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Ever since its discovery, the electron spin has only been measured or manipulated through the application of
an electromagnetic force acting on the associated magnetic moment. In this work, we propose a spin Aharonov-
Bohm effect in which the electron spin is controlled by a magnetic flux while no electromagnetic field is acting
on the electron. Such a nonlocal spin manipulation is realized in an Aharonov-Bohm ring made from the
recently discovered quantum spin Hall insulator, by taking advantage of the defining property of the quantum
spin Hall edge states: the one-to-one correspondence between spin polarization and direction of propagation.
The proposed setup can be used to realize a new spintronics device, the topological spin transistor, in which the
spin rotation is completely controlled by a magnetic flux of hc /2e, independently of the details of the sample.
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I. INTRODUCTION

The spin of the electron is one of the most fundamental
quantum-mechanical degrees of freedom in nature. Histori-
cally, the discovery of the electron spin helped to lay the
foundation of relativistic quantum mechanics. In recent
years, the electron spin has been proposed as a possible al-
ternate state variable for the next generation of computers,
which led to extensive efforts toward achieving control and
manipulation of the electron spin, a field known as
spintronics.1 Despite the great variety of currently used or
theoretically proposed means of manipulating the electron
spin, a feature common to all of them is that they all make
use of the classical electromagnetic force or torque acting
locally on the magnetic moment associated with the spin.

On the other hand, it is known that due to the Aharonov-
Bohm �AB� effect,2 electrons in a ring can be affected in a
purely quantum-mechanical and nonlocal way by the flux
enclosed by the ring even though no magnetic field—hence
no classical force—is acting on them. This effect could be
termed “charge AB effect,” as it relies only on the electron
carrying an electric charge. In systems with spin-orbit cou-
pling or magnetic fields, a spin-dependent phase factor can
be obtained and leads to modifications to the AB effect.3

However, these effects usually involve classical forces acting
on the spin such as electromagnetic fields, and the pure
gauge potential leading to the charge AB effect does not
directly couple to spin. This observation leads naturally to
the question of whether it is possible to observe a “spin AB
effect” which would enable one to manipulate the electron
spin in a purely nonlocal and quantum-mechanical way,
without any classical force or torque acting locally on the
spin magnetic moment.

In this work, we show that the spin AB effect is indeed
possible by making use of the edge states of the recently
discovered quantum spin Hall �QSH� insulators. In recent
years, the QSH insulator state has been proposed in several
different materials.4–9 In particular, this topologically non-
trivial state of matter has been recently predicted7 and real-
ized experimentally10–12 in HgTe quantum wells �QWs�. The

QSH insulator is invariant under time reversal �TR�, has a
charge excitation gap in the bulk, but has topologically pro-
tected gapless edge states that lie inside the bulk insulating
gap. These edge states have a distinct helical property: two
states with opposite spin polarization counterpropagate at a
given edge.13–15 The edge states come in Kramers doublets,
and TR symmetry ensures the crossing of their energy levels
at TR invariant points in the Brillouin zone. Because of this
level crossing, the spectrum of a QSH insulator cannot be
adiabatically deformed into that of a topologically trivial in-
sulator without closing the bulk gap. The helicity of the QSH
edge states is the decisive property which allows the spin AB
effect to exist: the perfect correlation between spin orienta-
tion and direction of propagation allows the transmutation of
a usual charge AB effect into a spin AB effect, as will be
explained in detail below.

The mechanism we propose to realize the spin AB effect
is illustrated in Fig. 1. Consider a two-terminal device con-
sisting of a bounded QSH insulator region pierced by a hole
which is threaded by a magnetic flux �. If the edge electrons
propagating clockwise have their spin pointing out-of-plane
along z �spin up �↑ �� due to TR symmetry the electrons
propagating counterclockwise must have opposite spin along
−z �spin down �↓ ��. If we inject electrons spin polarized
along the x direction �→ �= 1

�2
��↑ �+ �↓ �� from a ferromag-

netic �FM� lead on the left, the electron beam will be split
coherently upon entering the QSH region at the left junction
into a �↑ � beam propagating along the top edge and a �↓ �
beam propagating along the bottom edge. When the electron
beams are recombined on the right side of the ring, the elec-
trons along top and bottom edges will acquire a phase differ-
ence of �=2�� /�0 due to the AB effect, where �0=hc /e is
the flux quantum. Consequently, the output state is given by
1
�2

��↑ �+e−i��↓ ��, such that the electron spin is rotated by an
angle � in the xy plane. The magnetic flux being confined to
the hole in the device �Fig. 1�, the electromagnetic fields are
zero in the region where the electrons propagate, and the spin
is rotated by a purely quantum-mechanical Berry phase ef-
fect. In particular, for collinear FM leads ��=0 in Fig. 1�, one
expects the conductance to be maximal for �=0�mod �0�
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and minimal for �= 1
2�0�mod �0�, thus realizing a “topologi-

cal” spin transistor �Fig. 3�c��. This effect is topological in
the sense that the spin is always rotated by one cycle for each
period of flux �0, regardless of the details of the device, such
as the size of the system or the shape of the ring.

II. PHENOMENOLOGICAL SCATTERING
MATRIX ANALYSIS

Before considering any microscopic model of transport in
a QSH system, generic features of two-terminal transport in
the device of Fig. 1 that depend only on symmetry consider-
ations can be extracted from a simple phenomenological
scattering matrix or S-matrix analysis.16 The left and right
junctions are each described by a scattering matrix SL and SR,
respectively �e.g., Fig. 2�a� for the left junction�. Considering
the left junction first, SL consists of four submatrices
tL , tL� ,rL ,rL� which correspond, respectively, to transmission
from left to right, transmission from right to left, reflection
from the left, and reflection from the right. One can define
similar submatrices for SR. We wish to obtain an effective
S-matrix S �see Eq. �A5�� for the whole device, by combin-
ing the S matrices of the junctions together with the S matrix
for the central QSH region. Inside the QSH region, the AB
effect is described by the matrix ��e−i��z/2, where
�x ,�y ,�z are the three Pauli matrices. In addition to the geo-
metric phase �, the edge electrons also acquire a dynamical
phase �=2kF� identical for both spin polarizations, where �
is the distance traveled by the edge electrons from left to
right junction and kF is the edge-state Fermi wave vector.
Details of the analysis are presented in Appendix A; here we
discuss only the main results. We obtain the effective 2	2
device scattering matrix S,

S��,�� = �1 − ei��rL��0��rR����−1ei�/2� , �1�

where the junction reflection matrices rL���L� and rR��R� de-
pend on the angles �L ,�R of the magnetization ML,R in the

left and right leads. For simplicity we consider �L=0 and
define ���R �Fig. 1�.

The two-terminal conductance G of the device can be
written as

G =
e2

h
tr 
RS
LS†, �2�

using Eq. �A5� of Appendix A. Here 
L ,
R are 2	2 effec-
tive spin-density matrices for the FM leads, and have the
form


����� =
1

2
T������1 + P����� · �� �3�

with �=L ,R, where T�=tr 
� is the transmission coefficient
of the junction and P� is a polarization vector. For simplicity,
we can assume the device to have a �-rotation symmetry,
which together with TR symmetry restricts the generic form
of the reflection matrices rL� and rR in Eq. �1� to be

rL���� = 	�� ��


� ��+�

, rR��� = 	��+� ��


� ��

 . �4�

Physically, �� is a nonspin-flip reflection amplitude whereas
�� , 
� are spin-flip reflection amplitudes, with �� corre-
sponding to a �↓ �→ �↑ � reflection and 
� to a �↑ �→ �↓ � re-
flection. These amplitudes are generally different due to the
breaking of TR symmetry at the junctions by the nearby FM
leads.

FIG. 1. �Color online� Schematic picture of the spin AB effect.
A ring of QSH insulator threaded by a magnetic flux � is connected
to two magnetic leads. Spin-polarized electrons injected from the
left lead enter the QSH region as a superposition of spin-up and
spin-down states. The spin-up �down� state can only propagate
along the top �bottom� edge of the QSH ring, and the two spin states
thus acquire an AB phase difference proportional to �. Conse-
quently, upon exiting the QSH region the two edge states recombine
into a state with spin rotated with respect to the injected direction.
The magnetization direction of the right lead generally differs from
that of the left lead by an angle �. The two-terminal conductance
G=G�� ,�� of the device depends on the relative angle between the
spin polarization of the outgoing state and that of the right lead.

FIG. 2. �Color online� Illustration of the minimal model describ-
ing a FM/QSH junction. �a� Schematic picture of the junction be-
tween the left FM lead and the QSH insulator. Incoming channels
al,1 , . . . ,al,pL

from the left lead scatter at the junction into transmit-
ted QSH edge channels bl�,↑ ,bl�,↓ and reflected lead channels
bl,1 , . . . ,b1,pL

. This scattering process is described by a scattering
matrix SL. �b� Minimal model description of the junction. The FM
lead is described by 1D parabolic bands with a spin splitting 2M
while the QSH edge states are linearly dispersing and TR invariant,
with opposite spin states counterpropagating.
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III. MINIMAL MODEL DESCRIPTION

These expressions being so far very general, to make fur-
ther progress it is useful to consider a simple continuum
Hamiltonian model for the FM/QSH junctions in which the
reflection matrices rL� and rR can be calculated explicitly.
This model satisfies the symmetries invoked earlier and will
be seen to be a good description of the realistic HgTe system
in spite of its simplicity. We model the FM leads as one-
dimensional �1D� spin-1

2 fermions with a term which explic-
itly breaks the SU�2� spin-rotation symmetry,17

HFM =� dx�†�−
1

2m

�2

�x2 − M��� · �
� ,

where M���=Mn̂, with n̂= x̂ cos �+ ŷ sin �, is an in-plane
magnetization vector and � is a two-component spinor �
���↑ �↓�T. In the absence of AB flux, the QSH edge liquid
consists of 1D massless helical fermions.14,15 When the spins
of the edge states are polarized along the z direction, the
Hamiltonian is given by

HQSH = − iv �
�=t,b

��� dx���↑
† �x��↑ − ��↓

† �x��↓� ,

where v is the edge-state velocity and �= t ,b refers to the top
and bottom edge, respectively, with �t=1 and �b=−1.

In this simple model, the junction is described as a sharp
interface between the FM region and the QSH region, from
which the reflection matrix rL� in Eq. �1� and the spin density
matrix 
L in Eq. �2� can be obtained. The calculation yields
the reflection matrices precisely in the form of Eq. �4� with
��=a and ��=
�

�=be−i�. In the limit of small spin splitting
M /�F�1, where �F is the Fermi energy in the leads �Fig.
2�b��, the reflection amplitudes a and b are given by

a �
v − vF

v + vF
, b �

M

2�F

vF
3

v�v + vF�2 , �5�

where vF=�2�F /m is the Fermi velocity in the FM leads.
The off-diagonal spin-flip reflection amplitude b is propor-
tional to the magnetization M and along with its accompa-
nying scattering phase shift e�i� is an explicit signature of
TR symmetry breaking at the junction. The diagonal
nonspin-flip reflection amplitude a does not break TR sym-
metry and is the same as would be obtained in the scattering
from a nonmagnetic metal with M=0. The lead spin-density
matrices 
L , 
R can also be calculated explicitly and are
found to follow the form of Eq. �3� as expected from the
general S-matrix analysis. In the limit M /�F�1, we obtain
TL=TR=8vvF / �v+vF�2 and

PL��� = PR��� � P��� = −
M���
4�F

vF
2

v�v + vF�
, �6�

i.e., the spin-polarization vector is directly proportional to
the magnetization M.

From the results obtained above, we can readily evaluate
the conductance G, which has the following expression in
the limit M /�F , P��P�����1 and �=0:

G��,�;� = 0� =
e2

h

TLTR/2
1 − 2a2 cos � + a4�1

+
cos�� − �� + �1 − t2�2 cos�� + �� + C��,��

1 − 2a2 cos � + a4

	P2 + O�P4�
 , �7�

where t=1−a and C�� ,���
 cos �+� cos � with 
 , �
some constants depending only on a. The effect of a finite �
will be addressed in the next section, where we study nu-
merically a more realistic model of the QSH state in HgTe
QWs. Physically, a and t can be interpreted as reflection and
transmission coefficients for the Sz spin current. The generic
behavior of Eq. �7� is illustrated in Fig. 3. The term C�� ,��
is an uninteresting background term which manifests no cor-
relation between AB phase � and rotation angle of the elec-
tron spin �. The term � cos��−�� corresponds to a rotation
of the electron spin by �, and the term � cos��+�� corre-
sponds to a rotation by −�. The conductance is thus maximal
for �max= �� �Fig. 3�b��, manifesting the desired flux-
induced spin-rotation effect. Physically, the �max=� term
corresponds to a process in which electrons traverse the de-
vice without undergoing spin flips �Fig. 3�a�, darker trajec-
tory� while the �max=−� term corresponds to a process in-
volving at least one TR breaking spin-flip reflection �Fig.
3�a�, lighter trajectory�. As can be seen from Eq. �7�, the
relative intensity of the two contributions to the conductance
is I−� / I�= �1− t2�2 which can be close to unity for strongly
reflecting junctions t�1. As both contributions are minimal
for �=� at �=0, one can consider �=�, �=0 as the “off”
state of a spin transistor �Fig. 3�c�, right� where the rotation

FIG. 3. �Color online� Phenomenological analysis of the two-
terminal conductance �top view of Fig. 1�. �a� The two leading
contributions to the spin AB rotation. The darker path stands for the
process with no spin flips, which leads to a spin rotation of �
�2�� /�0. The lighter path stands for the process with spin-
dependent reflections, which leads to a spin rotation of −�. �b�
Schematic intensity map of the two-terminal conductance G�� ,��.
The conductance reaches its maximum along the lines �=� �darker
line� and �=−� �lighter line�, which are contributed by the darker
and lighter paths in panel �a�, respectively. �c� The on and off states
of the topological spin transistor are defined for �=0 by �=0 and
�=�, respectively, as also indicated in panel �c�.
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of the spin is provided by a purely quantum-mechanical
Berry phase effect. This is in contrast with the famous Datta-
Das spin transistor18 where the rotation of the spin is
achieved through the classical spin-orbit force. The “on”
state corresponds to the absence of spin rotation for �=0
�Fig. 3�c�, left�.

IV. EXPERIMENTAL REALIZATION IN HgTe
QUANTUM WELLS

We now show that this proposal can, in principle, be re-
alized experimentally in HgTe QWs. We model the device of
Fig. 1 as a rectangular QSH region threaded by a magnetic
AB flux through a single plaquette in the center, and con-
nected to semi-infinite metallic leads on both sides by rect-
angular QSH constrictions modeling quantum point contacts
�QPCs� �Fig. 4�a��. The QSH region is described by an ef-
fective 4	4 tight-binding Hamiltonian7,19 with the chemical
potential in the bulk gap, while the metallic leads are de-
scribed by the same model with the chemical potential in the
conduction band. The detailed form of the model is given in

Appendix C. The injection of spin-polarized carriers by the
FM layers of Fig. 1 is mimicked by the inclusion of an ef-
fective Zeeman term in the Hamiltonian of the semi-infinite
leads. We calculate numerically the two-terminal conduc-
tance through the device of Fig. 4�a� for a QW thickness d
=80 Å. We use the standard lattice Green’s-function
Landauer-Büttiker approach20 in which the conductance is
obtained from the Green’s function of the whole device, the
latter being calculated recursively.21

The results of the numerical calculation are plotted in
Figs. 4�b�–4�d�. In the absence of phase-breaking scattering
processes, one distinguishes two temperatures regimes T
�T� and T�T� separated by a crossover temperature T�

=��v /kB� with v the edge-state velocity, defined as the tem-
perature for which a thermal spread ���kBT in the energy
distribution of injected electrons corresponds to a spread in
the distribution of dynamical phases �=2kF� of ���2�. In
the low-temperature regime T�T�, ���2� and the dy-
namical phase is essentially fixed such that G�T�T��
�G�T=0�. In this regime, G�T=0,�� is approximately pe-
riodic in � for � within the bulk gap, with period ��
�kBT�. A crossing pattern �Fig. 4�b�, top� occurs periodically

FIG. 4. �Color online� Numerical study of the spin AB effect in HgTe QWs. �a� Device geometry used for the numerical two-terminal
conductance calculation: a=30 Å is the lattice constant of the tight-binding model, L=18 nm, Lx=�=240 nm, Ly =120 nm, � is the AB
flux, and W is the QPC width. �b� Intensity map of the conductance G�� ,�� for fixed chemical potential �=0.06 eV �top panel� and
averaged chemical potential over energy range ��=5 meV corresponding to an average over �2� dynamical phase �bottom panel�. These
two situations correspond to low and high temperature, respectively �see text�. �c� Logarithmic plot of on/off ratio Gon /Goff of topological
spin transistor as a function of spin polarization P of injected carriers for fixed chemical potential �=0.06 eV and different values of the
QPC width W. �d� Plot of on/off ratio as a function of QPC width W for fixed chemical potential �=0.06 eV and different values of the spin
splitting �s in the bulk leads.
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and can be obtained by tuning the chemical potential. It cor-
responds to the flux-induced spin-rotation effect �Fig. 3�. In
the high-temperature regime T�T�, one could expect that
the crossing pattern, and thus the spin-rotation effect, would
be washed out by thermal self-averaging of the dynamical
phase. Surprisingly, the pattern remains �Fig. 4�b�, bottom�,
and actually acquires a more symmetric structure through the
self-averaging procedure. In both temperature regimes, the
conductance pattern agrees qualitatively with the result of
the simple 1D Hamiltonian model �Fig. 3�b��.

So far, our discussion has ignored the existence of phase-
breaking processes. Such processes introduce an additional
characteristic temperature T�, defined as the temperature
above which the phase coherence length ���T� becomes
smaller than the system size �, that is ���T��=� and ���T
�T����. As explained in Sec. I, the stability of the QSH
state is protected by Kramers’ theorem. However, Kramers’
theorem requires the quantum phase coherence of electronic
wave functions, hence for T�T� the QSH state can be
destroyed.10–12 Thus, the observation of the spin AB effect
requires T�T�, with the precise value of T� depending on
the particular nature of the phase-breaking mechanisms. With
this first requirement satisfied, two scenarios are possible de-
pending on the relative value of the two characteristic tem-
peratures T� and T�. If T��T�, the scenario described in the
previous paragraph applies, with the existence of a low-
temperature regime T�T��T� with well-defined dynamical
phase and a high-temperature regime T��T�T� with com-
pletely randomized dynamical phase. On the other hand, if
T��T�, then since we require T�T� for the observation of
the spin AB effect the high-temperature regime T�T� can be
never be achieved. This could correspond, for instance, to a
very small, fully phase-coherent device ����, with no no-
ticeable thermal fluctuation effects. In transport measure-
ments on HgTe QWs �Refs. 10, 11, and 22� a robust QSH
state has been observed in devices of size ��1 �m up to
temperatures of 4.2 K. This gives us a lower bound estimate
of a few kelvin for T�, for a device of such size. For a typical
edge-state velocity �v�3.5 eV Å one obtains a crossover
temperature T��13 K�T�, which indicates that one would
probably be in the low-temperature regime with weak ther-
mal fluctuation effects and good tunability of the crossing
pattern with chemical potential �. The other scenario requir-
ing T��T� can be realized if the lower bound estimate of 4.2
K turns out to be too conservative and we actually have T�

�13 K, or if the edge-state velocity is significantly smaller
than the value of 3.5 eV Å used above. The latter possibility
can occur in type-II QWs �Ref. 8� where the edge state ve-
locity is about one order of magnitude smaller, hence T�

�1 K and the condition T��T� would, in principle, be sat-
isfied.

In our calculations, for simplicity we have assumed that
electrons on both the top and bottom edges acquire the same
dynamical phase �. In a real system, the two arms of the ring
are not perfectly symmetric and the electrons propagating on
different arms can certainly acquire different dynamical
phases �bottom��top. However, the dynamical phase differ-
ence ���bottom−�top only leads to an additional flux-
independent rotation of the spin of the outgoing electrons,
which leads to a shift of the conductance pattern in the angle

� by an amount � �see Eq. �A6� of Appendix A�. Thus the
transistor remains effective if one uses �=� instead of �=0
in the right FM lead. If one prefers to use �=0, one can
cancel out the phase asymmetry by patterning an electro-
static gate on top of one given arm. By tuning the potential
of this gate, one can adjust the Fermi wave vector locally and
introduce a dynamical phase offset which cancels out the
phase asymmetry �.

In Figs. 4�c� and 4�d� we plot the on/off ratio Gon /Goff of
the topological spin transistor, which can be taken as the
figure of merit of the device. We define Gon�G��=0,�
=0� and Goff�G��= 1

2�0 ,�=0� �Fig. 3�c��. We use two pa-
rameters, the junction spin polarization P and the bulk spin
splitting �s to quantify the degree of spin polarization of the
injected carriers. An actual experimental implementation of
the transistor concept described here will require optimiza-
tion of these or similar parameters. The junction spin polar-
ization P is obtained for a given junction geometry, i.e., a
given choice of QPC width W and length L �Fig. 4�a��, by
calculating the transfer matrix23 of the junction directly from
the TB model and using Eq. �3� with P��P�. The spin split-
ting �s is obtained from the continuum k ·p HgTe QW
Hamiltonian mentioned earlier, and is defined as the energy
difference between “spin-up” �E1+� and “spin-down” �E1
−� energy levels19 at the � point. The on/off ratio increases
rapidly for a polarization P of order unity �Fig. 4�c��. It is
reasonable to expect that optimized junction designs, better
that the simplistic proof-of-concept geometry used here,
would yield even higher on/off ratios. There is also an opti-
mal width Wopt�0.29Ly for the junction QPC �Fig. 4�d��.
For W�Wopt, interedge tunneling24 strongly backscatters the
incoming electrons and reduces Gon, which suppresses the
on/off ratio. For W�Wopt, the edge states on opposite edges
are too far apart to recombine coherently and to produce the
desired spin-rotation effect, which increases Goff and also
suppresses the on/off ratio. In our calculation, we did not
take into account the possible structural inversion asymmetry
�SIA� which induces Rashba spin-orbit coupling in the
QW.25 However, it should be noticed that the usual contribu-
tions of SIA to the AB effect, such as the Aharonov-Casher
effect,26 are absent because there are no two-dimensional
bulk carriers in the QSH state. Since the only conducting
channels in the QSH state are the 1D edge states, the only
effect of SIA is some global rotation of the edge-state spin
direction. The topological spin rotation induced by half of a
flux quantum is simply a consequence of the spatial separa-
tion of opposite spins on opposite edges, which is deter-
mined by the topological properties of the QSH state and
thus remains robust.

V. CONCLUSION AND OUTLOOK

In this work, we have shown the possibility of using a
topologically nontrivial state of matter, the QSH insulator
state, to manipulate the spin of the electron by purely nonlo-
cal, quantum-mechanical means, without recourse to local
interactions with classical electromagnetic fields. This spin
AB effect, which is a spin analog of the usual charge AB
effect, relies on the helical and topological nature of the QSH
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edge states which is peculiar to that state of matter, combined
with a Berry phase effect. In addition, we have shown that
the spin AB effect can be used to design a different kind of
spin transistor which is fundamentally different from the pre-
vious proposals, in that there is no classical force or torque
acting on the spin of the electron. Furthermore, edge trans-
port in the QSH regime being dissipationless,10–12 the pro-
posed topological spin transistor would have the advantage
of a lower power consumption in comparison to previous
proposals for spin transistors. More generally, such a quan-
tum manipulation of the electron spin, if observed, could
open different directions in spintronics research and applica-
tions, and would at the same time demonstrate the practical
usefulness of topological states of quantum matter.

Recently we became aware of a paper by Usaj27 which
discusses a similar effect in the spin-polarized edge states of
graphene ribbons. We expect our effect to be more robust to
external perturbations due to the topological protection of the
QSH edge states. Indeed, the helical edge liquid of the QSH
state is a novel state of matter which is topologically
distinct14,15 from the edge states of graphene.
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APPENDIX A: S-MATRIX ANALYSIS

We wish to obtain an expression for the S-matrix S relat-
ing outgoing b to incoming a current amplitudes,

	bl

br

 = S	al

ar

 with S = 	r t�

t r�

 , �A1�

where al and bl �ar and br� are pL	1 �pR	1� column vec-
tors of the current amplitudes outside the QSH region in the
left �right� lead �see Fig. 1�, and pL �pR� is the number of
propagating channels at the Fermi energy in the left �right�
lead. The matrix S therefore has dimensions �pL+ pR�	 �pL
+ pR� and the submatrices r ,r� and t , t� are reflection and
transmission matrices, respectively. The two-terminal con-
ductance G from left to right is given by the Landauer
formula20 G= e2

h tr tt†. We assume that phase coherence is pre-
served throughout the sample so that S can be obtained by
combining S matrices for different portions of the device
coherently.20 We define the �pL,R+2�	 �pL,R+2� scattering
matrices SL , SR for the left �L� and right �R� FM/QSH junc-

tions �e.g., see Fig. 2�a� for the left junction�,

	 bl

bl�

 = SL	 al

al�

, 	br�

br

 = SR	ar�

ar

 , �A2�

where l� �r�� is the QSH region immediately to the right
�left� of the left �right� junction, such that al� ,ar� and bl� ,br�
are the two-component spinors of edge-state current ampli-
tudes. They are related through the geometric AB phase �
�different for each spin polarization� and the dynamical
phase �=2kF� �identical for both spin polarizations� where �
is the distance traveled by the edge electrons from left to
right junction and kF is the edge-state Fermi wave vector,

�ar�↑,↓

al�↑,↓
� = ei�/2e�i�/2�bl�↑,↓

br�↑,↓
� , �A3�

where the upper sign for � corresponds to spin up. Using
Eqs. �A2� and �A3�, we can write

	e−i�/2�†al�

br

 = SR	ei�/2�bl�

ar

 , �A4�

where we define ��e−i��z/2. Using the first equality in Eq.
�A2� together with Eq. �A4�, we can eliminate the interme-
diate amplitudes al� , bl� and obtain relations between the
left lead amplitudes al , bl and the right lead amplitudes
ar ,br, which gives us S �Eq. �A1��. The 2	2 transmission
matrix t, i.e., the lower left block of S, is then obtained in the
form

t = tRStL, �A5�

where tL and tR are the 2	 pL and pR	2 transmission ma-
trices for the left and right junctions, respectively �i.e., the
lower left blocks of SL , SR following the notation of Eq.
�A1��, and S is a 2	2 matrix defined in Eq. �1�. The effec-
tive spin-density matrices 
L , 
R of the FM leads used in
Eq. �2� are defined as 
L= tLtL

† and 
R= tR
† tR.

If the arms of the ring are asymmetric, the dynamical
phase � is generally different for each arm and we have
�bottom−�top���0. In this case, one can show that Eq. �2�
still holds but with the substitutions


L��L� → R�
L��L�R�
−1 = 
L��L + �� ,

rL���L� → R�rL���L�R�
−1 = rL���L + �� ,

where R��e−i�z�/2 rotates the spin about the z axis by an
angle �. In other words, a phase asymmetry is equivalent to
a rigid flux-independent rotation of the electron spin, and
simply shifts the conductance pattern by a constant angle �,

G��,� � �R − �L� → G��,�R − ��L + ���

=G��,� − �� . �A6�

APPENDIX B: SCATTERING AT THE JUNCTION

In order to solve the 1D scattering problem at the FM/
QSH interface, we first observe that the number of degrees of
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freedom is equal on either side of the junction. If the Fermi
level �F is chosen such that both spin subbands in the FM
leads are occupied, there are four propagating modes on each
side of the junction �two spins and two chiralities�. The QSH
spin states �QSH��� are �z eigenstates while the FM spin
states �FM������ are eigenstates of n̂ ·� and depend explicitly
on �. The Schrödinger equation for the junction is then
solved by the following scattering ansatz:

��
�+��x� =�

��
��+�

�v�
�

eik�
�x + �

��

r���

���
��−�

�v��
�

e−ik
��
�

x x � 0,

�
��

t���

���
��+�

�v��
�

eik
��
�

x x � 0,�
for a right-moving scattering state, and with similar expres-
sions for a left-moving scattering state ��

�−�. Spin is denoted
by �, chirality by �, and side of the junction by � , �. The
propagating modes are explicitly normalized to unit flux
such that r��� and t��� are the desired reflection and trans-
mission matrices. Requiring the continuity of ��

��� and v̂x��
���

at the interface x=0 �with v̂x��H /�kx the velocity operator�,
we obtain a system of linear equations for the 16 matrix
elements rL , tL ,rL� , tL� constituting SL. As illustrated in Fig. 1,
the magnetization angle is set to zero in the left lead and to �
in the right lead and we obtain rL��0� and rR��� in Eq. �1�.

APPENDIX C: TIGHT-BINDING MODEL

The effective tight-binding model describing HgTe QWs
is defined as7,19

H = �
i

ci
†Vici + �

ij

�ci
†Tije

iAijcj + H.c.� , �C1�

where Tij =Tx̂� j,i+x̂+Tŷ� j,i+ŷ is the nearest-neighbor hopping
matrix, Aij =

e
�c�i

jdr ·A is the Peierls phase with A the elec-
tromagnetic vector potential, and Vi, Tx̂, and Tŷ are 4	4
matrices containing the k ·p parameters and the effective
Zeeman term. The 4	4 matrices Tx̂, Tŷ, and Vi used in the
tight-binding Hamiltonian �C1� are given by

Tx̂ =�
D+ −

iA

2
−

i�e

2
0

−
iA

2
D− 0 −

i�h

2

−
i�e

2
0 D+

iA

2

0 −
i�h

2

iA

2
D−

� ,

Tŷ =�
D+

A

2

�e

2
0

−
A

2
D− 0 −

�h

2

−
�e

2
0 D+

A

2

0
�h

2
−

A

2
D−

� , �C2�

and

Vi = �C − 4D − �F + Eg�i��14	4 + �M − 4B�12	2 � �z + HZ�
eff

+ HZ�
eff , �C3�

where D��D�B and A ,B ,C ,D ,M ,�e ,�h are k ·p
parameters,19 and 1n	n denotes the n	n unit matrix. The
Fermi energy �F is uniform throughout the device. The gate
potential Eg�i� is different in the QSH and lead regions �Fig.
4�a��, and is used to tune the central region into the QSH
insulating regime. The in-plane HZ�

eff and out-of-plane HZ�
eff

effective Zeeman terms, which are used to mimic the injec-
tion of spin-polarized carriers from a FM layer �Fig. 1�, are
given by19

HZ�
eff = g��B�

0 0 B−
eff 0

0 0 0 0

B+
eff 0 0 0

0 0 0 0
� ,

HZ�
eff = �BBz

eff�
gE� 0 0 0

0 gH� 0 0

0 0 − gE� 0

0 0 0 − gH�

� , �C4�

where B�
eff=Bx

eff� iBy
eff, Beff= �Bx

eff ,By
eff ,Bz

eff� is some effective
magnetic field the role of which is to induce a spin polariza-
tion in the leads, �B is the Bohr magneton, and g� and
gE� , gH� are the in-plane and out-of-plane g factors, re-
spectively.
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