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Cold-spots and glassy nematicity in underdoped cuprates
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There is now copious direct experimental evidence of various forms of (short-range) charge order in underdoped
cuprate high temperature superconductors, and spectroscopic signatures of a nodal-antinodal dichotomy in the
structure of the single-particle spectral functions. In this context we analyze the Bogoliubov quasiparticle
spectrum in a superconducting nematic glass. The coincidence of the superconducting “nodal points” and the
nematic “cold-spots” on the Fermi surface naturally accounts for many of the most salient features of the measured
spectral functions (from angle-resolved photoemission) and the local density of states (from scanning tunneling
microscopy).
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I. INTRODUCTION

The existence of glassy charge order in the pseudogap phase
of cuprates is now well established: Both momentum space
and real space probes find charge-density-wave (CDW) order
with moderate (but never infinite) correlation lengths [1–11].
Evidence of a tendency to nematic order has been adduced
from local probes [12–14], diffraction [15,16], and transport
[17,18]. Much of the associated theory literature has focused
on either uniform long-range ordered states, or dynamically
fluctuating order. In contrast, glassy order implies strong static
heterogeneities, which complicate any theoretical analysis.

The basic superconducting state is thought to be reasonably
well described by a simple mean-field theory with a d-wave su-
perconducting gap. Nevertheless, when the superconductivity
coexists with glassy charge order, spectroscopic measurements
reveal a number of “anomalous” features that are not simply
related to any long-range order. It is thus worth asking whether
some or all of these anomalous features are a consequence
of glassy charge order. Heterogeneous order parameters have
been studied previously in the context of cuprates [19–26]. But
most of these works have focused on the effects of quenched
randomness (e.g., impurities) on the ordering tendencies
themselves. Here instead we study how the heterogeneity
associated with glassy order affects various spectroscopic
properties.

Technically, our approach is similar to that employed in
earlier works on the effects of pointlike impurities [27–32].
However, because the glassy order is assumed to reflect (in
part) the system’s tendency toward symmetry breaking, in the
present study the effective scattering (“disorder”) potential is
taken to have two properties not present in earlier studies: (1)
a moderate correlation length, and (2) a nontrivial form factor.
Although we do consider various forms of CDW order, our
most extensive and most significant results are associated with
a nematic glass, which by symmetry has a d-wave form factor.
While the lack of translation symmetry destroys the long-range
coherence of the quasiparticles, the d-wave form factor gives
rise [33–35] to cold-spots [36], near which the quasiparticles
are increasingly weakly coupled to the glassy order. Because
these cold-spots coincide with the nodal points in a d-wave
superconductor, the lowest energy quasiparticles are also the
most weakly affected by the nematic glass.

In comparing our results to experiment, we consider
features from three different experiments: angle-resolved
photoemission spectroscopy (ARPES), scanning tunneling
microscopy (STM), and optical measurements:

(1) The most salient feature of ARPES that we address is the
“nodal-antinodal” dichotomy. The energy distribution curves
(EDCs) for momenta along a cut across the Fermi surface
[Fig. 1(b)] in the nodal region consist of a single dispersing
feature which at least roughly resembles that expected of
a quasiparticle with a finite lifetime. Conversely, along a
similar cut perpendicular to the antinodal segment of the Fermi
surface [Fig. 1(c)], the EDC is complex, exhibiting at least
two distinct features with apparent dispersion relations (if
that notion applies at all) that appear almost discontinuous.
Nevertheless, moving along the Fermi surface from the nodal
to the antinodal point, the EDC curves evolve smoothly and
monotonically [Fig. 1(d)] with no sign of any sharp boundary,
or of the nonmonotonic behavior one would expect if there
were “hot-spots” on the Fermi surface corresponding to the
spanning vectors associated with incipient density-wave order.

(2) Much thought has gone into the analysis of the
rich structural and spectroscopic information encoded in the
variations of the local density of states (LDOS) measured by
STM, especially on BSCCO. Here we focus exclusively on a
clear “dichotomy” [Fig. 4(a)] that has been apparent since the
earliest studies [37–39]: At relatively low energies, the LDOS
is remarkably homogeneous and has the V-shaped energy
dependence expected for a uniform d-wave superconductor,
while at energies comparable to the gap (or pseudogap), there
are order one variations of the LDOS as a function of position.
Note that the “dispersing features” in the Fourier transform
of the LDOS which have been identified with quasiparticle
interference effects are more or less confined to the “low
energy” range in which the LDOS is relatively homogeneous.

(3) The low T optical conductivity rises roughly linearly
with increasing frequency ω to a peak at ω ∼ 100–200 meV
that (at least in the more recent data on Hg-1201) is larger than
any reasonable estimate of the superconducting gap, and then
drops slowly at larger ω [Figs. 6(a) and 6(b)]. All of these fea-
tures are somewhat anomalous, as is the T dependence of σ (ω).

As we shall show, these salient features of the ARPES and
STM experiments are naturally explained by the coincidence
of the nematic cold-spots and the superconducting nodes
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FIG. 1. Energy distribution curves (EDCs) from ARPES mea-
surements reproduced from He et al. [40] (Bi-2201). (b)–(d) Different
paths in k space as shown in (a): (b) is a “nodal” cut through the Fermi
surface [path 1 of (a)], (c) is an antinodal cut through the Fermi surface
[path 2 of (a)], and (d) is a path along the Fermi surface starting at the
nodal point and ending at the antinodal [path 3 of (a)]. The measured
spectral weight has been divided by the Fermi function.

in a superconducting nematic glass. This is illustrated in
Figs. 2 and 4(b), respectively. We also find that the optical
conductivity computed in the simplest model of such a glass
looks remarkably like the experiments [Fig. 6(c)]. However,
concerning the thermal evolution of σ , there are aspects of
the solution that are slightly problematic, since in making
the comparison at the higher temperatures, we are compar-

(a) (b) (c)

FIG. 2. EDCs computed along the same paths in k space as shown
in Fig. 1(a) for a superconducting nematic glass with �0 = 0.055t ,√

�nem = 0.1t , and ξnem = 2a: (a) A “nodal” cut through the Fermi
surface [path 1 of Fig. 1(a)], and (b) is an antinodal cut through the
Fermi surface [path 2 of Fig. 1(a)]. A blue circle marks the maximum
of each curve, and a green circle marks the position of a “shoulder.”
(c) A path along the Fermi surface starting at the nodal point and
ending at the antinodal point [path 3 of Fig. 1(a)].

ing experimental results at T > Tc with theoretical results
at T < Tc.

The notion that various phenomena in the cuprates may be
associated with the existence of cold-spots on the Fermi surface
is not new. Notably, a number of earlier studies [36,41–46]
have suggested that salient features of the transport properties
of the “normal” (“bad metal” or “strange metal”) state can be
interpreted as evidence of a strongly anisotropic scattering
rate on the Fermi surface, with cold-spots along the zone
diagonal. Anisotropic scattering rates inferred from ARPES
data support the case [47]. In contrast, in the present study,
the focus is primarily on the low temperature properties of
the system where superconductivity and pseudogap signatures
coexist. In this regime, glassy nematicity provides a plausible
microscopic origin of anisotropic scattering rates. To the
extent that there is a relation to the cold-spots of the earlier
proposals, it is more likely that at higher doping and larger
temperature they are associated with quantum or thermal
nematic fluctuations [48–50], rather than with frozen, glassy
nematic order.

II. THE MODEL

As our primary focus is on the quasiparticle properties deep
in the superconducting state and far from any quantum phase
transition, where neither thermal nor quantum fluctuations are
expected to be significant, we assume that it is sufficient to
study the solutions of an appropriate mean-field Bogoliubov–
de Gennes Hamiltonian,

HBdG =
∑

xy

(c†x↑ cx↓)

(
txy �xy

�∗
yx −tyx

)(
cy↑

c
†
y↓

)
, (1)

where cxσ annihilates an electron at site x with spin σ . The
normal part of the Hamiltonian is assumed to be of the form

txy = t (0)
xy + V (x,y), (2)

where the first term represents the underlying band structure
t

(0)
xy = −μδxy − tδ〈x,y〉 − t ′δ〈〈x,y〉〉, with t = 1, t ′ = −0.3, and

chemical potential μ = −0.8, and the term V represents the
effective potential due to the presence of (glassy) charge order.
The anomalous term �xy on each pair of nearest-neighbor sites
〈x,y〉 is determined self-consistently from the gap equation

�xy = U

2
〈cy↑cx↓ + cx↑cy↓〉, (3)

with �xy = 0 otherwise. A value of U = 0.732t is chosen so
that in the clean limit [V (x,y) = 0], the transition to the d-wave
superconducting state occurs at T 0

c = 0.05t , and the resulting
uniform d-wave BCS ground state has a gap function in k
space: �k = �0(cos kx − cos ky), with �0 = 0.055t . [Note
that this unrealistic pairing strength was chosen such that the
antinodal gap (∼0.1t) is larger than the energy resolution set by
vmax

F �k ∼ 0.06t , where vmax
F is the maximum Fermi velocity,

and �k = 2π/N is the momentum resolution, for system size
N = 256 used in most calculations, and yet reasonably smaller
than the energy difference between the Fermi level and van
Hove singularity (�EvH = 0.4t).]

Finally, the effect of any (glassy) charge order is represented
by a local order parameter ϕ(x) (taken to be real under the
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assumption that time-reversal symmetry is unbroken), which
couples to the quasiparticles with a “form factor” f (r):

V (x,y) = 1
2f (x − y)[ϕ(x) + ϕ(y)]. (4)

For typical random disorder, or for the simplest forms of
charge-density-wave (CDW) order, f (r) ≈ δr,0, correspond-
ing to a position-dependent single-site energy. In contrast,
for nematic order, f (r) must flip sign under 90◦ rotation by
symmetry; to be explicit we choose the shortest-range form
factor compatible with nematic symmetry f (r) = δr,±x̂ −
δr,±ŷ corresponding to a position dependent modulation of
the nearest-neighbor hopping matrix elements. We assume
ϕ(x) are random variables chosen from an ensemble defined
by the configuration average of the two-point correlator
ϕ(x)ϕ(x + r) = �(r). The spatial range of the assumed cor-
relations, as well as any tendency to ordering with nonzero
period (as in a CDW with a finite ordering vector Q) are
encoded in �(r). In the case of a nematic glass, we take
�(r) = �nem exp(−r2/2ξ 2

nem), where �nem is a measure of
the mean-square magnitude of the nematic order, and ξnem

is the nematic correlation length. For a CDW glass, �(r) =
(�cdw/2)[cos(Q · r) + cos(Q′ · r)] exp(−r2/2ξ 2

cdw), where Q
and Q′ are the two symmetry related ordering vectors.

We can already see how a glassy nematic will generate
cold-spots by simply Fourier transforming Eq. (4) to yield

Ṽ (k,p) = 1
2

[
f̃ (k) + f̃ (p)

]
ϕ̃(k − p), (5)

where f̃ (k) and ϕ̃(q) are respective Fourier transforms of
f (r) and ϕ(x). For nematic order, f̃ (k) = 2(cos kx − cos ky).
When ϕ(x) is uniform, ϕ̃(q) is a delta function peaked at
q = 0, in which case Ṽ simply leads to distortion of Fermi
surface [dashed line in Fig. 3(a)]. When ϕ(x) is nonuniform,
on the other hand, ϕ̃(q) is no longer a delta function, and
momentum states acquire lifetimes by scattering off of ϕ̃(q).
The form factor f̃ (k) gives rise to strong anisotropy of the
quasiparticle lifetimes: While the antinodal quasiparticles are
strongly scattered, the “nodal quasiparticles” at the cold-spots
(|kx | = |ky |) are largely unaffected. The cold-spots arise solely
as a result of the symmetry of the (local) nematic order.

III. METHOD OF SOLUTION

To achieve sufficiently fine k-space resolution for present
purposes, we work with a system with periodic boundary
conditions of size N × N with N = 128 or where needed
N = 256 or 512. However, because it is computationally
intensive to solve the self-consistency equations for such a
large system, we have chosen the disorder potential V (x,y)
(and correspondingly �xy) to be periodically repeated in
blocks of size L × L with L = 32. This compromise allows
us to study real-space heterogeneity, while at the same time
reducing the finite size effect through fine k-space (and hence
energy) resolution.

We generate a configuration of the quenched variables
by choosing {ϕ(x)} from a distribution with a Gaussian
two-point correlator �(r). To avoid long-range correlation of
ϕ(x), we choose ξnem to be small relative to the size of the
repeated blocks. Specifically, we require |�(r)/�(0)| < 1% at
|r| = La/2, where a is the lattice constant, which means we
are limited to ξnem � 5a. To be concrete, we will present results

(a) (b)

θ

(c) (d)

FIG. 3. (a) Fermi surface of the model system in the normal
state (�xy = 0). Solid lines are computed in the symmetric phase
[ϕ(x) = 0] and the dashed lines in a uniform nematic phase [ϕ(x) =
0.05t]. (b) A(k,E) of the superconducting nematic glass at a fixed
energy |E = −0.2t | > 2�0 = 0.11t showing the nodal antinodal
dichotomy. Color intensity indicates the magnitude. (c) Imaginary
part of normal state electronic ω = 0 self-energy on the Fermi surface
coupled to nematic order extracted from real space simulation as a
function of angle around the Fermi surface θ as defined in the inset,
and (d) calculated in the Born approximation.

primarily for ξnem = 2a; although this is shorter than typical
correlation lengths of glassy order measured in experiments (as
defined in Ref. [20] for example), we chose it for two reasons:
(1) As we will find in our spectral function analyses, ξnem = 2a

results show qualitatively no difference with ξnem = 4a. (2)
Obviously, results for short correlation lengths suffer less
from finite size effect than longer correlation lengths. For each
configuration of {ϕ(x)}, we determine the values of �xy from
the solution of the self-consistency equation (3). For example,
a typical configuration of ϕ(x) is shown in Fig. 5(a) generated
from an ensemble with

√
�nem = 0.1t and ξnem = 2a; the

corresponding self-consistently determined gap function �xy
is shown in Fig. 5(b). While there are clearly significant
variations in the magnitude of the pair fields from place to
place, the d-wave character of the sign structure is universally
preserved; it is positive on all x-directed and negative on all
y-directed bonds.

Finally, once self-consistency is achieved, we calculate
three spectroscopic observables: (1) the ARPES spectral func-
tion A(k,E), (2) the local density of states n(x,E), and (3) the
optical conductivity σ (ω). The spectroscopic observables we
study are self-averaging properties. Although here we present
results from a single configuration, we have confirmed that
different configurations of {ϕ(x)} generated probabilistically
from the same distribution result in minor quantitative changes
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in the calculated spectra, with no significant qualitative
difference.

IV. RESULTS FOR THE SUPERCONDUCTING
NEMATIC GLASS

Among various forms of glassy charge order that we
have considered, the nematic glass best reproduces the nodal-
antinodal dichotomy as observed in ARPES (Fig. 1). We have
carried out calculations for various choices of the strength
and correlation length of the nematic order, but to be concrete
we present representative data corresponding to

√
�nem = 0.1t

and ξnem = 2a. In Fig. 2 we show our results for the spectral
function, such as would be measured in ARPES. In Fig. 2(a) the
EDCs [i.e., the energy dependence of A(k,E) at fixed k] for ks
along a cut through the nodal point on the Fermi surface shows
a quasiparticlelike dispersion that is otherwise featureless,
as in ARPES measurements [Fig. 1(b)]. On the other hand,
the EDCs in the antinodal region, shown in Fig. 2(b), have
two branches which are almost discontinuous, a quasiparticle
dispersion and a shoulder fixed at the superconducting gap
scale, reminiscent of Fig. 1(c). EDCs along the Fermi surface
from node to antinode [Fig. 2(c)] also qualitatively agree
with the ARPES measurements [Fig. 1(d)]; a sharp peak
smoothly and monotonically evolves to a broader peak, albeit
this broadening is more pronounced in the theoretical curves
than in experiment.

In a long-range ordered nematic phase, the Fermi surface
is increasingly deformed as one moves away from the nodes
towards the antinodes [see Fig. 3(a)]. A related anisotropy
characterizes the glassy nematic state, even in the presence
of a superconducting gap. Constant-energy cuts of A(k,E)
for a fixed E well above the superconducting gap scale
(E = −0.2t ≈ −4�0) shown in Fig. 3(b) vividly capture the
contrast between the nodal and antinodal regions. The spectral
function is relatively sharp in the nodal region and significantly
broadened in the antinodal region.

The corresponding anisotropy is clearly reflected in the
imaginary part of the electron self-energy, i.e., the inverse
lifetime of the quasiparticles, extracted from the calculated
spectral function in the normal (nonsuperconducting) state of
the nematic glass, as shown in Fig. 3(c). Moreover, results
for two different correlation lengths ξnem = 2a and 4a appear
almost identical in their angular dependence; this confirms
that our principal qualitative results are robust, despite the
short correlation lengths we have assumed for computational
simplicity. Indeed, we find that the exact self-energy extracted
from our simulation is qualitatively similar to the self-energy
computed in Born approximation:

�(k,ω) =
∫

d2p

(2π )2
|g(k,p)|2G(p,ω)�(p − k), (6)

where g(k,p) ≡ [f̃ (k) + f̃ (p)]/2, as shown in Fig. 3(d).
The energy dependence of the LDOS calculated for the

glassy nematic configuration Figs. 5(a) and 5(b) is shown
in Fig. 4(b); it exhibits qualitative resemblance to the corre-
sponding experimental data shown in Fig. 4(a). The spatial
average n̄(E) indicated as the black line in Fig. 4(b) has
a V shape expected of a uniform d-wave superconductor.
However, the standard deviation �n(E) represented by the
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FIG. 4. Local density of states as a function of energy measured at
multiple locations on the surface: (a) Results of STM measurements
on Bi-2212 reproduced from Ref. [51]. Different curves represent
tunneling spectra measured at different locations of the sample. (b)
Computed for a superconducting nematic glass with �0 = 0.055t ,√

�nem = 0.1t , and ξnem = 2a; the solid black curve and the shaded
region indicate the spatially averaged DOS and spatial standard
deviation of LDOS, respectively. The spatial maps of LDOS at
energies marked by the two arrows are shown in Figs. 5(c) and 5(d).

shaded region in the same figure grows with energy, and is
large at energies larger than and comparable to �0 = 0.055t .
Another way to appreciate the “low energy and high energy”
dichotomy is to look at the spatial map of the normalized LDOS
n(x,E)/n̄(E) at different energies. There is a clear contrast
between the relative homogeneity evident in the map at low
energy shown in Fig. 5(c) (E = 0), and the inhomogeneity

(a) (b)

(c) (d)

FIG. 5. (a) A representative configuration of ϕ(x) representing a
nematic glass with ξnem = 2a in a system of size 32 × 32 unit cells.
(b) The gap parameter �xy at T = 0 determined self-consistently with
ϕ(x) shown in (a) when the root-mean-square magnitude

√
�nem =

0.1t . The sign of �xy on each bond is represented by the color (red
is positive blue is negative) with the magnitude represented by the
thickness of the line as well as opacity. Manifestly, the local symmetry
of the pairing is uniformly d wave. The associated normalized LDOS
n(x,E)/n̄(E) is shown for (c) E = 0 and (d) E = −0.2t .
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FIG. 6. Optical conductivity (a) from experiment [52] on Bi-
2212 with Tc = 82 K, (b) from experiment [53] on Hg-1201 with
Tc = 67 K, (c) calculated for the superconducting nematic glass with
ξnem = 2a and

√
�nem = 0.2t), and (d) calculated for a disordered

superconductor, where the disorder is assumed to have an on-site
s-wave form factor with ξch = 0 and

√
�ch = 0.2t . In both (c) and

(d), �xy is self-consistently determined by Eq. (3) with U = 0.732t .

of the same map at a higher energy shown in Fig. 5(d)
(E = −0.2t to − 4�0). [Note that quantitative comparison
between the experimental results in Fig. 4(a) and theory
requires some care; for computational purposes (as discussed
previously) we have taken a value of �0 = 0.055t that is larger
than the observed value in experiment.]

We now turn to the optical conductivity, whose temperature
and frequency dependencies show trends that are shared
across different material families of underdoped cuprates [see
Figs. 6(a) and 6(b)]. Well above Tc, the real part of the complex
conductivity σ1(ω) is a monotonically decreasing function
of ω, as expected of a metallic state. As the temperature
is lowered, the response at ω below a certain frequency
ωpeak is increasingly suppressed, and σ1(ω) evolves into a
superposition of a sharp peak at ω = 0 and a broad peak at
ω ∼ ωpeak. Remarkably, the optical conductivity calculated
within our model shows similar qualitative behavior. In the
model, the persistence of an increasingly sharp peak at a
nonzero energy is a consequence of pair formation. More
importantly, the remaining sharp Drude-like peak with width
that tends to zero as T → 0 at small ω is a manifestation of
the coherence of the near-nodal quasiparticles that are largely
unscattered in the glassy nematic.

The role of the nematic cold-spot in the optical response
can best be seen by comparing the case of the nematic glass
in Fig. 6(c) with the case of pointlike scattering in Fig. 6(d).
When the nodal quasiparticles are scattered by the random
potential, there remains a residual density of states at ω = 0
even deep in the superconducting phase. As a result, a finite
width Drude-like peak persists even as T → 0.

The observed evolution of σ1 from a “Drude-like” form
at high temperatures to a superposition of a sharp peak
at ω = 0 and a broad peak at ω ∼ ωpeak is remarkably
reproduced by the glassy nematic model. However, in the
experiments, the crossover between the two forms onsets at the
pseudogap temperature scale ∼T∗ well above superconducting
Tc while the corresponding crossover onsets at the calculated
(mean-field) superconducting Tc in our model. Notably, the
experimental σ1(ω) marches through Tc without much notice
of it. It is as if d-wave gap with nodes onsets at T ∗, with nodal
quasiparticles that are largely unscattered as they would be in
the presence of glassy nematic order. We will further discuss
constraints on models for σ1(ω) at temperatures Tc < T < T ∗
in the next section. The qualitative similarity between the
measured spectra and those calculated from our glassy nematic
model in the superconducting state at T < Tc is not subject to
this caveat; it is a robust result of the cold-spots, although
the energy scale of the broader peak in experiment is larger
than 2�0.

V. OTHER FORMS OF GLASSY ORDER

We have carried out similar (although less extensive)
calculations for various other forms of assumed glassy order.
We comment here briefly on certain aspects of these results.

A. Superconducting d-form factor CDW glass

While the d-wave form factor in the case of a nematic
glass is dictated by symmetry, for a CDW in which the
ordering vector itself breaks the C4 symmetry of the underlying
crystal, the d-wave form factor is not symmetry dictated. Any
CDW will thus necessarily have both s-wave and d-wave
components; conversely, a dominantly d-wave form factor
presumably reflects some feature of the microscopic physics
(the “mechanism”) which produces the CDW. Not surprisingly,
results obtained for a CDW glass with an assumed d-wave form
factor share many qualitative features with those obtained for
a nematic glass, as these arise from the assumed form factor
directly. The major differences between the two situations
concern the existence of hot-spots on the Fermi surface in
the case of the d-form-factor CDW glass. Hot spots refer to
the points on the pristine Fermi surface which are spanned by
the CDW ordering vector—these are the points where, in a
weak coupling analysis of CDW order, the effects of the CDW
are expected to be most vivid.

The EDC of a d-form-factor CDW glass as a function of
position along the Fermi surface is shown in Fig. 7(a) to be
compared to Figs. 1(d) and 2(c). Although we have taken the
CDW correlation length in our calculations to be quite short,
ξcdw = 4a (comparable to the CDW wavelength), the existence
of a hot-spot is clearly seen in the nonmonotonic evolution of
the spectral function along the Fermi surface. This is in sharp
contrast with the lack of any such feature in Fig. 1(d). The
hot-spots are also visible in the electron self-energy of the
normal state along the Fermi surface, as shown in Fig. 7(b);
the hot-spot appears more sharply for longer ξcdw.

We have not explicitly explored the effects of glassy [26]
“d-density-wave (DDW) order” [54], because time-reversal
symmetry breaking required for DDW brings with it additional
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(a)

θ

(b)

FIG. 7. (a) EDCs along the Fermi surface [path 3 of Fig. 1(a)],
calculated in the superconducting state in the presence of glassy
charge-density wave with a d-wave form factor and

√
�cdw = 0.2t

and ξcdw = 4a, multiplied by Fermi function. The wave vector
Q = (2π/a)(0.196, 0) is chosen to be a shortest vector connecting
the intersection of Fermi surface and the magnetic Brillouin zone
boundary (|kx ± ky | = π ). Blue circles mark the maxima of each
curve, and the red curve indicates the location of a hot-spot
momentum. The angular dependence of the self-energy in the normal
state with various values of ξcdw is shown in (b). The hot-spot momenta
are indicated by red arrows (red dots in the inset).

issues of modeling. Nevertheless, since it also has a d-wave
form factor, we expect that much of the nodal-antinodal
dichotomy we have found would also apply to this form of
ordering in the superconducting phase.

B. Optical conductivity for other models of antinodal gap

The fact that the “two-peak” structure (a sharp peak at
ω = 0 and a broad peak at ω = ωpeak) that is well captured by
our superconducting glassy nematic model below Tc persists
above Tc in experiments is troublesome. Our result relies
on two essential ingredients of the model to obtain the
two-peak structure: (1) a d-wave superconducting gap and (2) a
d-wave form factor scattering. Given the apparent absurdity of
assuming the persistence of a superconducting gap far above
Tc, we consider two additional scenarios of a nematic glass
with antinodal gaps to seek alternative explanations of the
two-peak structure above Tc.

First we consider an ordered d-density-wave (DDW)
[54–59] coexisting with glassy nematicity. We represent the
DDW as a contribution to V with

ϕ(x,y) = i�ddw(−1)x+y, (7)

with Eq. (4) extended to complex field:

V (x,y) = 1
2f (x − y)[ϕ(x) + ϕ∗(y)], (8)

where f (r) is a d-wave form factor. �ddw is chosen to be
�ddw = �0

ddw

√
1 − (T/T 0

c )2 non-self-consistently. To com-
pare with the superconducting state, we chose T 0

c = 0.05t , and
also �0

ddw = 0.05t . This opens a gap at the antinodes, as the

(a)

E

(b)

(c)

(d)

E

(e)

(f)

FIG. 8. Various spectroscopic observables for a nematic glass
with coexisting uniform d-density-wave order (DDW) (a)–(c) and
with phase disordered (locally d-wave) superconductivity (PDdSC)
(d)–(f). The DDW and PDdSC are set non-self-consistently by
Eqs. (7) and (9), with no additional superconducting order. In the
PDdSC, phase disordering of the superconducting state is represented
by incorporating two pinned vortices and two antivortices. (a)–(c)
Spectral function at the Fermi level, local density of states, and
optical conductivity with DDW. (d)–(f) Spectral function at the
Fermi level, local density of states, and optical conductivity with
PDdSC.

Fermi level spectral function in Fig. 8(a) shows. Nevertheless,
the density of states remains finite [as indicated by the finite
length of “arc” in Fig. 8(a), and also Fig. 8(b)], leading to the
Drude-like peak at T = 0 in Fig. 8(c). Not surprisingly, DDW
order alone is insufficient to account for the nature of the
experimentally observed gapping below Tc; even above Tc, it
does not give as good an account of the structure of the optical
conductivity as does the (apparently absurd) assumption of a
persistent superconducting gap.

Another way to introduce an antinodal gap is in a model
of a “phase-disordered” d-wave superconductor (PDdSC)
with broken time-reversal symmetry. We introduce minimal
phase disorder by incorporating vortices at positions (0,0)
and (Lx/2, Ly/2) and antivortices at positions (Lx/2, 0)
and (0, Ly/2). We thus non-self-consistently choose �xy =
f (x − y)�( x+y

2 ) to be a product of d-wave form factor

014204-6
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f (r) = δr,±x̂ − δr,±ŷ and Jacobi theta functions:

�(x) =�0

√
1 −

(
T

T 0
c

)2

σ̂W (z; 0)σ̂W

(
z;

π

2
(1 + i)

)

× σ̂ ∗
W

(
z;

π

2

)
σ̂ ∗

W

(
z; i

π

2

)
, (9)

where z ≡ x
Lx

+ i
y

Ly
, and σ̂W is defined as

σ̂W (z; z0) ≡ σW (z; z0)/|σW (z; z0)|, (10)

σW (z; z0) ≡ e− π
2 [(z−z0)2−2z∗

0z]ϑ3(z − z0|i). (11)

Again we choose T 0
c = 0.05t and �0 = 0.05t . Figures 8(d)–

8(f) show the resulting spectra. The spectral function shows
that, while the antinodal excitations become gapped, a large
portion of the Fermi surface still survives as noted by Berg
and Altman [60]. This Fermi arc leads to a finite density of
states in the limit ω → 0. In fact, the density of states at low
energies has a rather flat energy dependence with a suppressed
but finite magnitude [Fig. 8(e)]. Correspondingly, we find that
the optical conductivity does not show any suppression of the
low energy spectral weight [Fig. 8(f)]. Again, this does not
greatly resemble the experimental results for T > Tc. Instead,
as with the DDW, the finite density of states at the Fermi level
leads to a Drude-like peak at ω = 0. Among the possibilities
that we have considered, only the model with d-wave super-
conductivity on top of d-form-factor scattering with cold-spots
qualitatively reproduce the experimentally measured σ1(ω) for
temperatures T < T ∗.

VI. CONCLUSION

In summary, we showed that the consonance between
the cold-spots of a glassy nematic and the gap nodes of
a d-wave superconductor can account for the most salient
“anomalous” features of the spectroscopic measurements on
the cuprates we have studied. It is natural in a glassy nematic
superconductor that the nodal quasiparticles are long-lived,
while away from the nodes, the quasiparticles are strongly
perturbed by the local nematic order. This provides a simple
explanation for the nodal-antinodal dichotomy observed by

ARPES, and the strongly energy dependent heterogeneity
observed by STM. Furthermore we found striking similarity
between the temperature evolution and low temperature form
of optical conductivities between our model and experiments.
Nevertheless, the fact the two-peak structure of the optical
response only occurs below Tc within our model, while it
persists up to T ∗ in experiments, implies that fluctuational
effects beyond those we have considered must be included in
a complete theory of the pseudogap state.

Implicit in the above is the assumption that other sources
of quasiparticle scattering—those associated with pointlike
(s form factor) disorder or with CDW ordering (either with
s or d form factor)—are relatively weak. Specifically, as was
pointed out previously [61], substantial scattering by pointlike
disorder can be ruled out directly from the experimentally
observed sharp V shape and relative homogeneity of the lowest
energy portion of the LDOS. Above we have further shown that
significant scattering by a CDW with a substantial correlation
length—even one with a d form factor—can be ruled out on
the basis of the lack of any hot-spot in the observed ARPES
spectrum. Since both pointlike disorder potentials and short-
range CDW order have been directly imaged in the same sort of
BSCCO samples we have used as the basis of these inferences,
this raises the issue of why they are so weakly coupled to the
low energy quasiparticles [29].

Our results point to interesting future directions. First,
a smoking-gun test of our conclusions would be to repeat
the spectroscopic measurements on samples under uniaxial
strain. We would predict the anomalous features to diminish
as uniaxial strain detwins nematic domains. It is also plausible
that the response of glassy nematicity to in-field magnetic field
may introduce field dependence of the anisotropic lifetime.
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[15] V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y. Sidis, A. Ivanov,
C. Bernhard, C. T. Lin, and B. Keimer, Science 319, 597 (2008).

[16] A. J. Achkar, M. Zwiebler, C. McMahon, F. He, R. Sutarto,
I. Djianto, Z. Hao, M. J. P. Gingras, M. Hücker, G. D. Gu,
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