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Effects of surface-bulk hybridization in three-dimensional topological metals
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Identifying the effects of surface-bulk coupling is a key challenge in exploiting the topological nature of the
surface states in many available three-dimensional topological “metals.” Here we combine an effective-model
calculation and an ab initio slab calculation to study the effects of the lowest order surface-bulk interaction:
hybridization. In the effective-model study, we discretize an established low-energy effective four-band model
and introduce hybridization between surface bands and bulk bands in the spirit of the Fano model. We find that
hybridization enhances the energy gap between bulk and Dirac surface states and preserves the latter’s spin texture
qualitatively, albeit with a reduced spin-polarization magnitude. Our ab initio study finds the energy gap between
the bulk and the surface states to grow upon an increase in the slab thickness, very much in qualitative agreement
with the effective-model study. Comparing the results of our two approaches, we deduce that the experimentally
observed low magnitude of the spin polarization can be attributed to a hybridization-type surface-bulk interaction.
We discuss evidence for such hybridization in existing ARPES data.
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I. INTRODUCTION

Many discrepancies between experimental measurements
and theoretical predictions of ideal topological insulators (TIs)
are attributed to the fact that the chemical potential lies
in the conduction band and the bulk band interferes with
measurements [1–4]. That is, many available TI materials
are actually metallic. Recent developments in thin-film ex-
periments [4–8] further call for studies of surface-bulk (S-B)
electron interaction in films. However, explicit first-principles
calculations on TI films are limited to very thin slabs, with
a thickness less than 10 nm due to the computational cost.
Therefore, there is a need for a simple microscopic model
which incorporates S-B interactions that can be used to study
how physical properties depend on the film thickness.

One important question such a model should address is
the effect of S-B interaction on the spin texture. The surface
spin texture is a key physical characteristic of topological
surface states in ideal TIs. While low-energy effective theories
guided by symmetries predict perfect spin-momentum locking
for topological surface states within the bulk gap, spin- and
angle-resolved photoemission spectroscopy (SARPES) data
show lower in-plane spin polarization and total spin magnitude
[9–11]. On the other hand, an ab initio calculation on a few-
quintuple-layer (QL) slab [11] found both the spin polarization
and the total spin magnitude to be much smaller. Although
reductions in spin polarization and total spin magnitude are
to be anticipated at large surface Fermi momenta where
hexagonal warping manifests [12–14], little is understood
about the reduction observed at small Fermi momenta and
how the S-B interaction affects the spin texture. However, such
understanding is crucial for pursuing technical applications of
spin-momentum locking in thin films of TIs in the metallic
regime [15–17].

*yh436@cornell.edu

Our starting point is the observation made by [18] that
the lowest order electron-electron interaction term between
the surface state and the bulk states can be viewed as a
hybridization term in the Fano model [19]. The key effect
of hybridization in this low-energy effective theory is to
spectroscopically separate surface states localized on the
surface from the extended metallic bands. Building on the
principles underlying this low-energy effective theory, we
study hybridization effects with a microscopic model of
three-dimensional (3D) time-reversal-invariant strong TIs to
address the thickness dependence of physical quantities and
connect the results to ab initio slab calculations. Specifically,
we study TI slabs of finite thickness in the presence of S-B
interaction from two complementary perspectives: a simple
microscopic model including the lowest order S-B interaction
and an ab initio calculation of a few-QL Bi2Se3. We focus on
how the spectroscopic properties and the spin texture evolve
as a function of the film thickness.

The paper is structured as follows. In Sec. II we construct
a lattice model for a slab with S-B hybridization and study the
spectroscopic properties of the model as well as the effects of
S-B hybridization on the spin texture. In Section III we present
an ab initio study on 4,5,6-QL Bi2Se3 using density functional
theory (DFT) and discuss the insight the simple hybridization
model offers in understanding the ab initio results. We then
conclude in Sec. IV with a discussion of the implications of
our results and open questions.

II. LATTICE MODEL FOR A SLAB
WITH S-B HYBRIDIZATION

A. The model

In order to introduce S-B hybridization as a perturbation
in the spirit of the Fano model [18] and study its effects on
a slab of finite thickness, we first need a lattice model for
a slab. For this, we discretize [20] the effective continuum

1098-0121/2014/89(20)/205438(7) 205438-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.205438


HSU, FISCHER, HUGHES, PARK, AND KIM PHYSICAL REVIEW B 89, 205438 (2014)

model of [21], which is a four-band k · p Hamiltonian guided
by symmetries and first-principle calculation results. We then
make the system size finite along the vertical axis, i.e., the film
growth direction.

The low-energy effective four-band model in Ref. [21]
describes a strong 3D TI with a rhombohedral crystal structure
such as Bi2Se3. In this effective model each QL is treated as a
layer since the inter-QL coupling is weak, and the four lowest
lying spin-orbital bands come from the mixing of the two Pz

atomic orbitals from Bi and Se, referred to as P1 and P2, and
the two spins, ↑ and ↓. We take this effective model written
in terms of 4 × 4 � matrices and discretize it following the
discretization scheme used for 2D TIs in Ref. [22] such that
the lattice Hamiltonian reduces to the low-energy effective
k · p Hamiltonian in Ref. [21] in the limit |k| → 0. The
resulting lattice model in the rotated spin-orbital basis {|P1,↑〉,
−i|P2,↑〉, |P1,↓〉, i|P2,↓〉} is

H0 =
∑
k‖,kz

h0(k‖,kz)c
†
k‖,kz

ck‖,kz
, (1)

where c
†
k‖,kz

is an operator creating a four-spinor in the
rotated spin-orbital basis with an in-plane momentum k‖ =
(kx,ky) and perpendicular momentum kz, and the lattice
Hamiltonian [23] is

h0(k‖,kz) = ε1(k‖,kz)I4×4 + A1

az

sin(kzaz)�
1

+ A2

ax

sin(kxax)�3 + A2

ay

sin(kyay)�4

+M1(k‖,kz)�
5, (2)

with

ε1(k‖,kz) ≡ C + 2D1

a2
z

[1 − cos(kzaz)] + 2D2

a2
x

[1 − cos(kxax)]

+ 2D2

a2
y

[1 − cos(kyay)], (3)

M1(k‖,kz) ≡ m − 2B1

a2
z

[1 − cos(kzaz)] − 2B2

a2
x

[1 − cos(kxax)]

− 2B2

a2
y

[1 − cos(kyay)]. (4)

The � matrices are defined as �1 = σ z ⊗ τ x , �2 = −I2×2 ⊗
τ y , �3 = σx ⊗ τ x , �4 = σy ⊗ τ x , and �5 = I2×2 ⊗ τ z, where
σ j and τ j are Pauli matrices acting on (↑,↓) and (P1,P2)
spaces, respectively. ax , ay , and az are the lattice constants in
the x, y, and z directions, respectively. We use the parameters
for Bi2Se3 obtained by fitting the continuum model to ab
initio calculations [21]: m = 0.28 eV, A1 = 2.2 eV Å, A2 =
4.1 eV Å, B1 = 10 eV Å2, B2 = 56.6 eV Å2, C = −0.0068
eV, D1 = 1.3 eV Å2, and D2 = 19.6 eV Å2.

We model a slab of Bi2Se3 by imposing open boundary
conditions at the top and the bottom surfaces which break
the translational symmetry along the z axis. Since kz is
no longer a good quantum number, while k‖ still is, we
substitute ck‖,kz

= 1√
N

∑
j eikzjazck‖,j in Eq. (1) and label the

four-spinor operators by the in-plane momentum k‖ = (kx,ky)

and the index of layers j stacking in the z direction. Now the
Hamiltonian for a slab with N layers is

H0(N ) =
∑

k‖

H0(k‖,N ), (5)

where

H0(k‖,N ) =
N∑

j=1

Mc
†
k‖,j ck‖,j + Tc

†
k‖,j+1ck‖,j + T†c†k‖,j ck‖,j+1

(6)

and the 4 × 4 matrices T and M are defined as

T ≡ −D1

a2
z

I4×4 + B1

a2
z

�5 − iA1

2az

�1 (7)

and

M ≡ ε2(k‖)I4×4 + A2

ax

sin(kxax)�3 + A2

ay

sin(kyay)�4

+M2(k‖)�5, (8)

where

ε2(k‖) ≡ C + 2D1

a2
z

+ 2D2

a2
x

[1 − cos(kxax)]

+ 2D2

a2
y

[1 − cos(kyay)] (9)

and

M2(k‖) ≡ m − 2B1

a2
z

− 2B2

a2
x

[1 − cos(kxax)]

− 2B2

a2
y

[1 − cos(kyay)]. (10)

For the sake of simplicity, the results presented in the
remainder of this section are calculated with ax = ay =
az = 1 Å.

We can diagonalize H0(k‖,N ) as

H0(k‖,N ) =
4N−4∑
α=1

E0
B,α(k‖)b0†

α,k‖b
0
α,k‖

+
4∑

β=1

E0
D,β(k‖)d0†

β,k‖d
0
β,k‖ , (11)

where b0
α,k‖ and d0

β,k‖ are four-spinor annihilation operators for
bulk and surface states (henceforth referred to as the “Dirac”
states), respectively, in the absence of hybridization, E0

B,α and
E0

D,β are their corresponding eigenenergies. Here, α and β

label the unhybridized bulk and Dirac states, respectively.
All energy eigenstates are twofold degenerate as required
by inversion (P) and time-reversal (T) symmetries. For each
in-plane momentum k‖, four energy eigenstates with their
energies closest to the Dirac point are labeled as valence
(β = 1,2) and conduction (β = 3,4) Dirac states. α labels the
remaining 4N − 4 bulk states. A natural choice for the labeling
is to let α = 1, . . . ,2N − 2 denote valence bulk states and let
α = 2N − 1, . . . ,4N − 4 denote conduction bulk states, with
the eigenenergies increasing monotonically with α. As the
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model is derived from a low-energy effective model near the
Dirac point, it will break down at high energies. However, we
expect qualitatively correct results when it comes to trends of
physical properties over the hybridization strength and film
thickness, which only require knowledge of the low-energy
physics near the insulating gap.

Now we introduce the S-B hybridization term that is
allowed by symmetries in the spirit of the Fano model
[19]. The Fano model is a generic model describing the
mixing between extended states ck with energy εk and a
localized state b with energy ε through the Hamiltonian HF =
εb†b + ∑

k[εkc
†
kck + Ak(c†kb + b†ck)], where Ak represents

the scattering strength. [18] pointed out that HF can be used to
describe the lowest order interaction between a helical surface
state and a metallic bulk band, i.e., hybridization. They studied
the effects of hybridization in a field theoretic approach. Here
we use a symmetry-preserving form of the S-B hybridization
term in the spirit of HF for the microscopic model of Bi2Se3

shown in Eq. (11) to study the effects of mixing between Dirac
states and bulk states.

For simplicity, we consider the case where the hybridization
strength preserves in-plane momenta k‖ and is independent of
energy and k‖, i.e.,

h′(k‖) =
∑
α,β

g b
0†
α,k‖d

0
β,k‖ + H.c. (12)

We then impose T and P symmetries on the full hybridization
perturbation H ′(k‖) by constructing H ′(k‖) through

H ′(k‖) = h′(k‖) + Ph′(k‖)P † + T h′(k‖)T †

+PT h′(k‖)(PT )†, (13)

where the representations for T and P symmetry operators
with the spatial inversion center at the middle point of the slab
in the current 4N tight-binding spin-orbital basis are T =
K iσy ⊗ I2×2⊗ IN×N with k‖ ↔ −k‖ and P = I2×2 ⊗ τ z

with z : [0,N/2] ↔ [N/2,N ] and k‖ ↔ −k‖, respectively.
Here, K is the usual complex conjugation operator. Finally,
the full Hamiltonian including hybridization at a given in-plane
momentum k‖ reads

H (k‖) = H0(k‖,N ) + H ′(k‖). (14)

After diagonalizing the full Hamiltonian in the tight-binding
spin-orbital bases, we can write

H (k‖) =
4N−4∑
α=1

EB,α(k‖)b†α,k‖bα,k‖

+
4∑

β=1

ED,β(k‖)d†
β,k‖dβ,k‖ , (15)

where bα,k‖ , dβ,k‖ , EB,α , and ED,β are defined similarly to
the corresponding symbols with a superscript 0 in Eq. (11)
but in the presence of hybridization. EB,α and ED,β are again
twofold degenerate, as H (k‖) preserves the parity and time-
reversal symmetries by design. α and β label the bulk and
Dirac states for H (k‖), where the terms bulk and Dirac states
are defined in the same fashion as for H0(k‖,N ) in the absence
of hybridization.

(a) (b)

(c) (d)

(e) (f)

FIG. 1. (Color online) (a) Spectra of the model on a 300-layer-
thick slab. The three chemical potentials μTI, μTM, and μM are
taken as representative points for the three regimes TI (μ � Ec),
M (μ � EM), and TM (Ec � μ � EM) as defined in the text,
respectively. (b–d) The corresponding unhybridized [dashed (blue)
curve] and hybridized [solid (green) curve] spatial profiles of the pair
of degenerate conduction Dirac states |�D,k‖ (z)|2 at k‖ = k‖,μ with
μ = μTI, μTM, and μM, respectively. (e) Effect of hybridization on
the spectra. (f) ARPES data on Bi2Se3 [3].

B. Topological metal regime

We begin our numerical study with no hybridization. In the
absence of hybridization, depending on the chemical potential
μ, we now define three regimes: topological insulator (TI),
metal (M), and topological metal (TM) [see Fig. 1(a)]. The
familiar TI regime is where the chemical potential lies within
the bulk gap and the system is actually a bulk band insulator,
i.e., Ev � μ � Ec, with Ec being the bottom of the conduction
band and Ev the top of the valence band. Within the TI regime,
the Dirac states feature Rashba-type spin-momentum locking
and a spatial profile localized on the surfaces. Of particular
interest to us is the distinction we draw between the M and
the TM regimes based on whether the Dirac states retain the
spin-momentum locking and the surface localization when
away from the TI regime.

In order to examine the above two properties of Dirac
states, we define |ψD,k‖ 〉 ≡ d

†
3,k‖ |0〉 (d0†

3,k‖ |0〉) and |ψ̃D,k‖ 〉 ≡
d
†
4,k‖ |0〉 (d0†

4,k‖ |0〉) in the presence (absence) of hybridization to
represent the pair of degenerate Dirac states above the Dirac
point. Now the spatial profile of the conduction Dirac states
is |�D,k‖(z)|2 ≡ |ψD,k‖ (z)|2 + |ψ̃D,k‖ (z)|2, which is a function
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of z measured from the bottom of the slab along the finite
dimension of the slab. This quantity will show whether or not
the Dirac states are localized on the surfaces. Let us identify a
particular k‖ of interest for a given value of chemical potential
as the in-plane momentum at which the chemical potential μ

intersects the Dirac branch; we denote this in-plane momentum
k‖,μ. To illustrate the features defining the three regimes,
we now report the spatial profiles and the spin polarizations
of the Dirac states in the three regimes in the absence of
hybridization. In the next section we add hybridization and
examine its effects.

Inspecting |�D,k‖ (z)|2 at k‖ = k‖,μ at the representative
values of chemical potential for the three regimes μTI, μM, and
μTM shown in Fig. 1, we find that the spatial profile of the Dirac
states |�D,k‖(z)|2 indicates surface localized states of the slab
in the TI regime as expected [see Fig. 1(b)]. On the other hand,
in the M regime, where the chemical potential is well within the
bulk conduction band, |�D,k‖(z)|2 is fully delocalized over the
entire slab [see Fig. 1(c)]. In this regime, the system cannot be
distinguished from an ordinary M. However, even with μ > Ec

there is an energy window between Ec and a crossover energy
scale EM, where the Dirac states are still spatially localized
on the surfaces in the sense that |�D,k‖(z)|2 is peaked on each
surface of the slab and decays away from the surfaces [see
Fig. 1(d)]. The crossover energy scale EM is a threshold energy,
where, within the regime μ � EM (regime M), wave functions
for all states at in-plane momentum k‖,μ delocalize. We define
the system to behave as a TM when the chemical potential lies
within this window, i.e., Ec < μ < EM, represented by μTM.

A detectable characteristic of TI and TM regimes is
the spin-momentum locking. One measure to quantify spin-
momentum locking at the surface is through the so-called
“spin polarization,” which is the expectation value of the spin
component perpendicular to the in-plane momentum of a Dirac
state, i.e.,

〈Sn̂〉(k‖) ≡ 〈ψD,k‖ |Sn̂|ψD,k‖ 〉 (16)

with n̂ · k‖ = 0. Here the n̂ component of the quantum spin
operator is defined as Sn̂ ≡ �

2 σ · n̂ ⊗ I2x2 ⊗ INxN, where σ =
(σx,σy,σz) are Pauli matrices acting on spin, I2×2 acts on
the orbital degree of freedom, and IN×N acts on the layer
index. 〈Sy〉(kxx̂) is evaluated at kxx̂ = kx,μx̂ and shown for
μ = μTI, μTM, and μM in Fig. 2(a). We see here that, in the
absence of hybridization (g = 0), the spin polarization stays

FIG. 2. (Color online) The effect of hybridization on the degree
of spin-momentum locking in different regimes. Spin expectation
values are calculated for a 300-layer-thick slab using a conduction
Dirac state |ψD,kx x̂〉 with kx = kx,μ at different representative chemi-
cal potentials μ = μTI, μTM, and μM. (a) Spin polarization 〈Sy〉(kxx̂).
(b) Total spin magnitude S(kxx̂) (defined in the text).

maximal in the TI and TM regimes while rapidly dropping
upon entering the M regime. Another quantity of experimental
interest is the total spin magnitude associated with the Dirac
states with in-plane momentum k‖ defined in terms of spin
polarization as

S(k‖) ≡
√ ∑

i=x,y,z

[〈Si〉(k‖)]2. (17)

Figures 2(a) and 2(b) show that the spin-momentum locking
quantified using these measures clearly distinguishes the
TM regime from the ordinary M regime in the absence of
hybridization.

C. Effects of S-B hybridization

We now turn to the effects of hybridization. One effect of
hybridization that is manifest in the experimental detection of
Dirac surface states in the TM regime is an increase in the bulk-
Dirac-state energy gap. We quantify this energy gap, for a given
chemical potential μ, using the energy difference between a
Dirac state above the Dirac point and the energetically closest
bulk state, defined by


DB(μ) ≡ E
(0)
B,2N−1(k‖,μ) − E

(0)
D,3(k‖,μ), (18)

in the presence (absence) of hybridization. Comparing
Figs. 1(a) to 1(e), we find that the key effect of hybridization
that is spectroscopically detectable is the increase in 
DB(μ)
in both the TM and the M regimes compared to the TI
regime. Otherwise the spectra in the absence or presence of
hybridization look similar. Note that most ARPES data on 3D
TIs exhibit a clear energy gap between the Dirac branch and
the bulk states at a chemical potential well into the bulk band
as shown in Fig. 1(f). This experimental trend hints at the
possibility that a sizable hybridization between Dirac states
and the bulk states is common in 3D TI materials. In order to
demonstrate the effect of hybridization, we choose the value of
g = 5 meV, which is subdominant to all the hopping terms yet
substantial in this paper. However, key effects of hybridization
do not depend qualitatively on the value of g.

Another effect of hybridization is to broaden the Dirac state
wave functions in the TI and TM regimes. The degree of
broadening depends on the chemical potential μ, hybridization
strength g, and slab thickness N . However, as long as g

is the smallest energy scale in the total Hamiltonian, as
is the case for Figs. 1(b)–1(d), the Dirac states in the
TI and TM regimes remain localized on the surfaces. A
tangible consequence of the wave-function broadening is
the quantitative suppression of the spin-momentum locking.
As mentioned earlier, in the absence of hybridization the
Dirac states of TI and TM exhibit a maximal degree of
spin-momentum locking. However, hybridization rotates the
spin vectors of different atomic orbitals and layers away from
the direction perpendicular to the in-plane momentum. Hence,
both measures of spin-momentum locking shown in Fig. 2
show a quantitative reduction upon hybridization. This is in
qualitative agreement with the low values of spin polarization
and total spin magnitude found in a first-principles calculation
of a thin slab in a previous work [11] and our DFT results in
the next section. Note that the hybridization still preserves the
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FIG. 3. (Color online) Thickness dependence of the hybridiza-
tion effects. (a) Dimensionless measure of the bulk-Dirac energy gap
r = 
DB/
BB (defined in the text) at different slab thicknesses for
μ = μTM. (b) Spin polarization of a conduction Dirac state 〈Sy〉(kxx̂)
at μ = μTM.

spin-texture winding despite the quantitative reduction in the
spin polarization.

Finally, we study how the effects of hybridization on
the two experimentally accessible characteristics of the TM
regime, namely, how the bulk-Dirac energy gap 
DB(μ) and
the spin polarization 〈Sn̂〉(k‖) of a Dirac state vary with the
slab thickness. Since the quantized energy spacings due to
finite-size effects decreases with increasing slab thickness,
we consider a dimensionless measure that quantifies the
bulk-Dirac energy gap:

r(μ) ≡ 
DB(μ)/
BB(μ), (19)

where 
BB(μ) ≡ E
(0)
B,2N+1(k‖,μ) − E

(0)
B,2N−1(k‖,μ) is the en-

ergy spacing in the presence (absence) of hybridization
between the two lowest lying conduction bulk branches
measured at the same in-plane momentum k‖,μ, where 
DB (μ)
is calculated. This dimensionless quantity r(μ) allows us to
compensate for finite-size effects, though 
BB would be hard
to measure experimentally for realistic bulk samples due to
the lack of the required energy resolution. Figure 3(a) shows
that the hybridization-induced enhancement in the bulk-Dirac
energy gap becomes more prominent with increasing slab
thickness. Comparing the existing ARPES data on bulk
samples [3] and on thin films [5], we find the Dirac branch to be
better separated from the bulk states in the bulk samples than
in the thin films, which is consistent with the hybridization
effect shown in Fig. 3(a). Finally Fig. 3(b) shows that the
reduction in spin-polarization magnitude |〈Sy〉(kxx̂)| is also
intensified with increasing thickness. Such an enhancement in
the impact of hybridization with an increase in slab thickness
can be explained by the fact that a thicker slab implies a larger
number of bulk states that mix with a fixed number of Dirac
surface states for a given strength of hybridization g.

III. DFT CALCULATIONS OF THIN Bi2Se3 SLABS

Now we turn to an ab initio study of thin slabs to compare
with the simple phenomenological model of hybridization we
explored in the previous section. The approach of the previous
section is limited, in the sense that it builds on a low-energy
effective description of the band structure and that there is
no detailed knowledge of the hybridization strength g which
could, in principle, be k‖ dependent. On the other hand, the
DFT approach on slabs, which does not require calculating

FIG. 4. (Color online) (a) DFT-calculated band structure of a 6-
QL slab of Bi2Se3. (b) DFT-calculated spin expectation values of the
conduction Dirac state 〈Si〉(kxx̂) for a 6-QL Bi2Se3 slab.

the surface and bulk separately as in the calculations of
semi-infinite systems [21], is limited to very thin films of
several QLs due to computational limits. By combining the
two approaches, we extract a more robust understanding of the
effects of hybridization in the TM regime and the implications
of their trends over film thickness.

We calculate the electronic structure of Bi2Se3(111) slabs
of 4–6 QLs using the VASP code [24,25] with the projector-
augmented-wave method [26], within the generalized-gradient
approximation [27]. Spin-orbit coupling is included self-
consistently. We use experimental lattice constants [28] and
an energy cutoff of 420 eV with a 31 × 31 × 1 k-point grid.
Our DFT calculations are limited up to 6 QLs. For 5–6
QLs, the overlap between the top and the bottom surface
states is already very small, yielding an energy gap of the
order of milli–electron volts at �. Expectation values of spin
components 〈Sx〉, 〈Sy〉, 〈Sz〉 are calculated from the summation
of the expectation values of each atom.

Figure 4 shows the DFT-calculated band structure and spin
expectation values 〈Si〉(kxx̂) of a 6-QL slab. The surface states
are doubly degenerate and have a Dirac dispersion and we
show five confined states in the bulk conduction band region
[Fig. 4(a)]. For small |kx | values, 〈Sy〉 of a Dirac conduction
state is clearly dominant over other components and exhibits
spin-momentum locking [Fig. 4(b)]. As |kx | increases, a small
z component of spin expectation value develops. However,
over the entire range of kx , 〈Sy〉 is much less than the
maximal value, in agreement with a previous DFT study [11].
A comparison between Fig. 2 and Fig. 4(b) indicates that
our hybridization model is an effective way to capture the
broadening of the Dirac surface state wave function and the
resulting reduction in the spin polarization and the total spin
magnitude [29].

Now we discuss the thickness dependence of the bulk-Dirac
energy gap measure and the spin polarization. We calculate
the dimensionless measure of the bulk-Dirac energy gap
r = 
DB/
BB in the TM regime at the k‖ point, where the
Dirac surface state branch has a slightly higher energy than the
bottom of the conduction band Ec, as indicated in Fig. 4(a).
We find that the ratio 
BB(N1)/
BB(N2) is close to (N2/N1)2

at the k‖ point of interest as expected of the finite-size-effect
origin of the scale 
BB(N ). Surprisingly, despite the small
range of thicknesses accessible to the slab DFT calculation,
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FIG. 5. (a) Ratio r = 
DB/
BB within the TM regime, calcu-
lated at a fixed k‖. (b) 〈Sy〉 of the conduction Dirac state calculated
using DFT as a function of the slab thickness N .

the dimensionless measure of the bulk-Dirac energy gap
r = 
DB/
BB in Fig. 5(a) shows a significant increase upon
an increase in the slab thickness. This is qualitatively consistent
with observations from the effective model and hybridization
effects in Sec. II. On the other hand, the range of thicknesses
in the present calculation appears to be too small to show any
change in the 〈Sy〉 as a function of the slab thickness [Fig. 5(b)].

IV. CONCLUSION

We have combined a Fano-type hybridization model cal-
culation with an ab initio slab calculation to study the lowest
order effects of S-B interaction in TIs with a particular focus
on the TM regime. We defined the TM regime of a TI to
be where the Dirac surface states and bulk states coexist
and interact yet the spin winding is preserved, albeit with a
reduced spin-polarization magnitude. The hybridization model
presented in Sec. II captures the spin-polarization reduction
of the Dirac states originating from the hybridization with
bulk states. Given the metallic behavior of most TIs and
the experimental evidence of reduced spin polarization, our
simple model offers a useful starting point for applications
of TIs which need to take real materials in the TM regime

into account. Moreover, the hybridization-driven bulk-Dirac
energy gap explains why the Dirac branch shows up so well
separated from bulk states in ARPES experiments. Note that
this energy gap and the suppression of total spin magnitudes
are both experimentally observed phenomena that cannot
be accessed by the typical approach of coupling a single
“surface layer” to a bulk electronic structure to include surface
states in semi-infinite systems as in Ref. [21]. We propose
SARPES experiments for films of varying thickness to test
our predictions for hybridization-driven suppression of spin
polarization for further vindication of the model.

Promising future directions include DFT tools to study
slightly thicker systems. This might reveal thickness depen-
dence on spin polarization and be compared to the results of
the simple model. Also, this would reveal more detailed knowl-
edge of the magnitude and k‖ dependence of the hybridization
strength g. Preliminary DFT results show that g(k‖) has a sig-
nificant k‖ dependence. Another interesting direction will be
to study consequences of the hybridization effect on transport
properties. Many puzzling aspects of transport experiments
[4,6–8] have been attributed to the presence of bulk states or
S-B interaction. There is growing theoretical interest in the
transport properties of topological edge states in the presence
of metallic bulk states [30–33] as well. Our microscopic model
offers a simple starting point to theoretically address effects of
S-B interaction on transport in 3D TIs.
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