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Theories based upon strong real space (r-space) electron–electron in-
teractions have long predicted that unidirectional charge density
modulations (CDMs) with four-unit-cell (4a0) periodicity should occur
in the hole-doped cuprate Mott insulator (MI). Experimentally, how-
ever, increasing the hole density p is reported to cause the conven-
tionally defined wavevectorQA of the CDM to evolve continuously as
if driven primarily by momentum-space (k-space) effects. Here we
introduce phase-resolved electronic structure visualization for deter-
mination of the cuprate CDMwavevector. Remarkably, this technique
reveals a virtually doping-independent locking of the local CDM
wavevector at jQ0j=2π=4a0 throughout the underdoped phase dia-
gram of the canonical cuprate Bi2Sr2CaCu2O8. These observations
have significant fundamental consequences because they are orthog-
onal to a k-space (Fermi-surface)–based picture of the cuprate CDMs
but are consistent with strong-coupling r-space–based theories. Our
findings imply that it is the latter that provides the intrinsic organi-
zational principle for the cuprate CDM state.

CuO2 pseudogap | commensurate charge density modulation |
phase discommensuration

Strong Coulomb interactions between electrons on adjacent Cu
sites result in complete charge localization in the cuprate Mott

insulator (MI) state (1). When holes are introduced, theories based
upon the same strong r-space interactions have long predicted a state
of unidirectional modulation of spin and charge (2–11), with lattice-
commensurate periodicity for the charge component. Experimen-
tally, it is known that even the lightest hole doping of the MI state
produces nanoscale clusters of charge density modulations (CDMs)
(12, 13), which implies immediately that r-space interactions pre-
dominate. However, with increasing hole density p, the conven-
tionally defined wavevector QA of the CDM is reported to increase
(14) or diminish (15) continuously as if driven primarily by k-space
(Fermi surface) effects. Distinguishing between the r-space and
k-space theoretical perspectives is critical to identifying the correct
fundamental theories for the phase diagram and Cooper pairing
mechanism in underdoped cuprates. Here we introduce an approach
to this challenge by applying phase-resolved electronic structure vi-
sualization (16–18) in combination with the technique of phase
demodulation–residue minimization, to explore the CDM wave-
vector. Using these methods, we visualize the phase discommensura-
tions (19) and their influence on the doping dependence of both
the conventionally defined QA and the fundamental local wave-
vector Q0 of the underdoped cuprate CDM state.

CDMs in the Pseudogap Phase
As holes are introduced into the CuO2 plane of the MI, the first
nonmagnetic state to appear is the pseudogap (PG) phase (Fig.
1A). It contains nanoscale CDM clusters (12, 13) even at lowest
hole-density p; near p = 0.06 these CDM clusters percolate and
the superconducting state appears (12). X-ray scattering exper-
iments (15) now report a robust CDM state throughout the range

0.07 < p < 0.17 spanning the pseudogap regime. Both the PG and
the CDM states terminate somewhere near p ∼ 0.19 and give way
to a simple d-wave superconductor. A fundamental reason for the
great difficulty in understanding this complex phase diagram has
been the inability to discern the correct theoretical starting point.
Should one focus on the intense r-space electron–electron inter-
actions that form the basis for the parent MI state? Or should one
focus upon a Fermi surface of momentum space eigenstates rep-
resenting delocalized electrons?
A new opportunity to address these questions has emerged re-

cently, through studies of the CDM phenomena now widely ob-
served in underdoped cuprates (15, 20, 21). Pioneering studies of
CDMs in La2-xBaxCuO4 and La2-x-yNdySrxCuO4 near p = 0.125
discovered charge modulations of period 4a0 or Q = ((1/4,0);(0,1/
4))2π/a0 (14, 21). The initial intuitive explanation for a periodicity
that was half that predicted from a Hartree–Fock momentum
space treatment invoked an r-space model involving local mag-
netic moments whose antiferromagnetic order becomes frustrated
upon hole doping. A variety of powerful theoretical techniques (2–
11) support this strongly interacting r-space viewpoint. In the in-
terim, however, CDM phenomena have been discovered within the
pseudogap regime of many other underdoped cuprates (15, 20, 21).
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In these studies, the magnitude of the conventionally determined
CDM wavevector Q is reported to increase/diminish with increa-
sing p, as if evolution of momentum space electronic structure

with carrier density is the cause. Thus, distinguishing between an
r-space–based and a Fermi-surface–based theoretical approach
to the cuprate CDM remains an outstanding and fundamental
challenge and one that is key to the larger issue of controlling the
balance between different electronic phases. The reason is that,
in the k-space context (22–25), competition for spectral weight at
the Fermi surface between different electronic states including
the superconductivity is a zero sum game: Suppressing one state
amplifies another and vice versa. By contrast, in the strong in-
teraction r-space context (2–11), the physics of holes doped into
an antiferromagnetic MI yield “intertwined” states (4, 8–11, 26, 27)
including superconductivity, where closely related ordered states are
generated simultaneously by the same microscopic interactions.

CDMs and Phase Discommensurations
Understanding the cuprate CDM phenomenology has proved
challenging (28–30) because its q-space peaks are typically broad
with spectral weight distributed over many wavevectors (15–21)
and also because of the form factor symmetry (17, 31–33). For
example, Fig. 1 B and C shows a typical image of the elec-
tronic structure of underdoped Bi2Sr2CaCu2O8+x ψRðrÞ; here
ψRðr, 150 meVÞ≡ Iðr, 150 meVÞ=Iðr, − 150 meVÞ and Iðr,V Þ is
the measured tunnel current at position r for bias voltage V. The
CDM exhibits a d-symmetry form factor meaning that modula-
tions at the x-axis–oriented planar oxygen sites Ox(r) are π out of
phase with those at y-axis–oriented oxygen sites Oy(r), as shown
schematically by the overlay in Fig. 1B. Thus, the complex
Fourier transforms ~OxðqÞ; ~OyðqÞ of sublattice-resolved images
Ox(r);Oy(r) that are derived (17, 33) from ψRðrÞ yield the
d-symmetry form factor Fourier amplitudes

��~ψRðqÞ
�� =��~OxðqÞ− ~OyðqÞ

�� shown in Fig. 1D (SI Text, d-Symmetry Form
Factor of CDMs). One sees directly the wide range of q values
that exist under each CDM peak in ~ψRðqÞ (dashed boxes, Fig.
1D). Such broad peaks indicate quenched disorder of the CDM
but with two quite distinct possibilities for the identity of the
fundamental ordered state: (i) an incommensurate CDM state
whose wavevector Q evolves continuously along with the Fermi
wavevector kF (e.g., Fig. 1E) but is perturbed by disorder or (ii) a
commensurate CDM with constant fundamental wavevector Q0
driven by strong-coupling r-space effects (e.g., Fig. 1F), but
whose wavevector defined at the maximum of the fitted Fourier
amplitudes, QA, evolves due to changing arrangements of
discommensurations (DC).
McMillan (19) defined a “discommensuration” as a defect in a

commensurate CDM state where the phase of the CDM jumps
between discrete lattice-locked values. For example, consider
a sinusoidal modulation in one spatial dimension with a com-
mensurate period 4a0:

ψðxÞ≡ A exp½iΦðxÞ�= A exp½iðQ0x+φÞ�. [1]

Here Q0 = 2π=4a0 is the commensurate wavevector, A is the ampli-
tude, andΦðxÞ=Q0   x+φ is the position-dependent phase argument
of the function ψðxÞ. To form phase-locked regions, the phase offset
can take one of four discrete values φ

2π= 0,   14,  
2
4,

3
4. The DCs then

form boundaries between these regions as indicated by different
colors in Fig. 2 A, i and ii. When a commensurate CDM (Eq. 1)
is frustrated by Fermi-surface–based tendencies, a regular DC array
allows more/fewer modulations to be accommodated through suc-
cessive jumps in phase (Fig. 2 A, ii and ref. 19). The result is a new
phase-averaged wavevector �Q that depends on the profile of the DC
array φðxÞ through Q0x+φðxÞ≡ �Qx+ ~φðxÞ, where the slope �Q is
chosen so that the residual phase fluctuations ~φðxÞ average to zero
ð~φðxÞ= 0Þ. Graphically, finding the �Q is then equivalent to finding
the best linear function for ΦðxÞ as shown in Fig. 2 A, ii. In this
case, the difference in slope between the commensurate and phase-
averaged wavevectors, Q0 and �Q, is called the incommensurability
δ≡ �Q−Q0 (Fig. 2 A, iii) of such a nominally incommensurate phase.

A B

C D

E F

Fig. 1. (A) Schematic phase diagram of hole-doped cuprates. The high-
temperature superconductivity coexists with d-symmetry form factor charge
modulations (compare blue and pink “domes,” respectively) through most of
the underdoped regime. (B) Typical measured ψRðr, 150 meVÞ image of
Bi2Sr2CaCu2O8+x in the charge modulation phase. The subatomic resolution im-
age shows a typical charge modulation pattern of d-symmetry form factor,
spanning eight lattice constants horizontally (compare with E and F), and with
an overlay showing how the d-symmetry form factor affects each oxygen site.
The green crosses mark positions of Cu atoms in the underlying CuO2 plane.
(C) Typical ψRðr, 150 meVÞ of underdoped Bi2Sr2CaCu2O8+x. The short-range
nature of the charge modulations is clear. (D) The d-symmetry form factor
Fourier amplitudes

��~ψRðq, 150meVÞ�� calculated using complex Fourier transforms
of sublattice-resolved images Ox(r);Oy(r) derived from C. (E) Modeled d-form
factor charge density wave that represents an incommensurate modulation by
having a horizontal wavevector of lengthQ= 0.311× 2π=a, where a is the lattice
unit. The density values are sampled and color coded at each Cu site (green
crosses), O site, and center of CuO2 plaquette, to emphasize the modulation
pattern and relation to the underlying lattice. The initial phase is chosen so that
the modulation on the leftmost line of Cu sites matches in value the commen-
surate modulation in F. Incommensurate modulations such as the one shown
naturally arise from Fermi surface instabilities and therefore have the Fermi
surface nesting wavevector Q= 2kF and period 2π=Q= π=kF . The dashed line is
the profile of the density wave along the horizontal direction, without imposing
a d-form factor intraunit-cell structure, and the period is marked by the length of
the double arrow. (F) Modeled d-form factor charge density wave that is com-
mensurate, having wavevector Q= 1=4× 2π=a and period 2π=Q=4a with a the
lattice unit. The density values are sampled and color coded at each Cu site
(green crosses), O site, and center of CuO2 plaquette, to emphasize the modu-
lation pattern and relation to the underlying lattice. The initial wave phase is
chosen so that the modulation maximum occurs on a horizontal O site. The
dashed line is the profile of the density wave along the horizontal direction and
the period is marked by the length of the double arrow.
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Note that such a DC array does not affect the correlation length of
the CDM even though it does shift the Fourier amplitude-defined
wavevector QA to value �Q from the fundamental commensurate
wavevector Q0 (Fig. 2 A, iii). In contrast, when the combined phase
jumps of all of the DCs average to zero (Fig. 2 B, i and ii), the phase-
averaged wavevector �Q equals the local commensurate wavevector;
i.e., �Q=Q0. Here, in the absence of additional amplitude disorder,
the QA should also peak at �Q=Q0 (Fig. 2 B, iii). However, in the
most realistic case where disorder in the CDM amplitude and the
random spatial arrangement of DCs coexist, QA is demonstrably a
poor measure of the fundamental commensurate wavevector �Q=Q0
(Fig. 2 C, i and ii; SI Text, Heterogeneity and Demodulation Residue;
and SI Text, Statistical Analysis: Two-Dimensional Fitting).
How then can one correctly determine the fundamental Q0 of

the CDMs in underdoped cuprates? The spatial arrangement of
DCs is inaccessible to diffraction probes designed to yield the
Fourier amplitude of the CDM, although the situation in Fig. 2
A, iiimay be detectable through the observation of satellite peaks
at �Q± δ (SI Text, Heterogeneity and Demodulation Residue; and SI
Text, CDM Commensurability in Underdoped BSCCO). Phase-
sensitive transmission electron microscopy can achieve DC vi-
sualization (34), whereas coherent X-ray diffraction might (35),
but neither one has been used on cuprates. Instead, we consider
CDM visualization using spectroscopic imaging scanning tun-
neling microscopy (20) because it offers full access to both the
amplitude and phase of ~ψðqÞ, with the definition of phase ref-
erenced to the underlying atomic lattice (33). Then, based on
such phase visualization capabilities, we introduce an approach
for identifying the fundamental wavevector of the cuprate CDM
state. To achieve what is graphically represented in Fig. 2 as the
dashed linear fit to a measured phase profile ΦðxÞ, we use an
algorithmic procedure that evaluates the demodulation of mea-
sured CDM image ψðrÞ at each possible wavevector q, using the
demodulation residue

Rq½ψ �≡
Z

dx
L
Re

h
ψp
qðxÞð−i∂xÞψqðxÞ

i
. [2]

Identifying the value of wavevector q for which
��Rq½ψ �

�� is a min-
imum is the 2D equivalent to finding the best-fit slope to ΦðxÞ in
Fig. 2 A and B. The resulting wavevector q= �Q with high accu-
racy (SI Text, Heterogeneity and Demodulation Residue), and
determination of this �Q is the general objective and utility of
this technique.

Phase-Resolved Imaging and Phase Demodulation Residue
Analysis
We apply demodulation residue analysis to study 2D short-range
ordered CDM images typical of underdoped Bi2Sr2CaCu2O8+x,
e.g., Fig. 3A at p = 0.06. Fig. 3B shows the d-symmetry form factor
Fourier amplitude

��~ψðqÞ�� derived from ψðrÞ in Fig. 3A. The
amplitude and phase of modulations in ψðrÞ can be decomposed
into two unidirectional components along x, y. We define the
demodulation residue Rq for each trial q (SI Text, Demodulation in
Two Dimensions, Smoothing, and Optimization Error) over a wide
range in the Fourier space inside the dashed box in Fig. 3B and

Ai

Aii

Aiii

Ci Cii

Bi

Bii

Biii

Fig. 2. A, i–iii shows a DCmodel in a situation that may apply to YBa2Cu3O7-x.
The model in B and C corresponds to our findings in Bi2Sr2CaCu2O8+x

(BSCCO). (A, i) Modulation (blue, thick line) is the real part of complex wave
ψðxÞ= eiðQ0   x+φðxÞÞ having commensurate domains with local wavevector
Q0 = 1=4× 2π=a0 (period 4a0). Colors (see key on top) label the modulation
phase within the domains, determining the alignment of modulation max-
ima (labeled 1. . .10) and underlying lattice. Phase slips, occurring at DCs
between domains, each of size π, add up to give an average �Q= 0.3× 2π=a0,
so that 10 modulation maxima are squeezed into 31a0. (A, ii) The phase
argument ΦðxÞ=Q0   x +φðxÞ of ψðxÞ in A, i. Commensurate domains occur in
regions (colored) where ΦðxÞ is parallel to line Q0   x (red dashed line). The
average �Q= 0.3× 2π=a0 is seen as a slope of the best-fit line to ΦðxÞ (blue
dashed line). The difference in slope gives the incommensurability δ= �Q−Q0.
(A, iii) Fourier amplitudes

��~ψðqÞ�� of the modulation ψðxÞ in A, i (blue line)
show singular peaks starting at �Q= 0.3× 2π=a0 ≠Q0 with satellites sepa-
rated by 2δ, because DCs of size π form a periodic array. The satellites
depend on DC profile and are sensitive to disorder (SI Text, Heterogene-
ity and Demodulation Residue). The phase-sensitive figure of merit, de-
modulation residue

��Rq

�� (red dashed line), as a function of q has the
minimum exactly at the average �Q. By definition its minimum corresponds
to the slope of the best-fit line through ΦðxÞ (A, ii). (B, i) Modulation (blue,
thick line) is the real part of complex wave ψðxÞ= eiðQ0   x+φðxÞÞ having com-
mensurate domains with fundamental local wavevector Q0 = 1=4× 2π=a0 (pe-
riod 4a0). Colors label the modulation phase within the domains, determining
the alignment of modulation maxima (labeled 1. . .8) and underlying lattice.
All of the phase slips, of sizes +π, − ð3π=2Þ, + ðπ=2Þ, occurring at DCs between
domains, cancel to give an average �Q=Q0, seen in preserving the eight
modulationmaximawithin 31a0. (B, ii) The phase argumentΦðxÞ=Q0   x +φðxÞ
of ψðxÞ in B, i. Commensurate domains occur in regions (colored) where ΦðxÞ is
parallel to line Q0   x (blue dashed line). The average �Q=Q0 is seen as the slope
of the best-fit line toΦðxÞ, which coincides with the dashed line. (B, iii) Fourier
amplitudes

��~ψðqÞ�� of the modulation ψðxÞ in B, i (blue line) have a sharp peak
at �Q=Q0 and additional irregularly distributed weight due to disorder in DC’s
position (SI Text, Heterogeneity and Demodulation Residue). The calculated
phase-sensitive figure of merit, demodulation residue

��Rq
�� (red dashed line), as

a function of q has the minimum exactly at the average �Q. By definition its
minimum corresponds to the slope of the best-fit line through ΦðxÞ (B, ii).
(C, i ) Modulation (blue, thick line) is the real part of complex wave

ψðxÞ=AðxÞeiðQ0   x+φðxÞÞ having commensurate domains with local wavevector
Q0 = 1=4× 2π=a0, additional smooth disorder in phase of up to π=10, and
smooth disorder in amplitude AðxÞ (details in SI Text, Heterogeneity and
Demodulation Residue). All random phase slips cancel to give a �Q=Q0, akin
to the case in B. (C, ii) Fourier amplitudes

��~ψðqÞ�� of modulation ψðxÞ over
125a0 range (exemplified in C, i). The broad asymmetric amplitude peak
makes the QA (orange vertical line), at maximum of Lorentzian fit to am-
plitude (orange dashed line, multiplied by 1.5 for visibility), different from
phase-averaged �Q (red vertical line) at minimum of demodulation residue��Rq

�� (red dashed line) (SI Text, Heterogeneity and Demodulation Residue).
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use it as a phase-sensitive metric for deciding how close each q is
to the phase-averaged wavevector �Q. In the ideal limit, a long-
range ordered CDM with wave vector �Q will have zero de-
modulation residue; i.e.,

��R�Q

��= 0 and the Fourier amplitude will
vanish for q≠ �Q. However, the measured Fourier amplitude dis-
tribution is typically broad and asymmetric (Fig. 3B and figure 3.7b
of ref. 20) and not well fitted by a smooth peak (Fig. 3C and SI
Text, Statistical Analysis: Two-Dimensional Fitting). Hence we
will seek the minimum of

��Rq
�� for which ~ψðqÞ retains an appre-

ciable amplitude. For the data shown in Fig. 3 A and B we cal-
culate the

��Rq½ψðqÞ�
�� for every pixel identified by a colored

symbol in Fig. 3E (SI Text, Demodulation in Two Dimensions,
Smoothing, and Optimization Error). In Fig. 3E we plot the value
of both

��Rq½ψðqÞ�
�� and the amplitude in the d-symmetry form

factor (dFF) Fourier transform ~ψðqÞ for each of these pixels in
Fig. 3D. This shows that the procedure singles out one wave-
vector for the CDM in the y direction with a nearly vanishing
demodulation residue, a gap between this

��Rq
�� -minimizing q

(which we denote by �QY) and the rest of the wavevectors, and
that this occurs for a wavevector within the Fourier intensity
peak. The �QY is identified as the green pentagon within the black
square box in Fig. 3D. Instructively, this demodulation residue-
minimizing q= �QY does not equal the wavevector at which the
Fourier amplitude

��~ψðqÞ�� is the largest. Indeed the power of the��Rq
�� -minimization approach is that it singles out the phase-

averaged �QY for this CDM, from a broad and asymmetric Fourier
amplitude peak where QA is unreliable (SI Text, Heterogeneity
and Demodulation Residue; and SI Text, Statistical Analysis:
Two-Dimensional Fitting). Most remarkably, we find that

���QY

��
has commensurate value 2π=4a0 within the error. Moreover, im-
aging the phase of CDMs at the commensurate �QY reveals in r
space where the CDM phase is locked to the four expected discrete
values [nð2π=4Þ;   n= 0,1,2,3; Fig. 3F], forming locally com-
mensurate Q0 = 2π=4a0 regions of the fundamental CDM (SI
Text, CDM Commensurability in Underdoped BSCCO). In this
highly typical case of a Bi2Sr2CaCu2O8+x ψðrÞ, the phase slips
of the DCs average to zero as in Fig. 2B, confirming the funda-
mental Q0 = �QY .
Given this demonstrated capability of

��Rq½ψðqÞ�
�� minimization

to extract the defining Q from short-range CDM data, we next turn
our attention to the doping dependence of fundamental QX ;QY
throughout the pseudogap regime of underdoped Bi2Sr2CaCu2O8+x
(SI Text, Summary of Results for All Samples). Fig. 4A contains
two side-by-side panels; Fig. 4A, Left shows measured

��~ψðqÞ��
whereas Fig. 4A, Right is the measured

��Rq½ψðqÞ�
�� analysis for

its y-axis modulations. Fig. 4 A–E then shows a series of
such pairs of measured

��~ψðqÞ�� and  ��Rq½ψðqÞ�
�� for five different

Bi2Sr2CaCu2O8+x hole-densities p = 0.06, 0.08, 0.10, 0.14, 0.17. In
all cases, the demodulation residue-minimizing process clearly singles
out the minimized values in

��Rq½ψðqÞ�
�� for the phase-averaged

CDM wavevectors. This is evident in the sharp minimum that is
observed near the (0,0.25)2π/a0 point (marked by a cross in Fig. 4
A–E, Right,

��Rq½ψðqÞ�
��). Therefore, the most striking result as
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Fig. 3. (A) Typical measured ψðrÞ of Bi2Sr2CaCu2O8+x in the charge modu-
lation phase at hole-doping level p = 0.06. The subatomic resolution image
shows charge modulations at pseudogap energy. Coordinate axes x, y corre-
spond to copper-oxide lattice principal axes. (B) The Fourier transform am-
plitudes of d-symmetry form factor,

��~ψðqÞ��, extracted from the measurement in
A. Four broad intensity distributions appear due to CDMs, and one of them (along
the x axis) is marked by the dashed square. The unit-cell constant, a0, is de-
termined by Bragg peaks (red crosses). (C) Measured d-form factor Fourier am-
plitudes

��~ψðqÞ�� (solid circles) along the qx axis in the dashed square in B, i.e.,
surrounding the QX CDM peak, from the origin toward the Bragg peak, showing
the cut through the best-fitting smooth 2D peak function (SI Text, d-Symmetry
Form Factor of CDMs; and SI Text, Statistical Analysis: Two-Dimensional Fit-
ting). The fit residual at each wavevector (vertical drop from solid circle to fit
function) is color coded. The integers on the horizontal axis count the pixels in
the Fourier transform image; i.e., wavevector length on the horizontal axis is
measured in units 2π=L, with L the field-of-view size in lattice units. (D) Close-up
of the Fourier amplitudes of

��~ψðqÞ�� from B marked by the dashed square. The
discrete set of wavevectors in q -space area of B, i.e., surrounding the QY CDM
peak, and their d-form factor Fourier amplitudes are shown. Each pixel at which��Rq

�� is calculated (E) is color-symbol coded. Commensurate value q= ð0,1=4Þ is
marked by a cross. (E) Demodulation residue

��Rq

�� vs. Fourier amplitude used as
two figures of merit in CDM period analysis, for d-symmetry form factor com-
ponent measured in Bi2Sr2CaCu2O8 at doping p = 0.06 (data presented in A and
B). A set of wavevectors (the color-symbol–coded pixels in D) is used in this plot,
showing the value of demodulation residue

��Rq

��=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRx

qÞ2 + ðRy
qÞ2

q
, calculated

using cutoff Λ= 0.08× 2π=a0 (SI Text, Demodulation in Two Dimensions,
Smoothing, and Optimization Error), vs. the Fourier amplitude

��~ψðqÞ��, for each
wavevector in the chosen set. The boxed data point is for the discrete wave-
vector value that is identified as minimizing the demodulation residue and

therefore we define it as the phase-optimized wavevector. Its length is
ð0.24± 0.03Þ× 2π=a0, where the error value follows from spatial variation of
residue (SI Text, Demodulation in Two Dimensions, Smoothing, and Opti-
mization Error). The residue is significantly closer to zero at the phase-
optimized wavevector than for others, even though there are many wave-
vectors having higher Fourier amplitudes. [Note that conventional analysis
by fitting a broad peak to Fourier amplitudes of these data would identify
wavevector length Q= 0.29× 2π=a0]. (F) Measured ψðrÞ of Bi2Sr2CaCu2O8+x in
the charge modulation phase at hole-doping level p = 0.08. The overlay is
the x-axis CDM demodulated by phase-optimized commensurate wavevector
jQX j= 1=4× 2π=a0, with high amplitude having high color saturation. Phase-
locked domains with phase an integer multiple of 2π=4 (color key) are visible.
Across the field of view, e.g., following the black dashed line, the phase slips
between domains average to zero, evoking Fig. 2B.
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summarized in Fig. 4F is that the measured magnitudes of
the average wavevectors �QX ; �QY of the Bi2Sr2CaCu2O8+x

CDM are all indistinguishable from the lattice commensurate
values Q0 = ð0,1=4Þ2π=a0; ð1=4,0Þ2π=a0, making the fundamental
wavevectors QX ;QY equal to Q0 and virtually doping in-
dependent (SI Text, Summary of Results for All Samples). More-
over, the largest deviation of the conventional amplitude-derived
QA from the phase-optimized value �Q=Q0 is at lowest doping,
which can be associated with the observed higher density of DCs
at the same doping (SI Text, Heterogeneity and Demodulation
Residue).

Ubiquity of Lattice-Commensurate CDMs
Comparison of this result with reports of a preference for a CDM
periodicity of 4a0 in YBa2Cu3O7-x-based heterostructures (36),
in the NMR-derived view of the lattice-commensurate CDM
in YBa2Cu3O7-x (37), and in the pair density wave state of
Bi2Sr2CaCu2O8+x (38) points to growing evidence for a unified
phenomenology of lattice-commensurate CDMs across dispa-
rate cuprate families. Of course, the wavevectors QA of maxi-
mum intensity in X-ray diffraction patterns for YBa2Cu3O7-x
and La2Sr(Ba)CuO4 families evolve continuously with doping
and appear generally incommensurate (14, 15). However, DC con-
figurations of the type in Fig. 2Awill result in such an incommensurate
average wavevector �Q=QA even though the fundamental wavevector
Q0 of the CDM is commensurate, so that evolution of cuprate DC
arrays (e.g., Fig. 2) can yield the incommensurate wavevector evolu-
tion detected by X-ray scattering (SI Text, Global CDM Lattice
Commensurability); a related hypothesis has long been considered
(39). Our application of the classic theory of CDM DC disorder (19)
(Fig. 2) with CDM phase-resolved imaging and analysis reveals this as
the correct picture for Bi2Sr2CaCu2O8+x. This finding motivates the
hypothesis that doping dependence of QA across all cuprate families is
caused by a competition between incommensurate modulations pro-
moted by evolving Fermi arcs and a lattice-commensurate CDM state,
with this competition being resolved through DC configurations.
The

��Rq
�� -minimization technique introduced here is designed

to use the additional CDM information available only from phase-
resolved imaging (16, 17, 33). Remarkably, it reveals a doping-
independent locking of the phase-averaged CDM wavevector to a
lattice commensurate wavevector jQ0j= 2π=4a0 oriented with the
Cu-O-Cu bonds in Bi2Sr2CaCu2O8+x (Fig. 4). Moreover, we di-
rectly detect the CDM DCs between phase-locked commensurate
regions that generate this situation (Fig. 3F). These observations
have significant fundamental consequences for understanding the
mechanism of the cuprate CDM state. They are orthogonal to a
weak-coupling k-space–based picture for CDM phenomena, in
which the fundamental wavevector should increase or decrease
monotonically with doping or should evolve in discrete jumps
even with “lattice locking.” Moreover, the commensurability is in-
tractable as a perturbative effect of interactions in the k-space pic-
ture (40). By contrast, a lattice-commensurate CDM state has been
obtained comprehensively in different types of strong-coupling
r-space–based theories (2–11). For underdoped Bi2Sr2CaCu2O8+x at
least, our data are far more consistent with such lattice-commensurate
strong-coupling r-space theories being the intrinsic organizational
principle for the cuprate CDM phenomena. Furthermore, nanoscale
clusters of lattice-commensurate CDMs are the first broken-symmetry
state to emerge at lightest hole doping (12, 13), multipletransport
and spectroscopic measurements of cuprate quasiparticles have
recently been demonstrated to be quite consistent with lattice-
commensurate r-space theories (41), and YBa2Cu3O7-x NMR
studies (37, 42) are also most consistent with them. Explorations of
universality of lattice commensurability of CDMs in other cuprate
compounds can now be pursued using these phase-resolved imaging
and

��Rq
�� -minimization techniques.
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Fig. 4. (A, Left) Measured
��~ψðqÞ�� for p = 0.06, within the square

region of q space (the dashed square in Fig.3B) bounded by
ð0,0Þ,  ðπ=2a0, π=2a0Þ,  ð0, π=a0Þ, ð−π=2a0, π=2a0Þ. (A, Right) The value of de-

modulation residue
��Rq

��=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRx

qÞ2 + ðRy
qÞ2

q
calculated from data using cutoff

Λ= 0.08× 2π=a0. The measured
��Rq

�� varies smoothly and drops quickly to-
ward zero at a single discrete wavevector near the center of the image,
similar to behavior in one dimension (Fig. 2). The identified discrete
wavevector has length jQj= 0.245× 2π=a0. The position of ð0,1=4Þ×2π=a0 is
marked by a small cross. (B–E ) Same analysis as shown in A, but for a series
of samples with estimated hole densities p = 0.08, 0.10, 0.14, 0.17. In each
case in B–E, Left, shown is the measured

��~ψðqÞ��within the square region of
q space that defines the considered CDM orientation, e.g., for QY bounded
by ð0,0Þ,  ðπ=2a0, π=2a0Þ, ð0, π=a0Þ, ð−π=2a0, π=2a0Þ; in each case in B–E,
Right, shown is the measured

��Rq

�� within the square region of q space marked
by the orange thin square on the image to its Left. The corresponding position of
ð0,   1=4Þ×2π=a0 is marked by a small cross. The pixel at which the

��Rq

�� is found
to be a minimum is identified as the phase-optimized CDM wavevector for that
carrier density. (F) The lengths of wavevectors QX ,QY extracted from measured
Bi2Sr2CaCu2O8 underdoped samples at different dopings p using

��Rq
�� minimi-

zation (A–E). The error in value of the phase-optimized wavevector is obtained
from spatial variation of residue (SI Text, Demodulation in Two Dimensions,
Smoothing, and Optimization Error) and is comparable to the error caused by
discreteness of choices for Q. For doping p> 0.14 the d-form factor CDMs are
less pronounced and there is a larger error in value of phase-optimized Q.
Note the doping-independent trend and values consistent with commensu-
rate value 1=4. Shown are reported doping-dependent values of CDM wave-
vector length jQAj in Bi2Sr2CaCu2O8+x and Bi2Sr2-xLaxCuO6+y (disks, colored light to
dark in order for refs. 43, 44, and 33), YBa2Cu3O7-x (squares, light to dark for source
132 from refs.15, 45, and 37), and La2-xBaxCuO4 (diamonds, reported in ref. 45).
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