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The information content of crystalline materials becomes astronomical when collective
electronic behavior and their fluctuations are taken into account. In the past decade, im-
provements in source brightness and detector technology at modern X-ray facilities have
allowed a dramatically increased fraction of this information to be captured. Now, the
primary challenge is to understand and discover scientific principles from big datasets
when a comprehensive analysis is beyond human reach. We report the development
of an unsupervised machine learning approach, X-ray diffraction (XRD) temperature
clustering (X-TEC), that can automatically extract charge density wave order parameters
and detect intraunit cell ordering and its fluctuations from a series of high-volume
X-ray diffraction measurements taken at multiple temperatures. We benchmark X-TEC
with diffraction data on a quasi-skutterudite family of materials, (CaxSr1−x )3Rh4Sn13,
where a quantum critical point is observed as a function of Ca concentration. We apply
X-TEC to XRD data on the pyrochlore metal, Cd2Re2O7, to investigate its two much-
debated structural phase transitions and uncover the Goldstone mode accompanying
them. We demonstrate how unprecedented atomic-scale knowledge can be gained when
human researchers connect the X-TEC results to physical principles. Specifically, we
extract from the X-TEC–revealed selection rules that the Cd and Re displacements are
approximately equal in amplitude but out of phase. This discovery reveals a previously
unknown involvement of 5d 2 Re, supporting the idea of an electronic origin to the
structural order. Our approach can radically transform XRD experiments by allowing
in operando data analysis and enabling researchers to refine experiments by discovering
interesting regions of phase space on the fly.

machine learning | big data | X-ray scattering

From the early days of X-ray diffraction (XRD) experiments, they have been used to access
atomic-scale information in crystalline materials. The primary challenge has always been
how to interpret the angle-dependent scattering intensities of the resultant diffraction
patterns (Fig. 1A). Bragg and Bragg’s initial insights into how to interpret such data
(1) enabled the direct determination of crystal structures for the first time, and they
were duly awarded a Nobel prize. Since the phase of the X-ray photon is lost in the
measurement, the most common approach to interpreting XRD data is to employ forward
modeling using the increasingly sophisticated tools of crystallography developed over the
past century. These have been remarkably successful in determining the structure of highly
crystalline materials, from simple inorganic solids to complex protein crystals. However,
subtle structural changes can be difficult to determine when they only result in marginal
changes in intensities without any change in peak locations (2). Furthermore, thermal
and quantum fluctuations captured in diffuse scattering away from the Bragg peaks are
beyond the reach of conventional crystallographic analysis. The information-rich diffuse
scattering is typically weaker than Bragg scattering by several orders of magnitude and can
be difficult to differentiate from background noise.

The massive data that modern facilities generate, spanning three-dimensional (3D)
reciprocal space volumes that include O(104) Brillouin zones (BZs) (Fig. 1A), at rates
of O(102) GB/h should capture the systematics of such subtle atomic-scale information.
Yet the sheer quantity of data presents a major challenge. Overcoming this challenge is
of paramount importance especially in searching for an unknown order parameter and
its fluctuations. Specifically, two types of orders and their fluctuations are targets of XRD
(see the illustration for a 1D system in Fig. 1 B–E): those that change the size of the
unit cell, such as charge density waves (CDW), and those that involve intraunit cell
(IUC) distortions. XRD evidence of CDW order is the emergence of new superlattice
peaks, which can be weak and fluctuating, often requiring a targeted search (3, 4). XRD
evidence of IUC order is even subtler changes in structure factors of Bragg peaks (5),
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Fig. 1. (A) Schematic geometry of the X-ray scattering measurements. A monochromatic X-ray beam is incident on the sample, which rotates about the
orthogonal φ axis while images are captured on a fast area detector. The reciprocal space map shows the �q coverage of a single plane in the 3D volume after
capturing images over a full 360◦ sample rotation. A 3D volume of reciprocal space covered by the X-ray scattering is shown on the right. Each red dot is a
single Bragg peak. With an X-ray energy of 87 keV, a volume of over 10,000 Å−3 is measured, containing over 10,000 BZs if the unit cell dimension is 10 Å.
Real space positions of atoms (Top) and the corresponding scattering intensities (Bottom) calculated from simulated 1D crystals with a unit cell containing two
atoms, illustrating (B) a high-symmetry phase, with (C) distortions due to CDW order, (D) IUC order, and (E) short-range IUC order. In B, the high-symmetry
phase produces peaks at integer �q. In C, displacements of the orange atoms by ±δ double the size of the unit cell producing additional superlattice peaks at
half-integer �q as well as changes in the other peak intensities. See Fig. 2 for X-TEC–aided detection of CDW order in (CaxSr1−x)3Rh4Sn13. In D, IUC distortions of
the orange atoms by −δ change the peak intensities without producing additional superlattice peaks. In E, every orange atom is displaced by ±δ, with a 70%
probability of nearest neighbors having the same displacement. This finite correlation length has a small impact on the total scattering (black) but produces
broad diffuse scattering (blue, ×70,000 scale compared to total scattering). See Fig. 3 for the detection of IUC distortions and their diffuse scattering in Cd2Re2O7
with X-TEC. (F) Bond patterns on the pyrochlore lattice associated with an Eu distortion as inferred in Cd2Re2O7. The two space groups refer to the two different
components of Eu with each bond color denoting a different bond length. The amount of distortion of each bond from the average bond (gray) is indicated by
++, −, etc., along with the respective bond color. A Mexican hat potential energy E governs the fluctuations between the two Eu components in the broken
symmetry phase. See Fig. 4 for the X-TEC–aided resolution of the two Eu components and their fluctuations in Cd2Re2O7.

unless there are changes in extinction rules. However, the ubiquity
of electronic nematic order (6, 7) has turned the study of electron-
ically driven IUC order into an increasingly important scientific
objective. Electronically driven IUC order and related hidden or-
der phases typically have profound consequences for the electronic
structure as revealed by various probes, yet are often accompanied
by subtle structural distortions. Examples range from 3d oxides
like cuprates, to 4d and 5d oxides like ruthenates and iridates,
to 4f and 5f heavy fermion materials like URu2Si2. These small
distortions can challenge conventional crystallographic struc-
tural refinement that only tracks Bragg peaks and deduce the

structural symmetry by fitting all the atomic positions in a forward
model.

As an example of proposed CDW order, the quasi-skutterudite
family, (CaxSr1−x )3X4Sn13, where X is a transition metal ion
like Co, Rh, or Ir, exhibits marginal Fermi liquid behavior. Much
like in cuprates and heavy fermion materials such as YbRh2Si2,
this order can be suppressed to very low temperatures, leading
to a linear in temperature resistivity over a large range in tem-
perature. As an example of IUC distortion, in the pyrochlore,
Cd2Re2O7, a very subtle structural distortion is associated with
large changes in the specific heat and susceptibility. This led
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Fu (8) to propose the presence of spin nematic order, and some
evidence for this was provided by subsequent nonlinear optics
measurements (9). Moreover, the inversion breaking structural
order itself is novel, whose candidate description by an Eu tensor
could support pseudo-Goldstone fluctuations between its two
components, I 4122 and I 4̄m2 (Fig. 1F ) (10). Interestingly, both
of these examples exhibit superconductivity at low temperatures,
leading to the question of how superconductivity is related to these
orders.

To extract atomic-scale information encoded in massive XRD
data volumes, much needed is a versatile, interpretable, and
scalable approach that can reveal order parameters and fluctua-
tions associated with CDW orders and IUC orders: the vision
behind XRD temperature clustering (X-TEC). For the analysis
of complex experimental data, dimension reduction and machine
learning techniques are increasingly employed (11–18), with an
emphasis on supervised learning using hypothesis-driven syn-
thetic data (11–13). To date, most applications of unsupervised
techniques to materials data have been limited to exploration of
compositional phase diagrams of alloys (19–21). However, an
interpretable and unsupervised approach aiming at discovering
interaction-driven emergent phenomena in quantum materials
such as order parameters and fluctuations can greatly benefit
scientific progress.

For versatility, we opted for an unsupervised approach guided
by a fundamental principle of statistical mechanics: the balance
between the energy (E) and entropy (S) resting on the temperature
(T ). A change in the collective state of a system occurs in the
direction of minimizing the Helmholtz free energy F (22):

F = E − TS . [1]

When the temperature T is lowered below a certain threshold,
the entropy S gives way to the ordered state dominated by the
system Hamiltonian. Hence, the temperature (T ) evolution of
the XRD intensity for reciprocal space point �q , I�q(T ), must be
qualitatively different if the given reciprocal space point �q reflects
order parameters or their fluctuations. Tracking the temperature
evolution of thousands of BZs to identify systematic trends and
correlations in any comprehensive manner is impossible to achieve
manually without selection bias. X-TEC embodies the principle
of Eq. 1 by clustering the temperature series associated with a
given �q , I�q(T ), according to qualitative features in the temper-
ature dependence, as in high-dimensional clustering approaches
that learn qualitative differences in the voice trains for speaker
verification (23). X-TEC achieves interpretability and scalability
by using a simple Gaussian mixture model (GMM) (24) at its core
and incorporates correlation among nearby �q points and within
and across BZs using label smoothing similar to how signals from
different cameras can be correlated for computer vision (25).

Implementation of X-TEC

In Fig. 2A, we provide a flowchart giving a bird’s-eye view of
the X-TEC execution. We briefly describe the steps below and
provide further details in SI Appendix, section 1. Comprehensive
XRD temperature series data are obtained for each point {�q =
(qx , qy , qz )} spanning∼ 109 grid points in a 3D reciprocal space,
at 10 to 30 temperatures (step A). The raw data are first passed
through a thresholding algorithm that identifies and removes
the overwhelming low-intensity background (step B). Next, the
intensities, {I�qi (Tj ), j = 1, · · · , dT} at points {�qi} that passed
the thresholding, undergo a rescaling to reduce the dynamic range
of the intensity scale (step C). At this point, the user has to
decide between two modes of rescaling depending on the nature

of the data of interest. To focus on intensities that show a large
variation in temperature, the user selects a mean based rescaling:
Ĩ�qi (Tj ) = (I�qi (Tj )− μ�qi )/μ�qi , where μ�qi is the mean value of
the temperature trajectory at �qi . On the other hand, if the focus
is on subtle changes in the intensity–temperature trajectories
(low-variance trajectories), one selects a variance-based rescaling
(z-scoring) given by Ĩ�qi (Tj ) = (I�qi (Tj )− μ�qi )/σ�qi , where σ�qi
is the SD of the temperature trajectory at �qi . The preprocessed
data {Ĩ�qi} ≡ {Ĩ�qi (Tj ); j = 1, · · · , dT} are now ready for the
X-TEC clustering. At this point, the user sets the number of
clusters K, starting with an initial guess (step D).

There are two modes for X-TEC clustering: X-TEC smoothed
(X-TEC-s) and X-TEC detailed (X-TEC-d). X-TEC-d assigns
cluster labels independently to the trajectories at �qi , while
X-TEC-s incorporates label smoothing among neighboring qi
points within and across BZs. X-TEC-s is best suited for detecting
order parameters reflected in the peak centers, while X-TEC-d can
probe finer details in the diffuse scattering and reveal the nature
of fluctuations in high-resolution data. The user makes a decision
(step E) to choose X-TEC-s for order parameters or X-TEC-d for
their fluctuations. Using X-TEC-s and X-TEC-d in tandem can
reveal systematic correlations between order parameters captured
by peak centers and fluctuations captured by diffuse scattering in
an unprecedented manner. For X-TEC-s (step E.2), the user can
choose the label smoothing approach to enforce local correlations
in the cluster label assignments of neighboring �qi . If the size of
the dataset is large, the user can opt for a faster and rudimentary
version of label smoothing enforced through peak averaging,
where intensities of connected pixels in reciprocal space are
replaced by their pixel-averaged intensity.

Following the X-TEC clustering, the results are visualized
and interpreted (step F). The user observes the K distinct tem-
perature trajectories of the clustered data as well as the cluster
labels assigned to the �qi points in reciprocal space. The visual
interpretation aids the user to arrive at the optimal number of
clusters K such that increasing K does not reveal any more
distinct trajectories (step G). The clustered trajectories and their
labels in �q space are now ready for interpretation to aid possible
new discoveries such as the identification of hidden orders and
selection rules.

At the heart of X-TEC-d is the standard GMM applied to
the temperature series, {Ĩ�qi}, treated as a point in the dT -
dimensional space. With the number of clusters K, X-TEC-d
attempts to model each point in the dataset {Ĩ�qi} to be
independently and identically drawn from a weighted sum of K
distinct multivariate normal distributions. The hyperparameters
to be learned are the mixing weights πk , dT -dimensional means
mk , and dT × dT -dimensional covariances sk , (π,m, s)≡
{(πk ,mk , sk ); k = 1, · · · ,K}. The associated model log-
likelihood is

log p
(
{Ĩ�qi}|π,m, s

)
=
∑
�qi

log

[
K∑

k=1

πkN
(
Ĩ�qi |mk , sk

)]
. [2]

Here N
(
Ĩ�qi |mk , sk

)
is the probability density for the kth mul-

tivariate Gaussian with mean mk and covariance sk evaluated at
Ĩ�qi , i.e.,

N
(
Ĩ�qi |mk , sk

)

≡ 1

(2π)dT/2

1√
det sk

e
− 1

2

[
(Ĩ�qi−mk )

†s−1
k (Ĩ�qi−mk )

]
.

[3]
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Fig. 2. Illustration and benchmarking of X-TEC. (A) A flowchart describing the execution of X-TEC. The steps are described in the Implementation of X-TEC section
and further detailed in SI Appendix, section 1. (B) Raw XRD image showing a slice of the reciprocal space in the (h, k, l = 0) plane, at T = 30 K (Left) and T = 220 K
(Right). The CDW superlattice peaks are visible at T = 30 K and are absent at T = 220 K. (C and D) X-TECs results of the Sr3Rh4Sn13 XRD data with �qi spanning
the reciprocal space (h, k, l = 0) where h, k ∈ [−15, 15] reciprocal lattice units (r.l.u.). The clustering assignments are color-coded as blue, brown, and gray. In
C, the lines represent cluster means, and the shaded region shows 1 SD, interpolated between 24 temperature points of measurement. D shows the pixels
at �qi in the (h, k, 0) plane that passed the thresholding (SI Appendix, section 1B), colored according to their cluster assignments. X-TEC correctly identifies the
blue clusters with the CDW super lattice peaks, brown clusters with Bragg peaks, and gray clusters with diffuse scattering. The blue cluster mean (solid line)
in C represents the rescaled intensity trajectories of all CDW peaks in the data. (E) An order parameter like quantity Δ(T) is estimated from the CDW (blue)
cluster and is shown for four samples at different values of Ca doping x. The Δ(T) is estimated from the cluster means by subtracting the minimum from each
cluster mean and appropriate normalization. (F) Δ(T) extracted from a manually selected CDW peak at (h, k, l) = (13.5, 4.5, 0) for the four Ca doping x shows a
qualitatively similar trajectory to that of X-TEC in E. (G) The critical temperatures estimated from the X-TEC extracted Δ(T) (yellow filled circles) overlaid onto the
known phase diagram from ref. 26 based on phase boundaries from thermodynamic measurements and transport.

The probability, wk
i , that the temperature series labeled by �qi

belongs to the kth cluster is

wk
i =

πkN
(
Ĩ�qi |mk , sk

)
∑
k

πkN
(
Ĩ�qi |mk , sk

) , [4]

according to Bayes’ theorem. X-TEC learns the hyperparame-
ters (π,m, s) using a stepwise expectation maximization (EM)
algorithm (27) (SI Appendix, section 1H ). Much like mean-field

theory familiar to physicists, the EM algorithm iteratively searches
for the saddle point of the lower bound of the log-likelihood

�̃
(
{wk

i ,πk ,mk , sk}
)
=
∑
i,k

wk
i log

[
πkN

(
Ĩ�qi |mk , sk

)
wk
i

]

+ λ(1−
∑
k

πk ),

[5]

where λ is a Lagrange multiplier. The cluster assignment of a given
reciprocal space point �qi is then determined by the converged
value of the clustering expectation argmaxk{wk

i }.
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For X-TEC-s with label smoothing, the algorithm first con-
structs a nearest neighbor graph in momentum space, connecting
reciprocal space points that share similar momenta. For each
point, the neighbors are weighted by their distance in momentum
space and the weights normalized. Label smoothing averages the
cluster assignments of a point with its (weighted) neighbors. We
incorporate this smoothing step between the E and M step of the
GMM.

CDW Order and X-TEC Benchmarking

In order to demonstrate the power of X-TEC in action and
benchmark its results, we first analyze a collection of data in the
vicinity of a putative CDW quantum critical point. Sr3Rh4Sn13

is a quasi-skutterudite compound that has a CDW transition at
∼138 K and a superconducting transition at 4.7 K (26). Doping
with calcium applies chemical pressure that suppresses the CDW
transition, and electrical resistivity and heat capacity experiments
on (CaxSr1−x )3Rh4Sn13 provided evidence of a quantum critical
point at a composition of x = 0.9 (Fig. 2G), corresponding to
a peak in the superconducting dome (26), reminiscent of the
cuprate phase diagram (28). This interpretation was supported
both by inelastic X-ray measurements of soft phonon modes
(29) and, more recently, X-ray measurements of the CDW or-
der parameter in the related family, (CaxSr1−x )3Ir4Sn13 (30).
We have been developing highly efficient methods of mapping
out such phase diagrams using high-energy X-rays on Sector
6-ID-D at the Advanced Photon Source using a monochromatic
X-ray energy of 87 keV (31). Images are collected on a fast
area detector (Pilatus 2M CdTe) at a frame rate of 10 Hz while
the sample is continuously rotated through 360◦ at a speed of
1◦/s (Fig. 1A). These rotation scans are repeated twice to fill
in gaps between the detector chips, so a single measurement
represents an uncompressed data volume of over 100 GB collected
in under 20 min. This allows comprehensive measurements of the
temperature dependence of a material in 12 h or less. Using a
cryostream, we are able to vary the temperature from 30 to 300 K.
The rotation scans sweep through a large volume of reciprocal
space, containing over 10,000 BZs (Fig. 1A); when the data are
transformed into reciprocal space coordinates, the 3D arrays are
typically reduced in size by an order of magnitude. More details
of both the measurement and data reduction workflow are given
in ref. 31; see also SI Appendix, section 1A and ref. 32. Fig. 2B
shows the raw XRD images in the (h, k , l = 0) plane, at T = 30
and T = 220 K. At T = 30 K, the CDW superlattice peaks are
clearly seen at qCDW = (0.5, 0.5, 0) and symmetry equivalents
with respect to the cubic Bragg peaks, which are absent at the
higher temperature.

In (CaxSr1−x )3Rh4Sn13, we applied X-TEC to the XRD
data on four compounds, (x = 0, 0.1, 0.6, 0.65), to map out the
phase diagram as a function of both temperature and doping
automatically. In Fig. 2C, we present cluster means and variances
of the three-cluster (K = 3) results for undoped Sr3Rh4Sn13.
The optimal number of clusters is obtained as the minimum
number needed to separate the distinct temperature trajectories
(SI Appendix, section 1F ). The temperature dependence of the
learned means of the blue, brown, and gray clusters makes it
evident that the blue cluster represents the order parameter and the
temperature at which it falls to 0 is the critical temperature, Tc ∼
135 K. The clustering results can be interpreted by locating the
cluster assignments in reciprocal space, as shown in Fig. 2D. The
location of the blue pixels (which correspond to the blue cluster)
identifies the ordering wave vector qCDW as expected from the
raw images in Fig. 2B. The diffuse scattering is captured by the

gray clusters, while the Bragg peaks are captured by the brown
clusters. The three clusters are first identified from an X-TEC-d
clustering (see SI Appendix, section 1E , for the X-TEC-d results),
and the label smoothing is applied to the blue and brown clusters
(peak centers) after excluding the gray diffuse scattering. Label
smoothing keeps the clustering output to be smoothly connected
in the vicinity of each peak, simplifying interpretation. Plotting
the CDW order parameters extracted automatically by X-TEC at
each doping, we can track the evolution of the critical temperature
Tc as a function of chemical pressure (Fig. 2G), allowing us to
map out the quantum phase diagram associated with the CDW
ordering in (CaxSr1−x )3Rh4Sn13, in a similar way to ref. 30,
without any prior knowledge of the wave vectors or transition
temperatures.

A comparison of the X-TEC extracted CDW order parameter
Δ(T ) (Fig. 2E) with that from a manually selected superlattice
peak (Fig. 2F ) shows excellent agreement. In the past, we would
have analyzed such data by manually identifying a few superlattice
peaks, with the assumption that they are representative of the
whole, and fitting their temperature dependence. This may be
justified in many cases, but in doing so, we would be ignoring over
99% of the data, limiting the statistical precision available from
such comprehensive datasets and potentially missing secondary
components of the order parameter. X-TEC eliminates the danger
of selection bias in such analyses. The large data volume also allows
us to utilize the 3D-Δ PDF method (31), in order to determine
the nature of the atomic distortions both below and above Tc ,
which will be discussed in a future publication.

IUC Order, Fluctuations, and Selection Rules

We now employ X-TEC-s and X-TEC-d in tandem to study
hidden IUC order and order parameter fluctuations in the
pyrochlore metal Cd2Re2O7 (33–35) (Fig. 3A), whose low-
temperature phases have recently attracted much interest and
controversies (9, 36–41).

The Cd2Re2O7 goes through a second-order transition at
Ts1 = 200 K from the cubic pyrochlore Fd 3̄m structure (phase
I) to a structure that breaks inversion symmetry (phase II), with
a large thermodynamic signature in the specific heat (Fig. 3B).
Most studies conclude that the space group of phase II is the
I 4̄m2 component of Eu symmetry (37). At a lower temperature,
a first-order transition at Ts2 = 113 K (phase III) is observed and
is proposed to arise from the other component of Eu , which is
the I 4122 space group (37). An additional transition at 80 K
is posited following recent Raman data showing line splittings
consistent with a lowering to orthorhombic symmetry (speculated
to be an F222 space group) (42).

The results for phase II are consistent with the picture where
I 4̄m2 and I 4122 are the two components of the Eu order
parameter, a rank-2 tensor. The degeneracy between these two
states is lifted at sixth order in Landau theory (43), resulting
in a pseudo-Goldstone mode encoding fluctuations between the
two phases (44, 45) (Fig. 1F ). Raman scattering (10) shows
a strong central peak that appears to be the Goldstone mode,
along with a higher-frequency mode which appears to be the
Higgs mode [although this has been recently questioned based
on pump–probe measurements (41)]. The uniqueness of this
situation is that although pseudo-Goldstone modes have been
seen in other materials, notably ferroelectrics, they typically exist
at much higher frequencies (45). The fact that this is not the case
for Cd2Re2O7 indicates that the anisotropy in the Landau free
energy is anomalously small. Confirmation of such low-frequency
fluctuations has so far remained beyond the reach of XRD.
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Fig. 3. X-TEC analysis of Cd2Re2O7 XRD data. (A) Crystal structure of Cd2Re2O7 showing only Cd and Re, in the high-temperature cubic phase. (B) Temperature
dependence of the specific heat of Cd2Re2O7, showing the second-order phase transition at Ts1 = 200 K and the first-order phase transition at Ts2 = 113 K
(SI Appendix, section 3A). Three temperature ranges are marked as phase I (T > Ts1 = 200 K), phase II (Ts2 = 113 K < T < Ts1), and phase III (T < Ts2). (C) X-TEC
results on the cubic forbidden Bragg peaks from high-resolution XRD data, showing temperature dependence of the mean intensity of each cluster (the cluster
assignments are obtained from 30 K ≤ T ≤ 150 K data; see SI Appendix, section 3C, for details). The lines are average intensity trajectories of their respective
cluster assignments from all cubic forbidden Bragg peaks in the data. The solid lines show three-cluster (K = 3) X-TEC-d trajectories, color coded as black, red,
and blue. The dashed line shows two-cluster (K = 2) X-TEC-s (peak averaged) trajectories, colored yellow and green. The temperatures of the two structural
phase transitions are shown as dotted lines. (D) The X-TEC-d cluster color assignments (black, red, and blue) of the thresholded pixels, as well as X-TEC-s cluster
assignments of the Bragg peaks (marked as yellow and green squares centering the Bragg peaks), in a section of the h = 0 plane, where k and l are in r.l.u. The
color coding of the clusters is the same as in C. (E and F) The regions in the vicinity of two Bragg peaks at 046 (Left) and 060 (Right) are magnified to show that the
peak centers in both belong to the black cluster, while halos form two distinct clusters (red and blue, respectively) separated from their peak centers. X-TEC-d
and X-TEC-s together show that red (blue) diffuse halos and the yellow (green) Bragg peaks lock into a strict one-to-one correspondence with both exhibiting a
rigid selection rule. The raw intensity plotted for 046 (Left) and 060 (Right) along a line cut (the gray dashed line shown in the respective zoom-ins) confirm the
temperature dependence of the red and blue halo intensities represented by the cluster means in C. Specifically, the 046 peak has enhanced diffuse scattering
above Ts2 ≈ 113 K, consistent with the temperature dependence of the red cluster mean. The 060 peak shows an anomaly near Ts2 and a suppressed diffuse
scattering above, consistent with the temperature dependence of the blue cluster mean.

However, the Eu structural order of phase II is now questioned
after the discovery of a purported T2u electronic order from
second harmonic generation (SHG) (9). While the SHG data also
show the Eu structural order, they reveal the surprising fact that
the Eu order does not have the expected temperature dependence
of a primary order parameter, unlike the T2u signal, which does
(9, 38–40). The proposed I 4122 space group of phase III is
also controversial in that earlier SHG data (36) did not show

the expected rotation of the signal from I 4̄m2 to I 4122 that
should accompany such a phase transition. A combination of
small atomic displacements with crystallographic twinning (46)
has made it challenging to determine the true structure of these
low-symmetry states using traditional crystallographic approaches
(47, 48). The relationship between theEu structural order and the
proposed T2u hidden order indicated by the SHG data has also
remained elusive to XRD probes.

6 of 10 https://doi.org/10.1073/pnas.2109665119 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 7
4.

69
.4

8.
18

5 
on

 F
eb

ru
ar

y 
23

, 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
74

.6
9.

48
.1

85
.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109665119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109665119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109665119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109665119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109665119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109665119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109665119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109665119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109665119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109665119/-/DCSupplemental
https://doi.org/10.1073/pnas.2109665119


We performed X-ray scattering measurements over a wide
temperature range (30 K < T < 300 K) on a single crystal of
Cd2Re2O7, which our measurements show is untwinned, at least
in phase II. This may be due to the small volume (400 × 200 ×
50 μm3) required for our synchrotron measurements. We first
performed scans using an X-ray energy of 87 keV, which contained
scattering spanning nearly 15,000 BZs, in order to search for
previously undetected peaks and determine the systematic (HKL)
dependence of the Bragg peak intensities at each temperature
(SI Appendix, section 3B). To better understand the order param-
eter fluctuations, we then reduced the energy to 60 keV to improve
the �Q resolution and increased the number of temperatures, par-
ticularly near the phase transitions. We comprehensively analyzed
the resulting datasets (32) with a combined volume of nearly 8 TB
using X-TEC-s and X-TEC-d in a time frame of a few minutes (see
SI Appendix, section 3C , for details on preprocessing and CPU
times for X-TEC analysis).

We illustrate the sharp characteristics of the order parameter
and its fluctuations by focusing on the cubic-forbidden peaks
in Figs. 3 and 4 (see SI Appendix, section 3B, for the clustering
results that selects cubic-forbidden peaks as the order parameter
of phase II). Fig. 3C shows the K = 2 clustering means of
X-TEC-s and K = 3 clustering means of X-TEC-d on all the
cubic-forbidden peaks in the data over the temperature range of
[30 K, 150 K].* Both outcomes presented big surprises. First,
the X-TEC-s outcome separated the cubic forbidden peaks that
behave like the order parameter of phase II into two subgroups:
one that quickly flattens in phase II to abruptly rise in phase III
(yellow) and the other that continues to rise in phase II to abruptly
drop in phase III (green). Second, X-TEC-d clustering separates
out the diffuse regions associated with each of the subgroups of
cubic-forbidden peaks to define their own clusters with tempera-
ture dependencies that are qualitatively different (red and blue in
Fig. 3C ) and distinct from the temperature dependencies of the
peak centers.

The reciprocal space distribution of the clusters reveals precise
selection rules and tight correlation between the order parameter
tracked in X-TEC-s and the fluctuations revealed in X-TEC-d.
Due to the orders of magnitude differences in intensity scales,
X-TEC-s is dominated by the peak centers. X-TEC-d separated
out the peak centers from the halos of diffuse regions. Combining
the two results, we present the X-TEC-s outcome through the
color of the peak centers detected in X-TEC-d. The (HKL) as-
signments of the two subgroups in X-TEC-s, and their associated
diffuse halos in X-TEC-d (Fig. 3D), reveal strict selection rules.
Yellow peaks (with red halos) are of the form (4n1, 4n2, 4n3 + 2),
while green peaks (with blue halos) have (4n1 + 2, 4n2, 4n3)
or (4n1, 4n2 + 2, 4n3), in the cubic indices of phase I. The
mean intensity trajectories of red and blue clusters in Fig. 3C
indicate that the red halo sustains intensity throughout phase II
to only dive down at Ts2 = 113 K while the blue halo picks up
intensity at around Ts2 to abruptly die out at around 90 K. The
temperature evolution of representative line cuts shown in Fig. 3
E and F confirm these observations in the raw data.

Discussion

The systematics in the temperature dependencies of different
cubic-forbidden peaks and their diffuse halos revealed using the
two modes of X-TEC on the entire 8 TB of data present an

*For each X-TEC clustering, we increase K until there is no gain in information.

unprecedented opportunity to extract atomic-scale clues regarding
the hidden order.

First, we can extract an order parameter critical exponent
associated with the structural transition that is reflecting the entire
dataset from the X-TEC-s mean trajectories. Fig. 4A shows the
temperature dependence of the two peak averaged clusters (yellow
and green) of cubic-forbidden peaks and their fits, in which
we treat the displacements as order parameters with a common
exponent β (SI Appendix, section 3D). Both clusters fit to the
common exponent of β ≈ 0.25 close to Ts1. This is close to the
value expected for a 2D-XY system (49). This is a surprise in that
the Eu signal observed by SHG scales linearly in Ts1 − T , which
is 4β instead of the expected 2β indicated by theory (38), whereas
it is the T2u signal that scales like 2β.

Second, we can convert the selection rule revealed by X-TEC
into atomic distortions. The selection rule shows that the two
clusters correspond to two distinct classes of structure factor,
whose values only depend on the distortions of the Cd and Re
sublattices: the yellow cluster consists of peaks that are dominated
by z axis displacements (δzCd, δzRe), and those in the green cluster
are dominated by in-plane displacements, along x or y depending
on the Wyckoff position, (δxCd, δxRe) (SI Appendix, section 3D)
(Fig. 4B). The flat temperature dependence of the yellow cluster
below 180 K results from out-of-phase distortions of the Cd
and Re sublattices. The refined values of (δzCd and δzRe) are
approximately equal and opposite (Fig. 4B). This is another
surprising result. Previous refinements (50) indicate that the Re
displacements are small, and this is consistent with a density
functional theory study (42). Small Re displacements are expected
if the 5d electrons in Re play a passive role in the structural
transition as the Re are in an almost ideally bonded octahedral
environment, compared to Cd which is underbonded because of
its two short Cd–O and six long Cd–O bonds. Therefore, a large
displacement of Re implies that this is a consequence of the 5d2

configuration of Re being unstable to spin nematic order that
should lead to valence bond ordering (different Re–Re bonds, as
illustrated in Fig. 1F ) in a given Re tetrahedron as proposed in
other pyrochlores (51).

Third, the connection between the two diffuse halo clusters (red
and blue) and the selection rule for the peak centers draws us to
the unusual and distinct temperature dependence of the diffuse
regions (Fig. 4C ). Strong critical scattering at Ts1 is clear in both
clusters, but the diffuse contribution is much stronger in the red
halo throughout phase II. The role between the two halos reverses
at Ts2. We attribute the fluctuations reflected in the sustained
intensity of the red halo to the Goldstone mode manifest through
strong z axis fluctuations.

To investigate this further, we turn to a description of the
various modes (see SI Appendix, section 3E , for more details of
the calculations). Above Ts1, one has a soft mode whose energy
should go to zero at Ts1. Below this, the soft mode splits into a
Higgs mode (fluctuations in the amplitude of the Eu order) and
a Goldstone mode (fluctuations in the phase, that is, fluctuations
between I 4̄m2 and I 4122). The latter would be at zero energy if
there were no anisotropy. In Landau theory, the first anisotropy
term appears at sixth order and the next one at eighth order in the
free energy. These two must be of opposite sign in order to have
a second transition at Ts2 (43). Their difference changes sign at
Ts2. The net result is that one has a Goldstone mode that starts
at zero energy at Ts1, rises slightly with lowering T, then dips
down again at Ts2, and then rises again below this. This can be
appreciated by the intensities associated with the various modes
(Fig. 4D), noting that the Goldstone mode’s coupling to the
X-rays is quadratic in the Eu order parameter (52) reflecting the
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Fig. 4. Order parameters and their fluctuations inferred from X-TEC analysis of cubic forbidden Bragg peaks. (A) The filled symbols are the two-cluster mean
intensity trajectories of peak averaged data (yellow and green trajectories from Fig. 3C), and solid lines are fits to these cluster means based on the model
assuming δx displacements (yellow) and δz displacements (green) of cations to vary as (T − Tc)

β , with a common order parameter exponent of β = 0.25 as
discussed in SI Appendix, section 3D. (B) Schematic diagram of the relative z axis displacements of cation sublattices for the Cd (orange) and Re (gray) with respect
to the cubic phase, inferred from the fit in A. The X-TEC–discovered selection rule and the fit establish the approximately equal magnitude but out-of-phase
displacements δzCd and δzRe. (C) The characteristic temperature dependences of the diffuse clusters are revealed by the z-scored intensities (for each intensity,
subtract their mean over T and then divide their SD in T ). The red and blue trajectories correspond to the respective cluster average of the z-scored intensities.
Lines are guides for the eyes. (D) The calculated Landau mode intensities as a function of T (SI Appendix, section 3E). Outside of the critical region near Ts1 (200 K),
the intensity is dominated by the Goldstone mode intensity. Note the resemblance of the calculated intensity to the diffuse trajectory in C. (E) Main panel shows
the temperature dependence of the diffuse scattering line-cut profiles near (046) Bragg peak, whose intensities are integrated within the manually selected
dashed lines in the (0kl) plane, shown in Inset. From a visual inspection of their temperature dependence, the shaded gray region is excluded from diffuse
scattering. Inset shows the intensity distribution in (0kl) plane at 100 K around the (046) Bragg peak. The red curves enclose the X-TEC-d determined region
for diffuse scattering. The red boundary cleverly avoids the diagonal Bragg streak which is not a part of the diffuse scattering (matching the shaded gray region
near the peak in the main panel). (F) The temperature trajectories of diffuse scattering intensities (dotted lines) and their average intensity (solid line) near the
(046) peak, from the manually selected regions of diffuse scattering in E. Vertical dashed lines mark Ts1 (200 K) and Ts2 (113 K). The trajectories show the same
qualitative features of the X-TEC-d red (square symbol) diffuse trajectory in C, with strong scattering at Ts1 and enhanced intensity above 113 K reflecting the
stronger Goldstone fluctuations from z axis displacements shown in B.

fact that it does not exist above Ts1 (the analog of the soft mode
belowTs1 is the Higgs mode). From the calculated intensities, one
sees that the Goldstone mode completely dominates outside of
the critical region near Ts1. The calculated behavior is remarkably
similar to the XRD data (Fig. 4C ), with a pronounced cusp atTs2.
This is strong indication that the diffuse scattering is indeed due
to structural fluctuations associated with the Goldstone mode.

We now benchmark X-TEC findings of order parameter
fluctuations and their coupling to the Bragg peaks against the

conventional approach. In the conventional manual approach,
one would be forced to select a few Bragg peaks and carefully
identify their diffuse region and hope for this hand-picked subset
of the data to be representative. The identification of diffuse
region in this approach requires tracking temperature dependence
of line cuts to separate the diffuse region from the Bragg peak,
background scattering, and other streaking artifacts. Fig. 4E, Inset,
shows that the diffuse region automatically identified by X-TEC is
faithful to the conventional definition of the diffuse region. Such a
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manual approach is laborious at best as apparent from Fig. 4 E and
F and can potentially miss the selection rules governing different
Bragg peaks and their diffuse scattering, which are apparent only
from an extensive analysis of both the diffuse scattering and
the Bragg peaks. We are further limiting the statistical precision
available from such comprehensive datasets.

Summary

In summary, we developed X-TEC, an unsupervised and inter-
pretable ML algorithm for voluminous XRD data that is guided
by the fundamental role temperature plays in emergent phenom-
ena. By analyzing the entire dataset over many BZs and making
use of temperature evolutions, X-TEC can pick up subtle features
representing both order parameters and fluctuations from higher-
intensity backgrounds. The two modes, X-TEC-s and X-TEC-
d, allow for discovery of systematics in order parameters and its
fluctuations despite orders of magnitude differences in intensities.
The algorithm is fast with O(10) minutes of run time for the
tasks presented here. Using X-TEC, we discovered that the su-
perconductor family (CaxSr1−x )3Rh4Sn13 exhibits CDW order,
and we mapped out its phase diagram. In Cd2Re2O7, we conclu-
sively identified the primary order parameter of the Ts1 = 200 K
transition. We further revealed the nature of the IUC atomic
distortions in a way that has eluded crystallographic analysis until
now. Finally, we revealed XRD evidence of a structural Goldstone
mode. The unprecedented degree of microscopic information we
have been able to unearth from the XRD is fitting for such
comprehensive data but would have been impossible by manual
inspection. Instead of determining critical exponents by fitting
a handful of peaks, X-TEC provides a means of including the
entire data volume by clustering peak intensities from thousands
of BZs to produce an analysis that is both robust and rapid in
future studies of such phase diagrams. Once X-TEC is integrated
to the experimental workflow at the beamline, it can guide the
measurements through a real-time analysis of the temperature
dependencies. An exciting prospect is to direct the X-TEC ex-
tracted data toward automated approaches in inverse scattering
problem to efficiently identify the underlying microscopic models
(53). Given the general structure of X-TEC, we anticipate it to be
broadly applicable to other fields beyond XRD.

Methods

Installing X-TEC, Codes, and Tutorials. The X-TEC codes can be installed
through the Python Package Index (PyPI) distribution or from the GitHub source

https://github.com/KimGroup/XTEC. The GitHub repository provides instructions
to install X-TEC as well as three Jupyter notebook tutorials on X-TEC-d, X-TEC-s with
label smoothing, and X-TEC-s with peak averaging.

The X-TEC Pipeline. Further details on the X-TEC machinery are provided
in SI Appendix, section 1, describing the X-ray data collection, the X-TEC pro-
cessing for the (CaxSr1−x)3Rh4Sn13 data, and the EM algorithm for GMM.
SI Appendix, section 2, provides another X-TEC benchmarking example with a
CDW material: TiSe2. The details about the Cd2Re2O7 analysis are provided in
SI Appendix, section 3.

Data Availability. Anonymized HDF5 files, X-TEC codes, and a Jupyter note-
book tutorial for X-TEC have been deposited in Analysis of X-rays with Mac-
hine Learning and Statistics (AXMAS) Data (DOI: 10.18126/iidy-30e7) (32). Any
data not deposited online will be shared with interested researchers upon
request.
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