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Optical signatures of the chiral anomaly in mirror-symmetric Weyl semimetals
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The chiral anomaly is a characteristic phenomenon of Weyl fermions, which has condensed matter realizations
in Weyl semimetals. Efforts to observe smoking gun signatures of the chiral anomaly in Weyl semimetals have
mostly focused on a negative longitudinal magnetoresistance in electronic transport. Unfortunately, disentangling
the chiral anomaly contribution in transport or optical measurements has proven nontrivial. Recent works have
proposed an alternative approach of probing pseudoscalar phonon dynamics for signatures of the chiral anomaly
in non-mirror-symmetric crystals. Here we show that such phonon signatures can be extended to scalar phonon
modes and mirror-symmetric crystals, broadening the pool of candidate materials. We show that the presence
of the background magnetic field can break mirror symmetry strongly enough to yield observable signatures of
the chiral anomaly. Specifically for mirror-symmetric Weyl semimetals such as TaAs and NbAs, including the
Zeeman interaction at |B| ≈ 10 T, we predict that an IR reflectivity peak will develop with an EIR · B dependence.
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I. INTRODUCTION

The Weyl semimetal has been generating excitement as a
new experimentally realizable class of topological materials
in three dimensions [1,2]. The materials are so named due
to the existence of Weyl points in the momentum space,
where two nondegenerate bands intersect and disperse lin-
early. Weyl points are monopoles of Berry curvature and char-
acterized by their chirality, a topological invariant describing
the parallel/antiparallel (right/left-handed) locking between
their momentum and spin or pseudospin. One of the exciting
phenomena predicted in the Weyl semimetal is the condensed
matter realization of the chiral anomaly: the chiral charge—
the population difference between the left- and right-handed
Weyl fermions—is not conserved after quantization.

The nonconservation of chiral charge means that, under
the application of parallel E and B fields, particles will be
pumped between left-handed and right-handed Weyl points.
Therefore, in the presence of a chiral anomaly, one can think
of the B field as creating a topologically protected channel
of charge between left- and right-handed Weyl points, whose
conductivity and direction are controlled by the magnetic
field. The presence of this channel leads to the so-called chiral
magnetic effect [3–7], where a current will develop along
the magnetic field in the presence of a chemical potential
difference between Weyl nodes with opposite chirality. In
order to balance the charge transfer, scattering between Weyl
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nodes is required; this scattering process is rare because the
Weyl nodes are generically well separated, so this conduc-
tion channel has high conductivity. In the limit of large B,
intranode scattering is suppressed within each chiral Landau
level, consisting only of a single linear branch. The internode
scattering time, which is longer than the B = 0 intranode
scattering time, then controls the conductivity in this limit.
Therefore, the chiral anomaly leads to a B-field dependent
enhancement in the conductivity [3]. Negative longitudinal
magnetoresistance was therefore proposed as a signature of
the chiral anomaly in Weyl semimetals [8–10].

Indeed, negative magnetoresistance has been observed in
a number of Weyl semimetals [11–21]; however, negative
magnetoresistance was not unique to Weyl semimetals and
could potentially be caused by other effects [22–27]. For
instance, negative magnetoresistance was also measured in
the non-Weyl semimetal materials PdCoO2, PtCoO2, SrRuO4,
and Bi2Se3 [25,28]. To complicate matters further, the point
contacts used for magnetoresistance measurements were sus-
ceptible to current jetting, where the current is focused by a
magnetic field, artificially enhancing the measured conductiv-
ity and potentially overwhelming the chiral anomaly signature
[29,30]. For these reasons, the chiral anomaly interpretation of
electronic transport results has been controversial.

In search of sharper signatures of the chiral anomaly
and Weyl semimetals, a number of proposals have been put
forth [31–43]. In this paper we will be particularly inter-
ested in phonon-induced optical signatures. Through an axial
(chirality-dependent) electron-phonon coupling, a phonon can
induce a dynamical chemical potential difference between
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Weyl points with opposite chirality, which in turn gives rise to
a dynamical realization of the chiral anomaly. Recent works
have found that this can result in anomalous optical features
in IR and Raman spectroscopy [44–47]. However, based on
symmetry considerations, it was argued that a phonon mode in
a one-dimensional (1D) representation can only have an axial
coupling if it is pseudoscalar (changes sign under improper
rotations) [45]. As the allowed phonon modes are constrained
by the crystal symmetry, pseudoscalar phonons only exist in
crystals where the mirror symmetries are sufficiently broken
[45]. Therefore, previous works ruled out such chiral-anomaly
induced optical phenomena in Weyl semimetal candidates
with many mirror planes, such as TaAs and NbAs [45,46].

We claim, by contrast, that such optical signatures of the
chiral anomaly can occur in all mirror-symmetric crystals for
both scalar and pseudoscalar phonons, due to the role of a
necessary magnetic field. Previous analyses [45,46] assumed
the Weyl points to be locally identical (up to chirality) and the
linear dispersion to be isotropic. If one breaks these assump-
tions and allows the Fermi velocities to differ, a scalar phonon
can also develop an effective, nonvanishing axial coupling.
Such a difference in Fermi velocities can be induced by the
magnetic field necessarily present in the experiments. Because
of this, it is important to consider the effect of magnetic field
on symmetries neglected in previous analyses.

The magnetic field, a pseudovector, changes sign under
improper rotation; under the reflection x → −x, the magnetic
field transforms as (Bx, By, Bz ) → (Bx,−By,−Bz ). There-
fore, it breaks all mirror symmetries except for the mirror
plane normal to it, if such a mirror plane exists. The Zeeman
effect and the Landau level quantization are examples of such
mirror-symmetry-breaking effects. In the presence of at most
one mirror plane, an effective pseudoscalar phonon is allowed
to exist, so the axial component of the phonon coupling for
this mode is generically nonzero. Since optical signatures of
the chiral anomaly require the presence of a static magnetic
field, no symmetry restrictions on Weyl semimetals are re-
quired to see this signature. In this paper, by considering a
suitable microscopic model, we show that the Zeeman effect
and the Landau level quantization can result in substantial
Fermi velocity asymmetry that can drive detectable optical
signatures of chiral anomaly.

The outline of the paper is as follows: In Sec. II we
introduce a tight-binding model Hamiltonian in the same
symmetry class as TaAs and NbAs and analyze the effect of
mirror-symmetry-breaking Zeeman effect and Landau level
quantization on the fermion dynamics. In Sec. III we discuss
the electron-phonon coupling and its symmetry constraints
for optical signatures. In Sec. IV, given the magnetic field’s
mirror-asymmetric effect on the Fermi velocities, we estimate
the strength and visibility of the IR reflectivity signal corre-
sponding to the dynamically driven chiral anomaly. Finally,
we conclude our results and discuss their distinction from
multiferroic materials in Sec. V.

II. TIGHT-BINDING MODEL OF 3D WEYL FERMIONS
WITH MAGNETIC FIELD

To quantitatively analyze the symmetry-breaking effect
of the magnetic field, we consider the following three-

dimensional (3D) electronic tight-binding model with crystal
symmetries identical to the Weyl semimetals TaAs and NbAs
[48]:

H0 = t
∑
〈i j〉,s

c†
isc js +

∑
i,s

�ic
†
iscis

+ iλ
∑

〈〈ik〉〉,ss′
c†

iscks′
∑

j

di jk · σss′ , (1)

where t is the nearest neighbor hopping, �i = ±� is a stag-
gered potential whose sign depends on the sublattice being
a Ta(Nb) or As site, and λ is the amplitude of the spin-orbit
interaction between next-nearest neighbors. s =↑,↓ denotes
spin, and σ are the Pauli matrices. The vector di jk = di j × d jk ,
where j is an intermediate site between i and k, and di j is the
displacement vector from i to j.

In the absence of the magnetic field, the model is time-
reversal invariant and breaks inversion symmetry. Two mirror
planes exist in the xz and yz directions. For large values of λ,
the model is a 3D topological insulator; for large values of �,
on the other hand, the model is a normal insulator. In between,
a time-reversal-invariant Weyl semimetal exists in a finite
phase space, for instance, at t = 500 meV, � = 350 meV,
λ = 100 meV; we will use these parameters throughout this
paper. Comparing this model at B = 0 T to DFT calculations
of the TaAs band structure [1,12,49] and the measured Fermi
velocities around the Weyl points [48], we find qualitative
agreement. More details on the low-energy electronic prop-
erties of the model can be found in the Appendix.

In the presence of a magnetic field, we generally expect the
Hamiltonian to change in two ways. One modification is the
Zeeman effect, describing the coupling of the electron spin to
the magnetic field given by

Hz = gμB

∑
iss′

c†
iscis′B · σss′ , (2)

with g the g factor, μB the Bohr magneton, and B the magnetic
field. We estimate a large g factor g ≈ 50 for typical topo-
logical Weyl semimetal materials with strong spin-orbit cou-
pling, such as TaAs and NbAs, by analogy to measurements
in related materials [50,51]. The inclusion of the Zeeman
effect at finite B breaks the time-reversal symmetry and all
mirror plane symmetries except the mirror plane normal to
the magnetic field, if it exists.

The other modification, which we refer to as the Landau
level quantization, comes from the minimal coupling of the
electromagnetic vector potential to the electron current. To
incorporate this effect, we perform the Peierls substitution on
the kinetic term and the spin-orbit interaction:

c†
isc js → eiAi j c†

isc js,

c†
iscks′ → eiAik c†

iscks′ , (3)

where Ai j and Aik are the electromagnetic vector potentials
(integrated) from i to j and from i to k, respectively. We
have chosen to set the electron charge e = 1 (and h̄ = 1, as
usual). We also use the lattice constants of TaAs to convert
the magnetic flux into the magnetic field in unit of Tesla. As
is well known, minimal coupling to a magnetic field leads
to a quantization of the electronic dispersion into separate
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FIG. 1. The magnitude of the Fermi velocity as a function of the
azimuthal angle φ in the kx-ky plane for a pair of Weyl points, denoted
in green and magenta, originally related by the mirror symmetry at
|B| = 0 T. The solid and dashed lines denote the upper and lower
branches of the Weyl dispersion, respectively. For a magnetic field
|B| ∼ 10 T in the x̂/2 + √

3ŷ/2 direction, the differences developed
between these curves demonstrate the mirror-symmetry breaking of
the Zeeman effect.

Landau bands. In particular, the dispersion normal to the
magnetic field becomes quantized, so the dispersion becomes
one dimensional with band gap controlled by the magnetic
field. Similar to the Zeeman effect, Landau level quantization
also breaks time-reversal symmetry and all mirror plane sym-
metries except the (possibly existent) mirror plane normal to
the magnetic field.

Let us focus on the impact of magnetic-field-induced mir-
ror symmetry breaking on the low-energy dispersion of the
Weyl nodes near the kz ≈ 0 plane in the Brillouin zone. For
clarity, we will consider the effects of the Zeeman effect
[Eqs. (1) and (2)] and the Landau level quantization [Eqs. (1)
and (3)] separately.

For the Zeeman interaction, we diagonalize the Hamilto-
nian H0 + Hz in �k space as Eq. (2) preserves lattice translation
symmetries. We find that even with a magnetic field as large
as |B| = 10 T, the Weyl nodes only displace a scale ∼0.1%
of the Brillouin zone (see the Appendix). Therefore, the
impact of the Zeeman effect due to the k dependence of
the electron-phonon coupling is likely small, and we neglect
this contribution. On the other hand, the symmetry breaking
from the magnetic field has a more prominent effect on the
Fermi velocities, especially in topological semimetal models
and materials with strong spin-orbit interactions, so that the
Zeeman spin-splitting effect strongly impacts electron veloc-
ity. In Fig. 1 we see that the Fermi velocities of the Weyl
points connected via mirror symmetries initially identical at
zero field clearly become different when a magnetic field is
turned on.

For Landau level quantization, we focus our attention on
the linear, chiral Landau bands. We specialize to B = Bx̂ for
simplicity and introduce the electromagnetic vector potential
via Eq. (3). Consequently, the dispersion along ky and kz

FIG. 2. The kx dispersion of the four Landau bands closest to the
Weyl node energy in the presence of the Landau level quantization
of a magnetic field |B| ∼ 12 T in the x̂ direction. The eight gapless
linear branches are the chiral Landau bands descending from the
eight Weyl nodes, respectively, and responsible for the electronic
properties at low energy. A finite (indirect) gap separates the other
Landau bands. As an example, the chiral Landau bands in the red
circle as the descendants of a pair of Weyl nodes are illustrated in
Fig. 3.

becomes quenched, and the discrete Landau bands disperse
only along kx, which remains as a good quantum number. Us-
ing exact diagonalization for the Hamiltonian within a mag-
netic unit cell, we obtain the one-dimensional kx dispersion—
see Fig. 2 for an example at |B| ∼ 12 T. It is important to
note that the branch of the dispersion that evolves into the
chiral Landau band depends on the chirality of each Weyl
node [3], schematically shown in Fig. 3. Therefore, despite the
identical zero-field dispersion of a pair of mirror-symmetric
Weyl nodes, the differing chiralities ensure that the chiral and
antichiral Landau bands selected out by the magnetic field
generally have distinct Fermi velocities. Interestingly, such a

FIG. 3. (a) A schematic plot of the kx dispersion of a pair of Weyl
nodes of opposite chirality (labeled with blue and red) related by a
My mirror symmetry at zero field, and (b) the chiral and antichiral
Landau bands selected out in the presence of a magnetic field along
the x direction. Since the chiral and antichiral Landau levels can
generically have distinct Fermi velocities, they explicitly break the
My symmetries and contribute to an effective axial electron-phonon
coupling.
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difference between the Fermi velocity of the chiral and an-
tichiral Landau bands is a form of mirror-symmetry breaking,
depending on the anisotropy of the original Weyl fermions
instead of the strength of the magnetic field. The remainder
of the Landau bands will be gapped by the magnetic field, so
that the chiral branches dominate near the Fermi energy, see
Fig. 2. As a result, chiral anomaly effects may become visible
if the cyclotron energy of B is sufficiently large and the Fermi
energy sufficiently close to the Weyl node.

In summary, the mirror symmetry connecting a pair of
Weyl nodes is explicitly broken by a magnetic field. The
magnetic-field-induced difference between the Weyl nodes’
Fermi velocities, induced by the Zeeman effect and the chiral
selectivity of Landau level quantization, are physical man-
ifestations of the broken mirror symmetry. We will discuss
its phenomenological consequences for the dynamical chiral
anomaly in Sec. IV.

III. ELECTRON-PHONON COUPLING
AND SYMMETRY CONSTRAINTS

To understand the impact of the Weyl fermion dynamics
and its symmetry constraints on the electron-phonon coupling,
we consider the interaction between phonons and a pair of
Weyl nodes with opposite chirality τ = ±1:

Hep =
∑
kq

∑
σσ ′τ

(∑
λ

uλ
σσ ′,τ (q)vqλ

)
c†

kστ ck−qσ ′τ , (4)

where vqλ is the phonon displacement operator in mode λ

at momentum q and σ, σ ′ describe the pseudospin of the
electrons. We have neglected internode electron scattering,
since it requires a large momentum transfer q to connect
the well-separated Weyl nodes in the momentum space. De-
composing the electron-phonon coupling into its irreducible
representations,

uλ
σσ ′,τ = uλ

00δσσ ′ + uλ
0 · σσσ ′ + τ

(
uλ

0zδσσ ′ + uλ
z · σσσ ′

)
. (5)

The two latter terms correspond to the (chirality-dependent)
axial coupling responsible for the chiral anomaly. We focus
on the axial coupling constant uλ

0z since the contribution from
uλ

z is suppressed by a factor of vτ /c, as we will see later.
The symmetries of the system impose constraints on the

electron-phonon coupling. In particular, uλ
z vanishes in the

presence of time-reversal symmetry, while uλ
0z vanishes in

the presence of two noncoplanar mirror-symmetry planes
[45–47]. Therefore, it seems that the mirror symmetry in
the crystal should be sufficiently broken to host a nontrivial
phonon signature as a result of the chiral anomaly. We find,
on the other hand, that the imposed magnetic field can break
the mirror symmetries sufficiently for the signatures to appear
in a much broader pool of Weyl semimetal candidates.

For our tight-binding model in Eq. (1), we expect the
magnetic-field-induced changes to uλ

σσ ′,τ due to the small
displacements of the Weyl point locations to be subdominant;
instead, the key ingredient that leads to interesting phonon
behavior is the induced change in Fermi velocity, which we
discuss next.

IV. ESTIMATING THE EFFECT OF MAGNETIC FIELD
ON THE FERMI VELOCITY

In this section we study the chiral anomaly contribution to
the phonon dynamics by integrating out the electronic degrees
of freedom. The low-energy effective theory of our tight-
binding model, described by Eqs. (1)–(3), can be captured by
the following single-particle Hamiltonian:

Hτ = vτ (k̂)τσ · (−i∇ + eA) − eA0, (6)

which describes a Weyl point with chirality τ = ±1 and
anisotropic Fermi velocity vτ (k̂). The terms A0, A are the
electromagnetic vector potential [52]. Because phonons do
not couple electrons between Weyl nodes, the integration over
electronic degrees of freedom factorizes between Weyl points
(at the leading order); we can restrict our attention to a single
pair.

For a pair of Weyl nodes with isotropic and identical Fermi
velocity vτ (k̂) = vF , on integrating out the fermions one finds
that the chiral anomaly contributes to a mode-effective phonon
charge δQ, and hence to a dielectric susceptibility χ [46]:

δQ−qλ(−q0) = i
e2Vc

√
N

π2h̄2

B
q2

(
q0uλ

0z − vF q · uλ
0

)
, (7)

χλ
j j′ (q0, q) = 1

MVc

δQqλ jδQqλ j′

ω2
qλ + iκuλ

00q · δQqλ − q2
0

, (8)

where (q0, q) is the frequency-momentum vector of the
phonon, Vc is the unit cell volume, M is the total mass of ions
in the unit cell, N is the number of unit cells, and B is the static
background magnetic field. κ = √

N/(Me), q2 = q2
0 − v2

F q2,
and ωqλ is the bare phonon dispersion of mode λ. Since
q0 = cq for light, the uλ

0 term is suppressed by vF /c. When
the IR light is on resonance with the phonon driving the chiral
anomaly, the dielectric constant diverges and the reflectivity
develops a peak with a form factor EIR · B. Also, such a chiral
anomaly contribution to χλ

j j′ clearly depends on a nonzero
axial coupling constant uλ

0z.
In comparison, our generalized model in Eq. (6) takes into

account the anisotropic Fermi velocity around a Weyl node
as well as the different Fermi velocities between the Weyl
nodes. We consider a totally symmetric scalar phonon mode
at zero field, where all components of the electron-phonon
coupling are 0 except uλ

00. For simplicity, this system can be
mapped back to the isotropic case by rescaling the fermions by
vτ c†

τ cτ → vF c†
τ cτ , which changes the electron-phonon cou-

pling and induces components in the nonidentity piece:

uλ
00 → vF

2

(
1

v+
+ 1

v−

)
uλ

00, (9)

uλ
0z → vF

2

(
1

v+
− 1

v−

)
uλ

00. (10)

The rescaling of the fermions also changes A0, but it does
not affect the phonon charge and dielectric susceptibility in
Eqs. (7) and (8) so we neglect the change. As is manifest after
rescaling, the difference of the Fermi velocity is equivalent to
an axial component uλ

0z in the isotropic setting since uλ
0z/uλ

00 =
|v+ − v−|/(v+ + v−). For the Zeeman effect, a nonzero dif-
ference develops between the Fermi velocities of the pair
of Weyl nodes related by the original mirror symmetry. The
difference is generally greater at larger magnetic field, see
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FIG. 4. The relative difference (induced by the Zeeman effect)
between the Fermi velocities of a pair of Weyl nodes as a function
of the strength of the magnetic field B in the x̂/2 + √

3ŷ/2 direction.
The ratio is averaged over all directions. Assuming that uλ

00 is the only
nonzero electron-phonon coupling component at B = 0, this quantity
measures the ratio uλ

0z/uλ
00 generated by the inclusion of the magnetic

field and the broken symmetry between v+ and v− [see Eqs. (9) and
(10)].

Fig. 4, and uλ
0z ∼ 0.02uλ

00 at 10 T within our model. For
Landau level quantization, on the other hand, the nonzero
difference between v+ and v− originates from the anisotropy
of the dispersion around each Weyl point. Also, the difference
is less dependent on B, see Fig. 5, as long as B is large enough

FIG. 5. The relative difference (induced by the Landau level
quantization) between the chiral Landau level Fermi velocities de-
scending from a pair of Weyl nodes as a function of the mag-
netic field B along the x̂ direction. Similar to Fig. 4, the value of
|v+ − v−|/(v+ − v−) measures the ratio uλ

0z/uλ
00 generated by the

magnetic field. The black dotted line is the value evaluated with the
zero-field dispersion.

FIG. 6. Proposed experimental setup to measure the IR signature
of the chiral anomaly. In the presence of collinear EIR and B fields,
a peak in optical reflectivity is expected for inducing pseudoscalar
phonon modes that couple strongly to the Weyl fermion electrons.
Such an effect also displays a EIR · B dependence as one rotates EIR

relative to B in experiments.

to separate the nonchiral Landau bands and suppress their
contribution. Landau level quantization gives uλ

0z ∼ 0.3uλ
00

within our highly anisotropic model, yet it is also possible that
uλ

0z → 0 irrespective of B when the anisotropy vanishes, e.g.,
for two isotropic Weyl points.

Now that we have obtained an estimate for the effective uλ
0z,

let us estimate the strength of the corresponding IR signature.
For example, we focus on the A1 phonon mode in TaAs. We
take ω = 8 THz to match the experimental observation of
an A1 phonon mode in TaAs [53], Vc = 125 Å, and M =
10−25 kg. We also take uA1

0z ∼ 0.02uA1
00, which is reasonably ob-

tainable given either the Zeeman effect with g = 50 at |B| =
10 T or Landau level quantization with the anisotropy in the
NbAs and TaAs Weyl dispersion, as previously demonstrated.
We also estimate

√
NuA1

00 ∼ 1 Ry/aB on dimensional grounds
[46], and neglect the uz contribution given vF � c. As a
result, we obtain |δQ| ≈ 0.8e. Next, we calculate the impact
of the chiral anomaly on the susceptibility. If we drive the
IR frequency at q0 = 7.9 THz, corresponding to a resonance
width of 6.7 cm−1, we find that χA1

zz = 60ε0. Comparing to the

experimentally measured zero-field reflectivity R = |1−√
εr |2

|1+√
εr |2

on TaAs crystals [53], the chiral anomaly contribution to the
reflectivity should be of sufficient weight to be observable
over the background of χ ≈ 400ε0. Therefore, we propose an
EIR · B dependent peak in the IR reflectivity as a signature of
the chiral anomaly following the experimental setup in Fig. 6,
even for scalar phonon modes and mirror-symmetric Weyl
semimetals [54].

V. DISCUSSIONS AND CONCLUSIONS

In this paper we have focused on utilizing the mirror-
symmetry breaking of the magnetic field to realize dynami-
cal chiral anomaly in mirror-symmetric crystals and exhibit
optical signatures for scalar phonons in IR spectroscopy. We
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FIG. 7. Left: The momentum-space locations of the Weyl nodes on the kz = 0 plane show the mirror symmetry is broken in the presence
of a magnetic field |B| = 10 T along the x̂/2 + √

3ŷ/2 direction. Note that even for a large g factor g = 50 and a large magnetic field of 10 T,
the Weyl nodes only displaces by a scale ∼0.1% of the Brillouin zone. The inset shows a magnified view of the pair of Weyl points in the
orange box. Right: The zero-field dispersion in the ky-kz plane is approximately linear near the Weyl nodes.

would like to emphasize that so long as a magnetic field
is present, at most one mirror symmetry remains, so that
the axial phonon coupling uλ

0z is generically allowed from
symmetry considerations and a chiral-anomaly induced IR re-
sponse should be present. For the specific case where a single
mirror plane remains, a pseudoscalar phonon mode normal
to the mirror plane is still allowed [45,47]. Since both the
effective pseudoscalar phonon and the Weyl fermion chirality
change sign under mirror symmetry, the axial component of
electron-phonon coupling is not restricted to zero, and the
corresponding IR signature of the dynamical chiral anomaly
survives [45,47].

Inducing changes in dielectric susceptibility via a magnetic
field is a magnetoelectric effect and not completely new [46].
However, magnetoelectric effects are typically associated with
multiferroic materials (e.g., Cr2O3) and previous studies have
focused on linear magnetoelectric effects (e.g., P ∝ B). For
the chiral anomaly, the effect is cubic with a characteristic E ·
B signature [i.e., P ∝ (E · B)B], and known Weyl semimetals
are not multiferroic. Therefore, we believe that the chiral-
anomaly-activated phonon dynamics and IR signatures should
be visible in generic Weyl semimetals.
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APPENDIX: LOW-ENERGY WEYL DISPERSION AND
WEYL NODES OF THE TIGHT-BINDING MODEL

The tight-binding model of Eq. (1) in the main text has
four pairs of Weyl nodes on the kz = 0 plane at |B| = 0 T,
shown as the red dots in Fig. 7 (left panel). These Weyl
nodes are related to each other by the reflection planes in the
xz and yz directions. The low-energy electronic dispersion is
approximately linear near each of the Weyl nodes, see Fig. 7
(right panel).

In the presence of a magnetic field B, these reflection
symmetries are generally broken. As a result, the locations
of the Weyl nodes are no longer mirror symmetric. However,
with the inclusion of the Zeeman effect [Eq. (2)], the dis-
placements of the Weyl node locations are relatively small
at experimentally relevant parameters, and unlikely to impact
the electron-phonon coupling through its k dependence in a
meaningful way.
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