
Observation of non-Abelian exchange statistics on a superconducting processor

Google Quantum AI and Collaborators
(Dated: October 20, 2022)

Indistinguishability of particles is a fundamental principle of quantum mechanics1. For all el-
ementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons -
this principle guarantees that the braiding of identical particles leaves the system unchanged2,3.
However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons
causes rotations in a space of topologically degenerate wavefunctions4–8. Hence, it can change the
observables of the system without violating the principle of indistinguishability. Despite the well
developed mathematical description of non-Abelian anyons and numerous theoretical proposals9–22,
their experimental observation has remained elusive for decades. Using a superconducting quantum
processor, we prepare the ground state of the surface code and manipulate it via unitary opera-
tions to form wavefunctions that are described by non-Abelian anyons. By implementing a unitary
protocol23 to move the anyons, we experimentally verify the fusion rules of non-Abelian Ising anyons
and braid them to realize their statistics. Building on our technique, we study the prospect of em-
ploying the anyons for quantum computation and utilize braiding to create an entangled state of
anyons encoding three logical qubits. Our work represents a key step towards topological quantum
computing.

Elementary particles in three dimensions (3D) are ei-
ther bosons or fermions. The existence of only two types
is rooted in the fact that the worldlines of two particles
in 3+1 dimensions can always be untied in a trivial man-
ner. Hence, exchanging a pair of indistinguishable par-
ticles twice is topologically equivalent to not exchanging
them at all, and the wavefunction must remain the same.
Representing the exchange as a matrix R acting on the
space of wavefunctions with a constant number of parti-
cles, it is thus required that R2 = 1, leaving two possi-
bilities: R = 1 (bosons) and R = −1 (fermions). Such
continuous deformation is not possible in two dimensions
(2D), thus allowing collective excitations (quasiparticles)
to exhibit richer braiding behavior. In particular, this per-
mits the existence of Abelian anyons2,3,6–8,24,25, where the
global phase change due to braiding can take any value.
It has been proposed that there exists another class of
quasiparticles known as non-Abelian anyons, where braid-
ing instead results in a change of the observables of the
wavefunction4,5,24. In other words, R2 does not simplify
to a scalar, but remains a unitary matrix. Therefore, R2

is a fundamental characteristic of anyon braiding. The
topological approach to quantum computation26 aims to
leverage these non-Abelian anyons and their topologi-
cal nature to enable gate operations that are protected
against local perturbations and decoherence errors5,27–30.
In solid-state systems, primary candidates of non-Abelian
quasiparticles are low-energy excitations in the 5/2 frac-
tional quantum Hall states31,32, vortices in topological
superconductors33,34, and Majorana zero modes in semi-
conductors proximitized by superconductors35–38. How-
ever, direct verification of non-Abelian exchange statistics
has remained elusive39–41.

We formulate the necessary requirements for exper-
imentally certifying a physical system as a platform
for topological quantum computation5,26: (1) create an
anyon pair; (2) verify the rules that govern the ”colli-
sion” of two anyons, known as the fusion rules; (3) verify
the non-Abelian braiding statistics reflected in the ma-
trix structure R2; (4) realize controlled entanglement of

anyonic degrees of freedom. Notably, the observation of
steps (2-4) requires measurements of multi-anyon states,
via fusion or non-local measurements.

The advent of quantum processors allows for con-
trolled unitary evolution and direct access to the wave-
function rather than the parameters of the Hamiltonian.
These features enable the use of local operations for effi-
cient preparation of topological states that can host non-
Abelian anyons, and - as we will demonstrate - their sub-
sequent braiding and fusion. Moreover, these platforms
allow for multi-qubit (i.e. non-local) measurements.

In order to realize a many-body quantum state that
can host anyons, it is essential to control the topolog-
ical degeneracy. A suitable platform for achieving this
requirement is a stabilizer code42, where the wavefunc-
tions are characterized by a set of commuting operators
{Ŝp} called stabilizers, with Ŝp |ψ〉 = sp |ψ〉 and sp = ±1.
The code space is the set of degenerate wavefunctions for
which sp = 1 for all p. Hence, every independent stabilizer
divides the degeneracy of the code space by two.

While the physical layout of qubits is typically used to
determine the structure of the stabilizers, the qubits can
be considered to be degree-j vertices (DjV; j ∈ {2, 3, 4})
on more general planar graphs (see Fig. 1a)23. Using this
picture, each stabilizer can be associated with a plaquette
p, whose vertices are the qubits on which Ŝp acts:

Ŝp =
∏

v ∈ vertices

τ̂p,v . (1)

τ̂p,v is here a single-qubit Pauli operator acting on ver-
tex v, chosen to satisfy a constraint around that vertex
(Fig. 1b). An instance where sp = −1 on a plaquette
is called a plaquette violation. These can be thought of
as quasi-particles, which are created and moved through
single-qubit Pauli operators (Fig. 1a). A pair of plaquette
violations sharing an edge constitute a fermion, ε. We re-
cently demonstrated the Abelian statistics of such quasi-
particles in the surface code43. To realize non-Abelian
statistics, one needs to go beyond such plaquette viola-
tions and instead deform the stabilizer graph, analogous
to lattice defects in crystalline solids.
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FIG. 1. Deformations of the surface code. a, Stabi-
lizer codes are conveniently described in a graph framework.
Through deformations of the surface code graph, a square grid
of qubits (crosses) can be used to realize more generalized
graphs. Plaquette violations (red) correspond to stabilizers
with sp = −1 and are created by local Pauli operations. In the
absence of deformations, plaquette violations are constrained
to move on one of the two sub-lattices of the dual graph in the
surface code, hence the two shades of blue. b, A pair of D3Vs
(yellow triangles) appears by removing an edge between two

neighboring stabilizers, Ŝ1 and Ŝ2, and introducing the new
stabilizer, Ŝ = Ŝ1Ŝ2. A D3V is moved by applying a 2-qubit

entangling gate, exp
(
π
8

[Ŝ′, Ŝ]
)

. In the presence of bulk D3Vs,

there is no consistent way of checkerboard coloring, hence the
(arbitrarily chosen) gray regions. Top right: in a general stabi-

lizer graph, Ŝp can be found from a constraint at each vertex,
where {τ1, τ2} = 0.

By introducing the graph framework, it was predicted
by Lensky et al. that the vertices of degree 2 and 3 host
non-Abelian anyons23. Consider the stabilizer graph of
the surface code26,44, specifically with boundary condi-
tions such that the degeneracy is two. While all the ver-
tices in the bulk are D4Vs, one can create two D3Vs by
removing an edge between two neighboring plaquettes p
and q, and introducing the new stabilizer Ŝ = ŜpŜq (Fig.
1b). Evidently, the introduction of two D3Vs reduces the
number of independent stabilizers by one and thus doubles
the degeneracy. This doubling is exactly what is expected
when a pair of Ising anyons is introduced; hence, D3Vs
appear as a candidate of non-Abelian anyons, and we will
denote them as σ.

In order to be braided and fused by unitary operations,
the D3Vs must be moved. While the structure of the
stabilizer graph is usually considered to be static, it was
shown in Ref.23 that the D3Vs can in fact be moved -
thus deforming the stabilizer graph - using local two-qubit
Clifford gates. To shift a D3V from vertex u to v, an
edge must be disconnected from v and reconnected to u.

This can be achieved via the gate unitary exp
(
π
8 [Ŝ′p, Ŝp]

)
,

where Ŝp is the original stabilizer containing the edge and

u, and Ŝ′p is the new stabilizer that emerges after moving

the edge23. In cases where the D3V is shifted between
two connected vertices, the unitary simplifies to the form
U±(τ̂uτ̂v) ≡ exp

(
±iπ4 τ̂uτ̂v

)
, where τ̂u and τ̂v are Pauli

operators acting on vertices u and v. We experimentally
realize this unitary through a CZ-gate and single-qubit
rotations (median errors of 7.3 × 10−3 and 1.3 × 10−3,
respectively; see Supplementary materials).

In the first experiment we demonstrate the creation
of anyons and the fundamental fusion rules of σ and ε
(Fig. 2a). In a 5×5 grid of superconducting qubits, we
first use a protocol consisting of four layers of CZ-gates to
prepare the surface code ground state (panel I in Fig. 2b,
see also43). The average stabilizer value after the ground
state preparation is 0.94±0.04 (individual stabilizer values
shown in Fig. S3c). We then remove a stabilizer edge to
create a pair of D3Vs (σ) and separate them through the
application of two-qubit gates. Panels I-IV in Fig. 2b show
the measured stabilizer values in the resultant graph in
each step of this procedure (note that the measurements
are destructive and the protocol is restarted after each
measurement). In panel V, single-qubit Z-gates are ap-
plied to two qubits near the lower left corner of the grid to
create adjacent plaquette violations, which together form
a fermion. Through the sequential application of X- and
Z-gates (VI to VIII), one of the plaquette violations is
then made to encircle the right σ vertex. Crucially, af-
ter moving around σ, the plaquette violation does not
return to where it started, but rather to the location of
the other plaquette violation. This enables them to anni-
hilate (VIII), causing the fermion to seemingly disappear.
However, by bringing the two σ back together and an-
nihilating them (IX through XI), we arrive at a striking
observation: an ε-particle re-emerges on two of the square
plaquettes where the σ-vertices previously resided.

Our results demonstrate the fusion of ε and σ. The dis-
appearance of the fermion from step V to VIII establishes
the fundamental fusion rule of ε and σ:

σ × ε = σ . (2)

We emphasize that none of the single-qubit gates along
the path of the plaquette violation are applied to the
qubits hosting the mobile σ; our observations are there-
fore solely due to the non-local effects of non-Abelian
D3Vs, and exemplify the unconventional behavior of the
latter. Moreover, another fusion rule is seen by consider-
ing the reverse path IV→I, and comparing it to the path
VIII→XI. These two paths demonstrate that a pair of σ
can fuse to form either vacuum (1) or one fermion (step
I and XI, respectively):

σ × σ = 1 + ε . (3)

Importantly, the starting points of these two paths (IV
and VIII) cannot be distinguished by any local measure-
ment. We therefore introduce a non-local measurement
technique that allows for detecting an ε without fusing
the σ9,23,26. The key idea underlying this method is that
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FIG. 2. Demonstration of the fundamental fusion rules of D3Vs. a, The braiding worldlines used to fuse ε and σ.
b, Expectation values of stabilizers at each step of the unitary operation after readout correction (see Fig. S3 for details and
individual stabilizer values). We first prepare the ground state of the surface code (step I; average stabilizer value: 0.94± 0.04).
A D3V (σ) pair is then created (II) and separated (III-IV), before creating a fermion, ε (V). One of the plaquette violations
is brought around the right σ (VI-VIII), allowing it to annihilate with the other plaquette violation (VIII). The fermion has
seemingly disappeared, but re-emerges when the σ are annihilated (XI; stabilizer values: -0.86 and -0.87). The path V→VIII
demonstrates the fusion rule, σ × ε = σ. The different fermion parities at the end of the paths VIII→XI and IV→I show the
other fusion rule, σ × σ = 1 + ε. Yellow triangles represent the positions of the σ. The brown and red lines denote the paths of
the σ and the plaquette violation, respectively. Red squares (diamonds) represent X- (Z-) gates. Upper left: table of two-qubit
unitaries used in the protocol. c, Non-local technique for hidden fermion detection: the presence of a fermion in a σ-pair can
be deduced by measuring the sign of the Pauli string P̂ corresponding to bringing a plaquette violation around the σ-pair (gray

path). P̂ is equivalent to the shorter string P̂ ′ (black path). Measurements of P̂ ′ in steps VIII (top) and IV (bottom) give values
−0.85± 0.01 and +0.84± 0.01, respectively. This indicates that there is a hidden fermion pair in the former case, but not in the
latter, despite the stabilizers being the same.

bringing a plaquette violation around a fermion should re-
sult in a π-phase. We therefore measure the Pauli string
P̂ that corresponds to creating two plaquette violations,
bringing one of them around the two σ, and finally anni-
hilating them with each other (gray paths in Fig. 2c). The

existence of an ε inside the σ-pair should cause 〈P̂〉 = −1.

To simplify this technique further, P̂ can be reduced to
a shorter string P̂ ′ (black paths in Fig. 2c) by taking ad-
vantage of the stabilizers it encompasses. For instance,
if P̂ contains three of the operators in a 4-qubit sta-
bilizer, these can be switched out with the remaining
operator. Measuring 〈P̂ ′〉 in step IV, where the σ are
separated but the fermion has not yet been introduced,
gives 〈P̂ ′〉 = +0.84± 0.01, consistent with the absence of
fermions. However, performing the exact same measure-
ment in step VIII, where the σ are in the same positions,
we find 〈P̂ ′〉 = −0.85± 0.01, indicating that an ε is delo-
calized across the spatially separated σ-pair. This obser-
vation highlights the non-local encoding of the fermions,
which cannot be explained with classical physics.

Having demonstrated the above fusion rules involving
σ, we next braid them with each other to directly show
their non-Abelian statistics. We consider two spatially
separated σ-pairs, A and B, by removing two stabilizer

edges (Fig. 3a and panel II in Fig. 3b). Next, we apply
two-qubit gates along a horizontal path to separate the
σ in pair A (panel III), followed by a similar procedure
in the vertical direction on pair B (IV), so that one of
its σ crosses the path of pair A. We then subsequently
bring the σ from pairs A and B back to their original
positions (V-VIII and IX-XI, respectively). Strikingly,
when the two σ-pairs are annihilated in the final step
(XII), we observe that a fermion is revealed in each of
the positions where the σ-pairs resided (average stabilizer
value: −0.45 ± 0.06). This shows a clear change in lo-
cal observables from the initial state where no fermions
were present. As a control experiment, we repeat the
experiment with distinguishable σ-pairs, achieved by at-
taching a plaquette violation to each of the σ in pair B
(Fig. 3c,d; see also Fig. S6 for stabilizer measurements
through the full protocol). Moving the plaquette vio-
lation along with the σ requires a string of single-qubit
gates, which switches the direction of the rotation in the
multi-qubit unitaries, U± → U∓. In this case, no fermions
are observed at the end of the protocol (average stabilizer
value: +0.46±0.04), thus providing a successful control23.

Importantly, fermions can only be created in pairs in
the bulk. Moreover, the fusion of two σ can only create
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FIG. 3. Braiding of non-Abelian anyons. a, Wordline schematic of the braiding process. b, Experimental demonstration of
braiding, displaying the values of the stabilizers throughout the process. Two σ-pairs, A and B, are created from the vacuum 1,
and one of the σ in pair A is brought to the right side of the grid. Next, a σ from pair B is moved to the top, thus crossing the
path of pair A, before bringing σ-pairs A and B back together to complete the braid. In the final step, two fermions appear in
the locations where the σ-pairs resided, constituting a change in the local observables. The diagonal σ move in step IV requires
two SWAP-gates (3 CZ-gates each) and a total of 10 CZ-gates. The three-qubit unitary in step VIII requires 4 SWAP-gates and
a total of 15 CZ-gates. In the full circuit, a total of 40 layers of CZ-gates are applied (see Supplementary materials). The yellow
triangles represent the locations of the σ; the brown and green lines represent the paths of σ from pair A and B, respectively.
c, As a control experiment, we perform the same braid as in a, but with distinguishable σ by attaching a plaquette violation to
the σ in pair B (represented as purple triangles). d, Same as b, but using distinguishable σ (only showing steps I, IV and XII).
In contrast to b, no fermions are observed in step XII.

zero or one fermion (Eqn. 3). Hence, our experiment
involves the minimal number of bulk σ (four) needed to
encode two fermions and demonstrate non-Abelian braid-
ing. Since the fermion parity is conserved, effects of gate
imperfections and decoherence can be partially mitigated
by post-selecting for an even number of fermions. This
results in fermion detection values of −0.76 ± 0.03 and
+0.79± 0.04 in Fig. 3b and d, respectively.

Together, our observations show the change in local ob-
servables by braiding of indistinguishable σ and constitute
a direct demonstration of their non-Abelian statistics. In
other words, the double-braiding operation R2 is a ma-
trix that cannot be reduced to a scalar. Specifically, it
corresponds to an X-gate acting on the space spanned by
zero- and two-fermion wavefunctions.

The full braiding circuit consists of 40 layers of CZ-
gates and 41 layers of single-qubit gates (36 of each af-
ter ground state preparation). The effects of imperfec-
tions in this hardware implementation can be assessed
through comparison with the control experiment. The
absolute values of the stabilizers where the fermions are
detected in the two experiments (dashed boxes in step
XII of Fig. 3b,d) are very similar (average values of −0.45
and +0.46). This is consistent with the depolarization
channel model, where the measured stabilizer values are
proportional to the ideal values (±1).

We next study the prospects of utilizing D3Vs to encode

logical qubits and prepare an entangled state of anyon
pairs. By doubling the degeneracy, each additional σ-pair
introduces one logical qubit, where the |0〉L (|1〉L) state
corresponds to an even (odd) number of hidden fermions.
Importantly, the measurements of the fermion numbers in
several σ-pairs are not fully independent: bringing a pla-
quette violation around one σ-pair is equivalent to bring-
ing it around all the other pairs (due to the conservation of
fermionic parity). Hence, N ≥ 2 anyons encode N/2 − 1
logical qubits. Interestingly, the D3Vs we have created
and manipulated so far are not the only ones present in
the stabilizer graph; with the boundary conditions used
here, each of the four corners are also D3Vs, no different
from those in the bulk23. Indeed, the existence of D3Vs
in the corners is the reason why a single fermion could
be created in the corner in step V of Fig. 2b. This is also
consistent with the fact that the surface code itself en-
codes one logical qubit in the absence of additional D3Vs.
Here we create two pairs of D3Vs, in addition to the four
that are already present in the corners, to encode a total
of three logical qubits.

Through the use of braiding, we aim to prepare an en-
tangled state of these logical qubits, specifically a GHZ-
state on the form, (|000〉 + |111〉)/

√
2. The definition of

a GHZ-state and the specifics of how it is prepared is
basis-dependent. In most systems the degrees of freedom
are local and there is a natural choice of basis. For spa-
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Re(ρ) has clear peaks in its corners, as expected for a GHZ state on the form (|000〉 + |111〉)/

√
2. The overlap with the ideal

GHZ-state is Tr{ρGHZρ} = 0.623± 0.004.

tially separated anyons, the measurement operators are
necessarily non-local. Here we choose the basis defined as
follows: for the first two logical qubits, we choose the logi-
cal ẐL,i operators to be Pauli strings encircling each of the
bulk σ-pairs, as was used in Fig. 2c (green and turquoise
paths in the left column of Fig. 4a). For the logical sur-

face code qubit, we define ẐL,3 as the Pauli string that
crosses the grid horizontally through the gap between the
bulk D3V pairs, effectively enclosing four σ (red path in
Fig. 4a). In this basis, the initial state is a product state.

While a double braid was used to implement the opera-
tor X in Fig. 3, we now perform a single braid (Fig. 4b) to

realize
√
X and create a GHZ-state. We implement this

protocol by bringing one σ from each bulk pair across the
grid to the other side (Fig. 4c). For every anyon double ex-
change across a Pauli string, the value of the Pauli string
changes sign. Hence, a double exchange would change
|000〉 to |111〉, while a single exchange is expected to re-

alize the superposition, (|111〉+ |000〉)/
√

2.

In order to study the effect of this operation, we per-
form quantum state tomography on the final state, which
requires measurements of not only ẐL,i, but also X̂L,i and

ŶL,i on the three logical qubits. For the first two logical

qubits, X̂L,i is the Pauli string that corresponds to bring-
ing a plaquette violation around only one of the σ in the
pair (as demonstrated in Fig. 2b). Both the logical X̂L,i

and ẐL,i operators can be simplified by reducing the orig-
inal Pauli strings (green and turquoise paths in the left

column of Fig. 4c) to equivalent, shorter ones (right col-

umn). ẐL,1 can in fact be reduced to a single Ŷ -operator.

For the logical surface code qubit, we define X̂L,3 as the
Pauli string that crosses the grid vertically between the
bulk D3V pairs (red path in Fig. 4a). Finally, the logical

ŶL,i-operators are simply found from ŶL,i = iX̂L,iẐL,i.
Measuring these operators, we reconstruct the density
matrix of the final state (Fig. 4d,e), which has a purity

of
√

Tr{ρ2} = 0.646±0.003 and an overlap with the ideal
GHZ-state of Tr{ρGHZρ} = 0.623 ± 0.004 (uncertainties
estimated from bootstrapping). The fact that the state
fidelity is similar to the purity suggests that the infidelity
is well described by a depolarizing error channel.

In conclusion, we have realized highly controllable
braiding of degree-3 vertices, enabling the demonstra-
tion of the fusion and braiding rules of non-Abelian Ising
anyons. We have also shown that braiding can be used to
create an entangled state of three logical qubits encoded
in these anyons. With the potential inclusion of error
correction, which involves overheads including readout of
5-qubit stabilizers, our observations highlight a new path
for fault-tolerant quantum computing.
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Khezri1, M. Kieferová1, 6, S. Kim1, A. Kitaev1, P. V. Klimov1, A. R. Klots1, A. N. Korotkov1, 7, F. Kostritsa1, J. M. Kreikebaum1, D.
Landhuis1, P. Laptev1, K.-M. Lau1, L. Laws1, J. Lee1, 8, K. W. Lee1, B. J. Lester1, A. T. Lill1, W. Liu1, A. Locharla1, E. Lucero1, F. D.
Malone1, O. Martin1, J. R. McClean1, T. McCourt1, M. McEwen1, 9, K. C. Miao1, A. Mieszala1, M. Mohseni1, S. Montazeri1, E.
Mount1, R. Movassagh1, W. Mruczkiewicz1, O. Naaman1, M. Neeley1, C. Neill1, A. Nersisyan1, M. Newman1, J. H. Ng1, A. Nguyen1,
M. Nguyen1, M. Y. Niu1, T. E. O’Brien1, S. Omonije1, A. Petukhov1, R. Potter1, L. P. Pryadko1,10, C. Quintana1, C. Rocque1, N.
C. Rubin1, N. Saei1, D. Sank1, K. Sankaragomathi1, K. J. Satzinger1, H. F. Schurkus1, C. Schuster1, M. J. Shearn1, A. Shorter1, N.
Shutty1, V. Shvarts1, J. Skruzny1, W. C. Smith1, R. Somma1, G. Sterling1, D. Strain1, M. Szalay1, A. Torres1, G. Vidal1, B. Villalonga1,
C. V. Heidweiller1, T. White1, B. W. K. Woo1, C. Xing1, Z. J. Yao1, P. Yeh1, J. Yoo1, G. Young1, A. Zalcman1, Y. Zhang1, N. Zhu1, N.
Zobrist1, H. Neven1, S. Boixo1, A. Megrant1, J. Kelly1, Y. Chen1, V. Smelyanskiy1, E.-A. Kim2, 11, 12, 13,§, I. Aleiner1,§, P. Roushan1,§,

1 Google Research, Mountain View, CA, USA

2 Department of Physics, Cornell University, Ithaca, NY, USA

3 Department of Physics, University of Connecticut, Storrs, CT, USA

4 Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA

5 Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA

6 QSI, Faculty of Engineering & Information Technology, University of Technology Sydney, NSW, Australia

7 Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA

8 Department of Chemistry, Columbia University, New York, NY, USA

9 Department of Physics, University of California, Santa Barbara, CA, USA

10 Department of Physics and Astronomy, University of California, Riverside, CA, USA

11 Department of Physics, Ewha Womans University, Seoul, South Korea

12 Department of Physics, Harvard University, Cambridge, MA, USA

13 Radcliffe Institute for Advanced Studies, Cambridge, MA, USA

§ Corresponding author: ek436@cornell.edu
§ Corresponding author: igoraleiner@google.com
§ Corresponding author: pedramr@google.com

[1] J. J. Sakurai, Modern Quantum Mechanics (Addison-
Wesley, 1993).

[2] J. Leinaas and J. Myrheim, On the theory of identical
particles, Nuovo Cim B 37, 1 (1977).

[3] F. Wilczek, Quantum mechanics of fractional-spin parti-
cles, Phys. Rev. Lett. 49, 957 (1982).

[4] F. Wilczek, Fractional statistics and anyon superconduc-
tivity (World Scientific, 1990).

[5] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and
S. D. Sarma, Non-Abelian Anyons and Topological Quan-
tum Computation, Rev. Mod. Phys. 80, 1083 (2008),
arXiv:0707.1889.

[6] F. E. Camino, W. Zhou, and V. J. Goldman, e/3 laughlin
quasiparticle primary-filling ν = 1/3 interferometer, Phys.
Rev. Lett. 98, 076805 (2007).

[7] H. Bartolomei, M. Kumar, R. Bisognin, A. Marguerite,
J.-M. Berroir, E. Bocquillon, B. Placais, A. Cavanna,
Q. Dong, U. Gennser, Y. Jin, and G. Feve, Fractional

statistics in anyon collisions, Science 368, 173 (2020).
[8] J. Nakamura, S. Liang, G. C. Gardner, and M. J. Manfra,

Direct observation of anyonic braiding statistics, Nature
Physics 16, 931 (2020).

[9] H. Bombin, Topological order with a twist: Ising anyons
from an abelian model, Phys. Rev. Lett. 105, 030403
(2010).

[10] Y.-Z. You and X.-G. Wen, Projective non-abelian statis-
tics of dislocation defects in a zN rotor model, Phys. Rev.
B 86, 161107 (2012).

[11] A. Kitaev, Anyons in an exactly solved model and beyond,
Annals of Physics 321, 2 (2006).

[12] M. Barkeshli, C.-M. Jian, and X.-L. Qi, Twist defects and
projective non-abelian braiding statistics, Phys. Rev. B
87, 045130 (2013).

[13] M. Barkeshli and X.-L. Qi, Topological nematic states
and non-abelian lattice dislocations, Physical Review X
2, 031013 (2012).

https://doi.org/10.1103/RevModPhys.80.1083
https://arxiv.org/abs/0707.1889
https://doi.org/DOI: 10.1126/science.aaz5601
https://doi.org/10.1103/PhysRevLett.105.030403
https://doi.org/10.1103/PhysRevLett.105.030403


7

[14] L. Hormozi, G. Zikos, N. E. Bonesteel, and S. H. Simon,
Topological quantum compiling, Phys. Rev. B 75, 165310
(2007).

[15] C. W. von Keyserlingk, F. J. Burnell, and S. H. Simon,
Three-dimensional topological lattice models with surface
anyons, Phys. Rev. B 87, 045107 (2013).

[16] J. C. Teo, A. Roy, and X. Chen, Unconventional fusion
and braiding of topological defects in a lattice model,
Physical Review B 90, 115118 (2014).

[17] H. Zheng, A. Dua, and L. Jiang, Demonstrating non-
abelian statistics of majorana fermions using twist defects,
Phys. Rev. B 92, 245139 (2015).

[18] J. C. Teo, T. L. Hughes, and E. Fradkin, Theory of twist
liquids: Gauging an anyonic symmetry, Annals of Physics
360, 349 (2015).

[19] B. J. Brown, K. Laubscher, M. S. Kesselring, and J. R.
Wootton, Poking holes and cutting corners to achieve clif-
ford gates with the surface code, Phys. Rev. X 7, 021029
(2017).

[20] G. Zhu, M. Hafezi, and M. Barkeshli, Quantum origami:
Transversal gates for quantum computation and measure-
ment of topological order, Phys. Rev. Research 2, 013285
(2020).

[21] A. Benhemou, J. K. Pachos, and D. E. Browne, Non-
abelian statistics with mixed-boundary punctures on the
toric code, Phys. Rev. A 105, 042417 (2022).

[22] N. Tantivasadakarn, R. Verresen, and A. Vishwanath, The
Shortest Route to Non-Abelian Topological Order on a
Quantum Processor, (2022), arXiv:2209.03964 [quant-
ph].

[23] Y. D. Lensky, K. Kechedzhi, I. Aleiner, and E.-A. Kim,
Graph gauge theory of mobile non-abelian anyons in a
qubit stabilizer code, (2022), arXiv:2210.09282 [quant-
ph].

[24] A. Stern, Anons and the quantum hall effect-a pedagogical
review, Annals of Physics (New York) 323 (2008).

[25] N. Harle, O. Shtanko, and R. Movassagh, Observing and
braiding topological Majorana modes on programmable
quantum simulators, (2022), arXiv:2203.15083 [quant-
ph].

[26] A. Y. Kitaev, Fault-tolerant quantum computation by
anyons, Ann. Phys. 303, 2 (2003).

[27] M. H. Freedman, P/np, and the quantum field computer,
Proc. Natl. Acad. Sci. USA 95, 98 (1998).

[28] J. K. Pachos, Introduction to Topological Quantum Com-
putation (Cambridge University Press, 2012).

[29] A. Stern and N. Lindner, Topological quantum compu-
tation—from basic concepts to first experiments, Science
339, 1179 (2013).

[30] B. Field and T. Simula, Introduction to topological quan-
tum computation with non-abelian anyons, Quantum Sci-
ence and Technology 3, 045004 (2018).

[31] G. Moore and N. Read, Nonabelions in the fractional
quantum hall effect, Nuclear Physics B 360, 362 (1991).

[32] R. L. Willett, L. N. Pfeiffer, and K. W. West, Alterna-
tion and interchange of e/4 and e/2 period interference
oscillations consistent with filling factor 5/2 non-abelian
quasiparticles, Phys. Rev. B 82, 205301 (2010).

[33] N. Read and D. Green, Paired states of fermions in two
dimensions with breaking of parity and time-reversal sym-
metries and the fractional quantum hall effect, Phys. Rev.
B 61, 10267 (2000).

[34] D. A. Ivanov, Non-abelian statistics of half-quantum vor-
tices in p-wave superconductors, Phys. Rev. Lett. 86, 268
(2001).

[35] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Ma-

jorana fermions and a topological phase transition
in semiconductor-superconductor heterostructures, Phys.
Rev. Lett. 105, 077001 (2010).

[36] Y. Oreg, G. Refael, and F. von Oppen, Helical liquids
and majorana bound states in quantum wires, Phys. Rev.
Lett. 105, 177002 (2010).

[37] V. Mourik, K. Zuo, F. S., S. Plissard, B. E., and
L. Kouwenhoven, Signatures of majorana fermions in hy-
brid superconductor-semiconductor nanowire devices, Sci-
ence 336, 1003 (2012).

[38] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon,
J. Seo, A. MacDonald, B. A. Bernevig, and A. Yaz-
dani, Observation of majorana fermions in ferromagnetic
atomic chains on a superconductor, Science 346, 602
(2014).

[39] M. Banerjee, M. Heiblum, V. Umansky, D. Feldman,
Y. Oreg, and A. Stern, Observation of half-integer thermal
hall conductance, Nature 559, 205 (2018).

[40] Y. Kasahara, T. Ohnishi, Y. Mizukami, O. Tanaka, S. Ma,
K. Sugii, N. Kurita, H. Tanaka, J. Nasu, Y. Motome, and
Y. Shibauchi, T. & Matsuda, Majorana quantization and
half-integer thermal quantum hall effect in a Kitaev spin
liquid, Nature 559, 227 (2018).

[41] P. Bonderson, A. Kitaev, and K. Shtengel, Detecting Non-
Abelian Statistics in the ν = 5/2 Fractional Quantum Hall
State, Phys. Rev. Lett. 96, 016803 (2006).

[42] D. Gottesman, Stabilizer codes and quantum error correc-
tion (California Institute of Technology, 1997).

[43] K. Satzinger, Y.-J. Liu, A. Smith, C. Knapp, M. Newman,
C. Jones, Z. Chen, C. Quintana, X. Mi, A. Dunsworth,
et al., Realizing topologically ordered states on a quantum
processor, Science 374, 1237 (2021).

[44] X.-G. Wen, Quantum orders in an exact soluble model,
Phys. Rev. Lett. 90, 016803 (2003).

[45] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A.
Buell, et al., Quantum supremacy using a programmable
superconducting processor, Nature 574, 505 (2019).

https://arxiv.org/abs/2209.03964
https://arxiv.org/abs/2209.03964
https://arxiv.org/abs/2210.09282
https://arxiv.org/abs/2210.09282
https://arxiv.org/abs/2203.15083
https://arxiv.org/abs/2203.15083
https://doi.org/https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1103/PhysRevLett.96.016803


8

Supplemental materials for: Observation of non-Abelian exchange statistics on a
superconducting processor

CONTENTS

I. Qubit decoherence and gate characterization 8

II. Readout details 9

III. Circuit details 10

IV. Dynamical decoupling 11

V. Additional braiding data 11

I. QUBIT DECOHERENCE AND GATE CHARACTERIZATION

The experiments are performed on a quantum processor with frequency-tunable transmon qubits and a similar design
to that in Ref.45. Figure S1a shows the measured relaxation times of the 25 qubits that were used in the experiment,
with a median value of T1 = 21.7 µs. We also measure the dephasing time T2 in a Hahn echo experiment, shown in
Fig. S1b, with the same median value of 21.7 µs.

Next, we benchmark the gates used in the experiment. Fig. S2a and b show the cummulative distribution of the Pauli
errors for single- and two-qubit (CZ) gates, respectively. The median Pauli errors are 1.3 × 10−3 for the single-qubit
gates and 7.3× 10−3 for the two-qubit gates.
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FIG. S1. Qubit relaxation (T1) and coherence (T2) times. a,b Cummulative distributions of T1 (a) and T2 (b), where the
latter is measured using a Hahn echo sequence. Dashed lines indicate the median values of 21.7 µs for both measures. Insets:
T1 and T2 plotted against qubit number.
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FIG. S2. Gate errors. a,b, Cummulative distributions of the Pauli error for single-qubit (a) and two-qubit CZ (b) gates. We
find median error values of 1.3× 10−3 and 7.3× 10−3 for the single-qubit and CZ-gates, respectively.

II. READOUT DETAILS

We mitigate asymmetric readout effects by using a symmetrized readout scheme, in which an X-gate is applied to
every qubit before the readout step in half of the measurements. Moreover, readout errors are corrected for by dividing
each stabilizer value by (symmetrized) measurements of 〈ΠiZi〉 on the |00..00〉-state, where the product runs over all
qubits in the stabilizer. Fig. S3 displays the measured readout errors, as well as a comparison of the stabilizer values
in the surface code ground state (same data as in step I in main text Fig. 2) before and after readout correction.
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FIG. S3. Readout benchmarking and correction: a, Histogram of readout error, with a median value of 2.0% (dashed
vertical line). Inset: Readout error plotted against qubit number. b,c, Stabilizer values of the surface code ground state before
(a) and after (b) readout correction.
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III. CIRCUIT DETAILS

In our experiment, the two-qubit unitaries U±(τ̂1τ̂2) are converted to single-qubit rotations and CZ-gates, as shown
in Fig. S4a. In the particular case where a D3V is moved diagonally (see step IV in Fig. 3 in the main text), we realize
the unitary by including two SWAP-gates (also converted to CZ-gates) since the qubits are connected in a square grid
(see Fig. S4b). Moreover, the three-qubit unitary in step VIII in Fig. 3 is equivalent to a combination of single-qubit
gates, 4 SWAP-gates and 4 CZ-gates (Fig. S4c), which can be further converted to single-qubit gates and 15 CZ-gates.

We also include five single-qubit rotations to permute X̂, Ŷ and Ẑ of the three stabilizers touching the moving D3V in
steps V-VIII and IX-XI, as well as three Hadamard gates to return all stabilizers to the original ẐX̂X̂Ẑ-form in XII.
In the experimental implementation of the circuit, adjacent single-qubit gates on the same qubit are merged together
and performed in the layer after the most recent CZ-gate (Fig. S4d).
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FIG. S4. Circuit details. a, The unitary needed to move a D3V between two neighboring vertices is realized in the experiment
through the use of one CZ-gate and single-qubit rotations. b, When D3Vs are moved diagonally, we include two SWAP-gates,
requiring three CZ-gates each. c, The three-qubit unitary used in step VIII in Fig. 3 is equivalent to a combination of single-qubit
gates, 4 SWAP-gates and 4 CZ-gates. d, Adjacent single-qubit gates are merged and shifted left to the nearest CZ-gate.
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IV. DYNAMICAL DECOUPLING

In order to mitigate the effects of qubit decoherence during the circuits, we perform dynamical decoupling on qubits
that are idle for more than three layers of gates. In particular, we utilize the Carr-Purcell-Meiboom-Gill (CPMG)
scheme, consisting of X-pulses interspaced by a wait time of τ = 25 ns. Fig. S5 shows an example comparison of
the stabilizers in cases with and without dynamical decoupling, after braiding of anyons (41 layers of SQ gates and
40 layers of CZ-gates). A clear improvement is observed, increasing the average absolute stabilizer value from 0.50 to
0.58.

0 100-100

a bWithout dynamical decoupling With dynamical decoupling

Stabilizer  x 100

FIG. S5. Dynamical decoupling. a,b, Stabilizer values without (a) and with (b) dynamical decoupling, after D3V braiding.
Dynamical decoupling improves the average absolute stabilizer value from 0.50 to 0.58.

V. ADDITIONAL BRAIDING DATA

In Figure 3 in the main text, we demonstrate that no fermion appears when distinguishable σ are braided with each
other. In Fig. S6, we show the data for each step in that protocol, analogous to those shown for indistinguishable
σ in the main text. Moreover, we also present an alternative braiding scheme in Fig. S7, which requires fewer (18)
CZ-gates. In this case, however, pair B is not brought back together, and neither of the σ-pairs are annihilated.
Therefore, similar to in Fig. 2c, we measure the Pauli string corresponding to bringing a plaquette violation around
pair A (gray path in Fig. S7c), which in this case can be reduced to Ŷ on the qubit where the two σ overlap. We find

〈P̂〉 = 〈Ŷ 〉 = −0.71±0.01, indicating that braiding the σ led to the creation of a fermion (Fig. S7c). Note that we here
only search for fermions in one of the σ-pairs. As a control experiment, we repeat the experiment with distinguishable
σ-pairs, as in the main text (Fig. S7d). In this case, we find 〈P̂〉 = +0.71± 0.01, thus demonstrating that no fermion
was produced. Together, these observations constitute another demonstration of non-Abelian exchange statistics of the
D3Vs.
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FIG. S7. Alternative protocol for braiding σ. a, Schematic displaying the braiding process of the two σ-pairs. b,
Experimental demonstration of braiding, displaying the values of the stabilizers throughout the process. Two σ-pairs, A and B,
are created from the vacuum 1, and one of the D3Vs in pair A is brought to the right side of the grid. Next, a σ from pair B is
moved to the top, thus crossing the path of the first σ, before bringing the σ from pair A back again to complete the braid. The
diagonal σ move performed in step VI is achieved by including two SWAP-gates, corresponding to 6 additional CZ-gates. The
yellow triangles represent the locations of the σ, while the brown and green lines represent the paths of σ from pair A and B,
respectively. The average absolute stabilizer value is 0.93± 0.06 and 0.77± 0.09 in the first and last step, respectively. c, After
braiding the σ, we search for hidden fermions by measuring the Pauli string P̂ (left panels), which here is equivalent to Ŷ on

the qubit where the two σ overlap. The measurement yields 〈P̂〉 = 〈Ŷ 〉 = −0.71± 0.01, indicating creation of a fermion. Right:
world-lines of braiding process, including non-local measurement based on plaquette violation loop. d, Same as c, but after
braiding two distinguishable σ, achieved by applying the inverse two-qubit gates when moving the σ in pair B. The measurement
yields 〈Ŷ 〉 = +0.71± 0.01, indicating no fermion creation.
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