstrating
the hybridization effect on the Dirac interface state, we choose
the width 1/η to be small enough such that no additional
quantum-well state forms.

As for the FM slab, we model each layer j by a simple
two-band model,

HFM(k‖,j ) = mc
†
k‖,j ck‖,j + tc†k‖,j+1ck‖,j , (3)

where m = (mk‖,j − μFM)12×2 + �σx and t = tz12×2 are 2 ×
2 matrices in the spin basis. Here, mk‖,j = −t‖ cos(k‖a) is the
dispersion given by in-plane hopping t‖ with in-plane lattice
constant a, μFM is the Fermi level, tz is the hopping in the z

direction, and � is the exchange energy, where we choose the
magnetization to be in the x direction. The parameters of
the FM layer are chosen such that the FM bands overlap with
the Dirac interface branch in both momentum k‖ and energy
[see Fig. 1(a)].

In the absence of hybridization, the bilayer Hamiltonian
H0(k‖) can be diagonalized into

H0(k‖) = (
ε0

k‖ − μTI
)
d

0†
k‖ d

0
k‖

+
4NTI−1∑

α=1

(
E0

TI,α,k‖ − μTI
)
b

0†
α,k‖b

0
α,k‖

+
2NFM∑

β=1

(
E0

FM,β,k‖ − μFM
)
f

0†
β,k‖f

0
β,k‖ , (4)

where the four-spinors d0
k‖ and b0

α,k‖ annihilate the Dirac

interface state with energy ε0
k‖ and the rest of the eigenstates

in the TI with energy E0
TI,α,k‖ , respectively, and the two-spinor

f 0
β,k‖ annihilates the FM states with energy E0

FM,β,k‖ . Here, α

and β label the TI states besides the Dirac interface state and
the FM states, respectively. In Fig. 1(a), we plot the spectra
of the FM and TI layer before forming a heterostructure; the
spectra are given by the dispersion of the model in Eq. (4)
but with the band-bending potential V (k‖,j ) = 0. The effect
of the band-bending potential is to break the degeneracy
between the two TI surfaces and shift the dispersion of the
Dirac interface state downward, which is expected when the
localization length is smaller than the well width 1/η [9].

Now we introduce the hybridization term, which preserves
in-plane momenta k‖ and spin:

H ′(k‖) =
2NFM∑

β=1

gβ(k‖) f
0†
β,k‖d

0
k‖ + H.c., (5)

where β runs over all the FM states at k‖. Here, we expect
the strength gβ(k‖) to be proportional to the “spin-overlap”
between the FM states and the spin-momentum-locked Dirac
interface state:

gβ(k‖) = g̃β(k‖)
〈
	0

k‖

∣∣
0
β,k‖

〉
, (6)
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FIG. 1. (a) The dispersions of the FM slab (the left panel) and
the TI slab (the right panel) before forming the heterostructure along
in-plane momentum k‖ = (kx,0). The upper and lower dashed lines
represent the Fermi levels of the FM (μFM) and TI slab (μTI),
respectively. (b) The band structure of the heterostructure in the
presence of hybridization. The vertical and horizontal dashed lines
represent the Fermi level μ and the Fermi momentum k̃‖ = (kF ,0),
respectively. The hybridization strength gβ (k‖) is given in the text
with g̃0 = 0.078 eV and g̃1 = 0.098 eV. The red and orange dots
label the interface states that emerge outside of and survive within
the FM band, respectively. Here, the interface states are defined as
states consisting of a substantial weight >48% on the TI side that
has more than 80% of weight localized in the first 30% of the TI
slab away from the interface. (c) The wave function of the interface
state in the heterostructure [red dots in (b)] at the Fermi level μ

with momentum (kF ,0). For all subfigures, the slab thicknesses are
NTI = 80, Nm = 40, and the band-bending potential parameters are
V0 = 1 eV and η = 0.3, respectively.

where |
0
β,k‖ 〉 ≡ ∑

z′ 〈z′|φ0
β,k‖ 〉 and |	0

k‖ 〉 ≡ ∑
z,a〈z,a|ψ0

k‖ 〉 are
“coarse-grained” two-component ket spinors in the spin basis
for the FM and unhybridized Dirac interface states, respec-
tively. Here we define |φ0

β,k‖ 〉 ≡ f
0†
β,k‖ |0〉, |ψ0

k‖ 〉 ≡ d
0†
k‖ |0〉, z(′)

runs over the TI (FM) layers, and a = P1,P2 labels the TI
atomic orbitals. For simplicity, we assume g̃β(k‖) = g̃(k‖)
to be identical for all FM states β. To mimic our first-
principles-calculated band structure later shown in Fig. 4(a),
we further assume g̃(k‖) to increase with the momentum
and take g̃k‖ = g̃0 + g̃1k‖ with g̃0,g̃1 > 0. Finally, the full
Hamiltonian including hybridization reads H = ∑

k‖ H (k‖),
where

H (k‖) = H0(k‖) + H ′(k‖) (7)

| ψ
(0)

k̃
|ψk̃ |2

| ψ
(0)

k̃
|φγ,k̃ |2

(a) (b)

FIG. 2. (a) The spin texture (Sx,k̃‖ ,Sy,k̃‖ ) of the descendent state in
the hybridized heterostructure at Fermi level μ with Fermi momenta
k̃‖ = kF (cos θk, sin θk). (b) The weight of the original Dirac interface
state |ψ (0)

k̃‖
〉 carried by the eigenstates of the heterostructure along the

momentum-cut at k̃‖ = (kF ,0) [the vertical dashed line in Fig. 1(b)].
The red (upper) horizontal axis and the red curve are for the new
interface state |ψk̃‖ 〉 at the Fermi level μ, and the black (lower)
horizontal axis and the black curve are for the rest of the eigenstates
|φγ,k̃‖ 〉.

is given by Eqs. (4) and (5).

III. THE DESCENDENT STATE AT THE INTERFACE
FROM THE LATTICE MODEL

The dispersion of H in Eq. (7) shows new interface states
[red dots in Fig. 1(b)] formed above and below the FM bands as
well as the “remnant states” [orange dots in Fig. 1(b)], which
are residues of the Dirac interface states within the FM bands.
Since the upper new interface branch emerges right above the
upper band edge of FM, it is likely to intersect the Fermi level
μ of the heterostructure, which is approximately given by that
of the FM slab μFM. We will thus focus only on this upper
new interface branch for the rest of the article. To examine
the properties of these states, we write the diagonalized full
Hamiltonian at each k‖ as

H (k‖) = (εk‖ − μ)d†
k‖dk‖

+
4NTI+2NFM−1∑

γ=1

(Eγ,k‖ − μ)b†γ,k‖bγ,k‖ , (8)

where dk‖ annihilates the new interface state with energy εk‖
above the FM upper band edge, and bγ,k‖ annihilates the rest
of the eigenstates labeled by γ with energy Eγ,k‖ . Here we

define |ψk‖ 〉 ≡ d
†
k‖ |0〉, |φγ,k‖ 〉 ≡ b

†
γ,k‖ |0〉. The spatial profile of

the upper new interface state is then given by |ψk‖(z)|2, which
is a function of z measured from the bottom of the FM slab
along the finite dimension of the heterostructure. |ψk‖(z)|2 at
the Fermi momentum k̃‖ = (kF ,0) [see Fig. 1(c)] shows that
the TI portion of the upper new interface at the Fermi level
localizes near the interface.

The new interface state at the Fermi level, i.e., the descen-
dent state, also has a clockwise Rashba-type spin-winding
just like the original Dirac interface state, as shown by the
in-plane spin expectation values (Sx,k̃‖ ,Sy,k̃‖ ) in Fig. 2(a). Here,
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(b)(a)

FIG. 3. Top views of two different interfaces for the TI-FM
bilayer. Interface (a) has a lower energy than interface (b) by 0.07 eV
upon the geometry relaxation. Only the topmost Se (small green),
Bi (large purple), and Ni (medium blue) atoms at the interface are
shown. The in-plane lattice vectors in real space are shown as red and
green arrows.

Sx/y,k̃‖ ≡ 〈ψk̃‖ |Ŝx/y |ψk̃‖ 〉, where Ŝx/y ≡ (02×2 ⊗ 0NFM×NFM ) ⊕
(σx/y ⊗ 12×2 ⊗ 1NTI×NTI ) are the spin operators projected onto
the TI side. The spin magnitude of states with negative ky

is slightly smaller than that with positive ky due to the
spin dependence of hybridization strength in Eq. (6), which
vanishes in the limit where the ferromagnetic exchange energy
� vanishes.

Finally, to determine the origin of this new interface state
|ψk‖ 〉, we examine the weight of the original Dirac interface
state |ψ0

k‖ 〉 carried by the heterostructure eigenstates |ψk‖ 〉
and |φγ,k‖ 〉. Figure 2(b) shows the spectral distribution of the
weight 〈ψ0

k̃‖
|ψk̃‖ 〉 and 〈ψ0

k̃‖
|φγ,k̃‖ 〉 along the momentum-cut

at k̃‖ = (kF ,0) where two peaks form outside of the FM
band, which resembles that of the generic Fano model [14].
Specifically, the stronger peak is contributed by the new
interface state on the Fermi level |ψk̃‖ 〉 (see the red curve)
while the weaker peak buried below the Fermi level μ and the
residues within the band are contributed by the rest of the states
|φγ,k̃‖ 〉 (see the black curve). Hence we have demonstrated
that the hybridization-induced new interface state at the Fermi
level is the descendent state of the original Dirac interface
state, which thus inherits the wave-function localization and
spin texture of the mother state.

IV. FIRST-PRINCIPLES-BASED SIMULATION
OF THE TI-FM BILAYER

We simulate a TI-FM bilayer within DFT by using VASP

[18]. We use the generalized gradient approximation (GGA)
[19] for the exchange-correlation functional and projector-
augmented-wave (PAW) pseudopotentials [18,20]. Spin-orbit
coupling (SOC) is included self-consistently with the DFT
calculation. We construct a TI-FM bilayer by using a supercell
consisting of a 1 × 1× 5-QL slab of Bi2Se3(111) beneath
a Ni(111) slab of

√
3 × √

3 × Lz, where Lz is four atomic
layers, with a thick vacuum layer of 35.7 Å. The in-plane
lattice constant of the supercell is fixed as the experimental
lattice constant of the TI, 4.143 Å [21]. This gives rise to
a 4% compressive strain onto the Ni slab. We consider two
different interface geometries shown in Fig. 3. The x, y, and
z coordinates of the QL nearest to the interface and the x,
y, and z coordinates of all the Ni atoms in the supercell are
relaxed until the residual forces are lower than 0.1 eV/Å,
while keeping the atomic coordinates of the rest of the QLs

FIG. 4. (a) DFT-calculated band structure of the TI-FM bilayer
along the ky axis and (b) zoom-in of (a) when the magnetization
is along the y axis. In (a) and (b), green (blue) symbols represent
states localized into the Ni slab (the bottommost QL in contact
with vacuum), while red symbols denote states localized into the
topmost-1 QL, such as descendent states. Orange symbols represent
the states localized at the topmost QL. (c) Relative electron density
ρ(z) profile (dimensionless) of the red and orange bands as a function
of z coordinates. The red is for the ρ(z) value of the red band or

descendent state computed at ky = −0.087 Å
−1

or kF [red squares
in (b)], while the maroon is for the ρ(z) value of the orange band at

ky = −0.1 Å
−1

[orange square near −0.3 eV in (b)].

in the TI remain fixed. Interface (a) (considered in Ref. [7])
gives a lower energy than interface (b) by 0.07 eV upon
relaxation. Therefore, henceforth, we present results obtained
from interface (a). The distance between the TI and Ni layer
is found to be 1.98 Å after relaxation, which agrees with
the previous DFT calculations of the TI-FM bilayer [7,13].
For the TI-FM bilayer, 11 × 11 × 1 k points are sampled
in the geometry relaxation and calculations of the electronic
structure. The z axis is along the [111] direction and the y axis
is along the [112̄] direction in the TI rhombohedral structure.
In our simulation, the magnetization of the Ni slab is in-plane,
i.e., parallel to the y axis.

V. THE DESCENDENT STATE FROM THE SIMULATION

We calculate the band structure of the TI-FM bilayer
along different directions in the kx-ky plane, such as θk = 0,
±π/6, ±π/3, ±2π/3, ±5π/6, ±π/2, and π , where θk is the
azimuthal angle in the kx-ky plane. The band structure along
the ky axis is shown in Fig. 4(a). In the vicinity of EF , the Dirac
cone localized at the QL closest to the interface (topmost QL)
is not found, although many bands from the Ni slab [green
bands in Fig. 4(a)] appear. Our DFT+SOC calculations show
some charge transfer from the Ni slab to the TI slab, which is
caused by the difference between the chemical potentials of
the TI and Ni slabs (the work functions of the TI and Ni slabs
are 5.51 and 5.27 eV, respectively). This charge transfer shifts
the Dirac surface states at the interface downward far below
EF and causes very strong hybridization with the Ni states.
In addition, the strong hybridization also induces significant
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FIG. 5. DFT-calculated band structure of the TI-FM bilayer, same
as Fig. 4(a), but showing only the states (a) with the weight of the
topmost QL greater than 10%, and (b) with the weight of the topmost-
1 QL greater than 10%. The color box scale is the percentage weight
of the topmost QL for (a) and at the topmost-1 QL for (b).

relaxations in the z coordinates of the topmost QL due to the Ni
slab. These two factors make it difficult to discern the original
Dirac interface state in the vicinity of EF , which is consistent
with the result of the microscopic lattice model discussed in
Sec. III.

There are two classes of states near EF . One class of states
[orange bands in Fig. 4(a)] is localized at the topmost QL
[maroon curve in Fig. 4(c)] with energies in the range of
−0.37 ∼ −0.23 eV somewhat away from the � point (and
in the vicinity of −0.7 eV near the � point). These states
correspond to the “remnant states” found in the microscopic
lattice model. The other more prominent class of states [red
bands in Figs. 4(a) and 4(b)] is mostly localized into the
topmost-1 QL [red curve in Fig. 4(c)]. These states resemble
the descendent states of the lattice model in that (i) they appear
near EF , (ii) they do not exhibit Dirac-like dispersion, and
(iii) their wave-function distribution is similar to that from
the lattice model. Figures 5(a) and 5(b) show the same DFT-
calculated band structure with the weight of the topmost QL
and of the topmost-1 QL marked in color boxes, respectively.

In addition, we examine the spin texture of the descendent
state at EF by computing expectation values of the x and
y components of spin, 〈Sx,k̃‖ 〉 and 〈Sy,k̃‖ 〉 at the aforemen-
tioned different θk values, within DFT. Figure 6(a) shows
the DFT-calculated spin texture projected onto the TI layer,
whereas Fig. 7(a) reveals the total spin texture including the
contribution of the FM layer. As shown in Fig. 6(a), the
DFT-calculated TI spin texture shows two main features: (i)
spin-momentum locking, and (ii) the magnitude of the spin
polarization depending on in-plane momentum. The second
feature is due to the in-plane magnetization of the Ni slab. Our
DFT-calculated spin texture is comparable to that from the
microscopic model [Fig. 2(a)], considering that the in-plane
magnetization of the Ni side in the tight-binding model is along
the x axis. Now the DFT-calculated total spin texture of the
descendent state, Fig. 7(a), also shares similar main features to
the projected spin texture with a much stronger dependence on
in-plane momentum, due to the Ni magnetization. We find that
the contribution of the Ni slab to the descendent state varies
from 26% to 57% with the in-plane momentum, which leads
to the in-plane momentum-dependent coupling to the Ni slab.

FIG. 6. (a) DFT-calculated spin texture of the descendent state
projected onto the TI side at EF indicated as the red dashed line
in Fig. 4(b) when the magnetization is along the y axis. This spin
texture can be compared to Fig. 2(a). (b) DFT-calculated spin texture
of the descendent state projected onto the TI side at EF when the
magnetization is along the z axis.

We briefly discuss a comparison of our DFT calculation to
the previous DFT calculations of a TI-Ni bilayer [7,13] and
a TI-Co bilayer [7,22]. In these previous studies, the spin-
momentum locking we found above was either not reported
[7,13] or found well below EF [22]. There are four main
differences between ours and the previous DFT calculations in
addition to a different FM layer in Refs. [7,22]: (i) a different
magnetization direction of the FM layer, (ii) a different spatial
localization of the state investigated for the spin-momentum
locking, (iii) a different TI layer thickness, and (iv) a supercell
geometry without vacuum versus a slab geometry. Among
the four differences, the second, third, and fourth are crucial
factors. We propose that the descendent state (localized at
topmost-1 QL) near EF contributes to the large enhancement
of the spin-transfer torque in the TI-FM bilayer in experiment
[2], while the previous studies were searching for the states
localized at the topmost QL [7,13,22]. In Ref. [7], the TI layer
considered, i.e., 3-QL of pristine Bi2Se3, is too thin to form a
gapless TI Dirac cone, as experimentally confirmed [23–25].
Experimental data showed that a Bi2Se3 film has to be at least
5-QL thick to hold the gapless Dirac cone with a π Berry
phase. Furthermore, the supercell geometry without vacuum
used in Ref. [7] induces charge transfer from both neighboring
Ni layers to the ultrathin TI layer. All of these would not favor
the formation of the descendent states at the Fermi level for
the TI-FM layer considered in Ref. [7]. A slab geometry with

FIG. 7. DFT-calculated spin texture of the descendent state at EF

when the magnetization is along (a) the y axis and (b) the z axis. Here
the contributions of the Ni slab and the TI film are all included.
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a vacuum layer is more relevant to the spin-transfer torque
experiment [2] than a supercell geometry without vacuum. In
our study, we take into account in-plane magnetization used
in the spin-transfer torque experiment [2], whereas the latter
studies [7,13,22] considered out-of-plane magnetization due
to different experimental setups from spin-transfer torque. In
our DFT+SOC calculation, when the magnetization is out
of plane, we find that the similar descendent state appears at
EF with the similar wave-function distribution in real space
to that shown in Fig. 4(c), and that the descendent state has
spin-momentum locking as shown in Figs. 6(b) and 7(b).

VI. CONCLUSION

We build a simple lattice model in the spirit of the
Fano-Anderson model, and we perform first-principles-based
simulations in order to address the fate of the primitive
Dirac interface state in TI-FM bilayers under large charge
transfer and severe hybridization with many metallic states
overlapping in momentum and energy. Both the tight-binding
model and simulations showed that while destroying the Dirac
interface state, a large enough hybridization could also create
a new descendent state near the Fermi level that inherits
both the spatial localization on the interface and the Rashba-
type spin-momentum locking. Our findings suggest that this

hybridization-induced descendent state may be a candidate for
the source that contributes to the experimentally observed large
spin-transfer torque in TI-FM bilayers. While the spin-transfer
torque in TI-based structures has attracted growing theoretical
attention [6,26,27], our model provides a starting point for
theoretical studies on TI-FM heterostructures to take into
account the lowest-order effects from the FM layer. While
the hybridization strength is material-dependent, our simple
model provides a generic way to describe the hybridization
effect for the experimentally relevant cases in which the Dirac
interface state overlaps with many FM states.
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