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Abstract

Variational approaches are among the most powerful techniques to approximately solve
quantum many-body problems. These encompass both variational states based on ten-
sor or neural networks, and parameterized quantum circuits in variational quantum
eigensolvers. However, self-consistent evaluation of the quality of variational wavefunc-
tions is a notoriously hard task. Using a recently developed Hamiltonian reconstruc-
tion method, we propose a multi-faceted approach to evaluating the quality of neural-
network based wavefunctions. Specifically, we consider convolutional neural network
(CNN) and restricted Boltzmann machine (RBM) states trained on a square lattice spin-
1/2 J1−J2 Heisenberg model. We find that the reconstructed Hamiltonians are typically
less frustrated, and have easy-axis anisotropy near the high frustration point. In addi-
tion, the reconstructed Hamiltonians suppress quantum fluctuations in the large J2 limit.
Our results highlight the critical importance of the wavefunction’s symmetry. Moreover,
the multi-faceted insight from the Hamiltonian reconstruction reveals that a variational
wave function can fail to capture the true ground state through suppression of quantum
fluctuations.
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1 Introduction

The Hamiltonian is the defining object that governs the dynamics of a physical system. For
a quantum mechanical system, it defines the Schrödinger equation to be solved to obtain the
energy spectrum and the wavefunction. However, the approach of “exact diagonalization" is
constrained to small system sizes due to the exponential growth of the Hilbert space upon in-
creasing the system size. An alternative to exact diagonalization is the Quantum Monte Carlo
technique using a stochastic approach to model the probability distribution associated with
the thermal density matrix associated with a given Hamiltonian. These approaches, however,
suffer from the sign-problem [1], which limits their applicability to a restricted class of Hamil-
tonians, or to high temperature properties only. These challenges motivated variational wave-
function approaches to start from many-body wave functions that are parameterized within
a given functional form. In variational approaches, the Hamiltonian is referenced for opti-
mizing the wavefunction within the chosen functional form (see the blue arrow in Figure 1).
Since the resulting best wavefunction is constrained to lie within limited variational spaces
such as tensor network states [2], neural network states [3, 4], and parametrized quantum
circuits [5, 6] (see Figure 1), significant effort has been put into having sufficiently general
variational classes that can capture the actual ground state. However, assessing how close a
given variational parameterization is to the target ground state is, in general, a hard task.

At present, the standard metrics for assessing the quality of a wavefunction that cut across
different variational forms are the energy and the energy variance. Reliance on these measure-
ments, however, leaves the comparison between constructions a case-by-case trial exercise.
Much needed are alternative metrics to assess the quality of a given variational state. Interest-
ingly, recent works have proposed methods to reconstruct Hamiltonians from wavefunctions
using measurements of correlators [7–9,9–11] or single operator measurements [12,13] (see
the red arrow in Figure 1). These reconstruction processes have been tested on Hamiltonians
with known exact solutions, but their applicability to challenging open problems has yet to be
demonstrated.

In this Letter, we employ Hamiltonian reconstruction to investigate how frustration af-
fects the bias (Figure 1) between reconstructed and target Hamiltonians for neural-network
wavefunctions. We search for energy-minimizing wavefunctions in the space of convolutional
neural network (CNN) and restricted Boltzmann machine (RBM) architectures, with the spin-
1/2 J1-J2 Heisenberg model on a square lattice [4] as a target Hamiltonian. On this poster-
child frustrated spin model, deep neural network-based wavefunctions have obtained highly
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Figure 1: In a typical variational algorithm, a wavefunction is obtained through varia-
tional optimization within a given variational form such as CNN, RBM, tensor product
state (TPS), or a parametrized quantum circuit (QC). In this work, we study CNN and
RBM quantum states, marked with green stars. A blue arrow is shown to represent
variational optimization of the CNN construction as an example. The Hamiltonian
reconstruction works in the opposite direction to map a variational wavefunction to
a Hamiltonian H[{cn}] (red arrow). The bias between the original Hamiltonian and
the reconstructed Hamiltonian (purple arrow) provides insight into the nature of the
variational wavefunction.

accurate results for the J1-J2 model away from the high frustration point, showing the poten-
tial of these variational constructions. However, these same states showed limitations near
J2/J1 = 0.5, which is the point of high frustration [4]. To probe features of these wavefunc-
tions, we construct subspaces of Hamiltonians that accommodate different “deformations" of
the target Hamiltonian. For each subspace, we use the reconstruction method to retrieve the
Hamiltonian that best fits the trained wavefunction. We then discuss insights from the recon-
struction.

2 Hamiltonian reconstruction

For our goal of assessing variational wavefunctions, we chose to implement the approach
of Refs. [7, 8]. The procedure starts with the wavefunction of interest Ψ, which is energy-
optimized within a given variational form. We then define the Hamiltonian subspace to be
searched by a spanning set of operators O ≡ {Oi}. Any Hamiltonian that is an element of this
subspace, i.e., H ∈H, can be expressed in the form

H[{cn}] =

dim({On})
∑
n

cnOn , (1)

where cn’s are real parameters. The aim of reconstruction is to find the dim({On})-dimensional
vector {cn} such that the wavefunction of interest ∣Ψ⟩ is most nearly an eigenstate of the
corresponding Hamiltonian H[{cn}]. For this, we construct the quantum covariance matrix Q
associated with the wavefunction and the Hamiltonian subspace

Q[Ψ;H]nm =
1
2
(⟨OnOm⟩ + ⟨OmOn⟩) − ⟨On⟩⟨Om⟩ , (2)
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which is a dim({On})×dim({On}) positive semi-definite matrix where expectation values are
evaluated with respect to the wavefunction ∣Ψ⟩ (also see Figure 1). The number of expectation
values to be measured for Q is quadratic in the number of operators dim({On}), and therefore
quadratic in the system size1.

Hamiltonians that correspond to eigenvectors of Q[Ψ;H] with small eigenvalues would all
accept ∣Ψ⟩ as an approximate eigenstate. To see this, note that the variance of the Hamiltonian
H[{cn}] in the state ∣Ψ⟩ is given by

⟨(∆H[{cn}])
2
⟩ = ⟨H[{cn}]

2
⟩ − ⟨H[{cn}]⟩

2

=∑
nm

cncm (⟨OnOm⟩ − ⟨On⟩⟨Om⟩)

= c⃗ TQ[Ψ;H]c⃗ .

(3)

By diagonalizing Q[Ψ;H], the Hamiltonians H[{cn}] which have the lowest variance under
∣Ψ⟩ can be found, and the associated eigenvalues will be the variances of those Hamiltonians.
If ∣Ψ⟩ is an exact ground state of the original parent Hamiltonian H∗, and H∗ is within the
Hamiltonian search space H[O], then H∗ will lie in the nullspace of Q[Ψ;H].

The expectation values of many-body operators in Eq. (2) need to be evaluated by per-
forming high-dimensional integrals. Typically, these integrals can be approximated via Monte
Carlo (MC) sampling, but we found that the Hamiltonian reconstruction is sensitive to noise in
the correlation functions (see Appendix B.2). This sensitivity restricts the procedure to systems
where the correlation functions can be evaluated accurately. Indeed, previous applications of
Hamiltonian reconstruction [8,14] have only treated well-understood states in which correla-
tion functions can be evaluated exactly. In our case, this restricted our study to small system
sizes in which the correlation functions could be evaluated explicitly.

The antiferromagnetic J1-J2 model for spin 1/2 [15,16] is defined by the following Hamil-
tonian

HJ1J2 ≡ J1∑
⟨i j⟩

S⃗i ⋅ S⃗ j + J2 ∑
⟪i j⟫

S⃗i ⋅ S⃗ j , (4)

where ⟨i j⟩ and ⟪i j⟫ denote nearest and next-nearest neighbours respectively. We set J1 = 1
and consider antiferromagnetic interactions J2 ≥ 0 for the 4×4 periodic 2D square lattice. The
exact ground states of the Hamiltonian in the limits J2 ≪ J1 and J2 ≫ J1 are well understood,
since geometric frustration is absent in both limits: the ground state is a Néel antiferromagnet
for J2 ≪ J1 and a stripe antiferromagnet for J2 ≫ J1. However, the nature of the ground
state in the vicinity of the maximally frustrated point of J2/J1 = 0.5 is the subject of much
debate [17–26].

3 Hamiltonian space and wavefunction space

We consider three Hamiltonian subspaces that allow the reconstructed Hamiltonian to deviate
from the target Hamiltonian Eq. (4) in physically meaningful ways. We chose the three two-

1The number of local operators is linear in the system size, so the number of evaluated expectation values is
quadratic. Also, the computational cost remains the same when assuming translation invariance and summing
operators over the system, since dim({On}) is smaller, but the total number of terms in the product ⟨OnOm⟩ is
larger to compensate.
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operator parametrizations

H[α] = HJ1J2 + α
⎛

⎝
∑
⟨i, j⟩

Sz
i Sz

j +
J2

J1
∑
⟪i, j⟫

Sz
i Sz

j
⎞

⎠
,

H[δJ2] = HJ1J2 + δJ2 ∑
⟪i, j⟫

S⃗i ⋅ S⃗ j ,

H[J3] = HJ1J2 + J3 ∑
⟨i, j⟩3

S⃗i ⋅ S⃗ j ,

(5)

where α represents easy-axis anisotropy, and δJ2 and J3 modify the next-nearest neighbor and
longer range spin couplings. The coefficients of the original J1-J2 Hamiltonian are normalized
to 1. For each possible two-dimensional Hamiltonian space, we constructed the matrix Q
independently, allowing us to study effects of individual perturbations. However, we found
the results of higher-dimensional reconstructions allowing simultaneous perturbations of α
and δJ2 to be consistent with those of individual reconstructions; see Results below. We specify
technical details of the reconstruction quality in Appendix B.

Seeking further understanding of the challenges underlying the maximally frustrated point,
we focus on neural network based wavefunctions that outperformed (i.e., had lower energy
than) leading variational constructions, away from the high frustration point [4]. Neural net-
works can be universal approximators of complex functions [27, 28] and thus have the po-
tential to allow more efficient exploration of the wavefunction space compared to traditional
constructions [29]. The initial proposal of using restricted Boltzmann machines (RBM) to
represent many-body wavefunctions [3] generated much excitement and spurred extensive
investigations of RBM-based wavefunctions and their variants [26, 30–40]. More recently, Y.
Levine et al, [41] showed that the more expressive convolutional neural network (CNN) archi-
tecture can encode volume-law entangled states more efficiently. Indeed, CNN wavefunctions
improved on energy compared to state-of-the-art methods for the J1-J2 model, but only in the
parameter regime away from the high frustration point of J2/J1 = 0.5 [4].

In this work, we examine CNN and RBM many-body wavefunctions. Both architectures
preserve the translational invariance of the system, and the wavefunctions were further sym-
metrized to respect time reversal and point group symmetries, i.e., translation and rotation.
The wavefunctions were not symmetrized with respect to the SU(2) spin rotation symmetry
of the Hamiltonian. Our restriction to the total Sz = 0 sector entails a residual U(1) in-plane
rotation symmetry, permitting easy-axis anisotropy in our trained wavefunctions. We trained
wavefunctions for values of J2 ranging between 0 and 2, and their optimization was done us-
ing the NetKet package [42]. For implementation, training, and symmetrization details, see
Appendix A.

We now present metrics for verifying the reconstructed Hamiltonians, focusing on the RBM
wavefunctions for simplicity. By construction, the variance of the reconstructed Hamiltonian
over the trial wavefunction must be less than or equal to the variance of the target Hamiltonian.
In the highly frustrated region with significant reconstructed anisotropy α for the H[α,δJ2]

parameter space (Figure 2(a)), we illustrate that the variance is improved by roughly 10% (Fig-
ure 2(b)) for values of α of order 0.1. However, the energy variance should not be the only
metric for assessing a given wavefunction. We next compare the overlap of the trial wavefunc-
tions to the exact ground states of the original and reconstructed Hamiltonians, where overlap
is defined as

∣⟨Ψexact ∣Ψvar⟩∣
2 . (6)

In the frustrated regime, the overlap of the trial state with the ground state of the reconstructed
Hamiltonians is significantly higher than the overlap with that of the original Hamiltonian.
These metrics demonstrate that the reconstructed Hamiltonians are better descriptors for the
variational wavefunctions.
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Figure 2: a) Reconstructed anisotropy α for RBM wavefunctions in the parameter
region around the high frustration point. b) A comparison of the energy variance
σ2 = ⟨Ψvar ∣∆H2 ∣Ψvar⟩ of original target Hamiltonian (H0, blue line) to that of the
reconstructed Hamiltonian in the space H[δJ2] (HR, red line). c) Overlap of the
variational states with the exact ground states of the reconstructed Hamiltonians
(∣ΨR⟩), compared with the overlap of the variational states with the exact ground
states of the original Hamiltonians (∣Ψ0⟩).

4 Results

The conventional measure for a wavefunction’s quality is its variational energy. The energies
of our trained wavefunctions, compared to the exact ground state energies, are shown in Fig-
ure 3(a); the high frustration region around J2 = 0.5 is marked by a sharp peak in energy
difference. The energy difference also remains large in the J2 > 0.5 regime. The non-trivial
dependence of the energies on the J2/J1 ratio implies multiple tendencies at play, yet no infor-
mation is revealed about which factors affect the wavefunctions’ performance for specific re-
gions of parameter space. We therefore compare reconstruction results shown in Figure 3(b-d)
to the variational energy to gain much needed insight.

The comparison between the reconstructed anisotropy α and the energy difference re-
veals two important features. The anisotropy is sharply peaked near J2/J1 = 0.5, indicating
that anisotropy may hold the key to solving the high frustration point. This reinforces the
importance of enforcing spin rotation symmetry on the wavefunctions, as was suggested by
the performance of SU(2) symmetric RBM wavefunctions for the 1D Heisenberg model [43].
However, the errors in energy away from the vicinity of J2/J1 = 0.5 arise from different sources.
Also, despite significant energy differences between the RBM and CNN wavefunctions at the
peak, they are on par with each other in terms of anisotropy. While α is consistent with a
conventional measure of correlator anisotropy (see Appendix B.3), and is seemingly the most
important barrier against solving the high frustration point, the comparison reveals that other
factors might also be important.

The reconstructed interaction strengths δJ2 and J3 present complementary information.
They show deviations from the target Hamiltonian in two regions: near the high frustration
point J2/J1 = 0.5, and the large J2 region (see Figure 3(c-d)). In the vicinity of the high
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Figure 3: Various metrics for the CNN and RBM wavefunctions. The vertical broken
line marks J2/J1 = 0.5, which is the high frustration point. a) Ground state energy
difference (relative to exact ground state) per site. The shaded area is a guide to
the eye that outlines the range in which the energy difference is attributable to the
wavefunction anisotropy (see panel b). The unshaded energy difference in the large
J2 regime is associated with errors in the reconstructed spin couplings, panels c and
d. b) The reconstructed easy-axis anisotropy α/J1, which is peaked at the classical
high frustration point and tapers off in the small J2 and large J2 limits. c) The recon-
structed difference in the nearest-neighbor coupling, δJ2/J1. The reconstruction de-
viates from 0 around J2 = 0.5, as well as in the large J2 regime. d) The reconstructed
longer-range interaction parameter J3/J1. Together with δJ2/J1, these parameters
are associated with the energy differences for large J2.

frustration point, δJ2 tends to avoid J2/J1 = 0.5. This is shown by negative δJ2 below the
high frustration point. In the large J2 region, both δJ2 and J3 imply strengthening of the
stripe order and reduction of quantum fluctuations. Specifically, positive δJ2 and negative
J3 would both favor classical stripe order as we show explicitly in Appendix B.4. Successful
implementation of SU(2) symmetry would likely resolve these issues by reflecting the true
quantum fluctuations in the state, which could be the subject of future work.

Finally, we present results for a multi-dimensional reconstruction space in Figure 4 that
shows agreement with the two-dimensional reconstructions. This space is defined by

H[δJ2,α] = HJ1J2 + α
⎛

⎝
∑
⟨i, j⟩

Sz
i Sz

j +
J2

J1
∑
⟪i, j⟫

Sz
i Sz

j
⎞

⎠

+ δJ2 ∑
⟪i, j⟫

S⃗i ⋅ S⃗ j .
(7)

Here we are allowing δJ2 and α to vary simultaneously2. Due to the larger dimensionality, the
reconstructed Hamiltonians from this space will have lower variance than those obtained in
two-dimensional reconstructions, and are therefore better parent Hamiltonians. Still, we find

2Including a J3 term resulted in large reconstructed values of the parameters that are inconsistent with the
reconstructed Hamiltonian being near the target Hamiltonian. In other words, the reconstructed parameters could
not be interpreted as small perturbations. Hence, we did not include J3 in the reconstruction.
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that the results in Figure 4 are consistent with our results from individual two-dimensional
spaces.

Figure 4: Results of the multidimensional reconstruction defined by Equation 7,
with (a) reconstructed easy-axis anisotropy α/J1 and (b) difference in the nearest-
neighbor coupling, δJ2/J1. The trends in the parameters are consistent with our
one-dimensional reconstructions in Figure 3.

We have compiled the results for the two-dimensional reconstructions of δJ2 and J3 into
one plot, Figure 5, to present a birds-eye view of the results. This demonstrates the tendency
of the reconstructions to “push away from" the high frustration point, as well as suppress
quantum fluctuations via ferromagnetic J3 at large J2. In other words, the reconstructions
explaining the large energy differences for large J2 (Figure 3(a)) can be summarized as a
general tendency to suppress quantum fluctuations.

Figure 5: Schematic summary of δJ2 and J3 reconstructions of (a) RBM and (b)
CNN wavefunctions. The two reconstructions were performed separately, but here
we have combined the two sets of results into one figure. The markers represent
initial J2/J1 parameters for which we trained variational wavefunctions. The tips
of the arrows show the reconstructed parameters, i.e., (δJ2 + J2)/J1 and J3/J1, with
the deviations magnified by a factor of 5 for clarity. The annotations beside clipped
arrows describe the locations of the arrowheads (upper: J2/J1, lower: J3/J1).

5 Conclusions

We have proposed Hamiltonian reconstruction as a method to probe many-body variational
wavefunctions beyond their energies. Taking on the J1-J2 model and two neural network vari-
ational wavefunctions, RBM and CNN, we investigated the Hamiltonian spaces parametrized
by three channels of deviations from the target model: α, δJ2, and J3. Our results dissect the
J2/J1 parameter space into two regimes: the regime dominated by frustration (J2/J1 ≈ 0.5)
and the regime dominated by classical stripe order (J2/J1 > 0.5). We found the anisotropy α
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to be the dominant cause of error near the high-frustration point. Moreover, we found δJ2

and J3 reconstruction to both indicate suppression of quantum fluctuation through artificial
enhancement of classical order in the large J2 regime. Overall, the Hamiltonian reconstruc-
tion revealed multiple ways for a variational wavefunction to fail in capturing highly frustrated
ground states steeped in quantum fluctuations.

Looking ahead, we expect that Hamiltonian reconstruction can be an effective means to
refine variational constructions in both classical and quantum (such as variational quantum
eigensolver) platforms. With this method, specific areas of improvement for variational wave-
functions can be identified, informing future selection of variational constructions. Exploring
reconstructions from wavefunctions of larger systems might also reveal new insights. Further,
our results concerning the J1-J2 model may serve as guidelines for designing future neural
network wavefunctions of similar frustrated spin systems.
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Appendix A Neural network architectures and training

In this section, we will explain how we constructed and trained our variational ansatze. First,
we describe a basic neural network to motivate the more complex architectures that we used.
Then, we explicitly construct the convolutional neural network (CNN) and restricted Boltz-
mann machine (RBM) architectures that we used in our study. Finally, we explain how we
trained and symmetrized the wavefunctions.

One of the simplest examples of a neural network that can be used to parametrize a varia-
tional wavefunction is a single-layer perceptron. Although we did not use this architecture, it
serves as an illustrative example of neural network wavefunctions in general. The single-layer
perceptron consists of one transformation (known as a dense layer)

wi({vi′}) = g
⎛

⎝
∑

j
W i j v j + bi

⎞

⎠
, (8)

where W is a complex matrix of tunable parameters (“weights"), b⃗ is a complex vector of
tunable parameters (“biases"), and g represents a non-linear firing function. The wavefunction
corresponding to this single-layer network is

⟨{σi}∣Ψ⟩ =∑
i

wi({σi′}) . (9)

Generically, a multi-layer perceptron can be constructed by composing several of these “linear"
layers. Examples of common algorithms used to optimize these constructions are stochastic
gradient descent or Adam. In our training, we used stochastic gradient descent with a learning
rate of 0.001.

A.1 Convolutional neural network

In a convolutional layer, both the input and output have an additional “channel" dimension
on top of the spatial indices. Thus, each stage of intermediate values is a three-dimensional
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tensor, with one channel index and two spatial indices. The input values (spin configuration)
are interpreted as just consisting of a single channel. A convolutional layer from N channels
to M channels is given by

wm,(i, j)({vn,i′, j′}) = g
⎛

⎝

N

∑
n

L−1

∑
x=0

L−1

∑
y=0

Kn,(x ,y)vn,(i+x , j+y) + bm
⎞

⎠
, (10)

where the indices of the output vector w are m for the channel, and (i, j) for the spatial
position. The input vector v is similarly indexed. As with the dense layer, g(x) = ln cosh x is the
nonlinearity. The K parameters are called the “kernel” of the transformation, and there is one
kernel for each output channel. Each kernel is a L by L by N tensor of weights, which attempts
to capture some spatially local feature of the input values. L is the size of the kernel. The
construction of the convolutional layer is explicitly translationally invariant, which respects
the symmetry of the periodic J1-J2 model we are solving. The full convolutional network is
given by the composition of convolutional layers,

⟨σx ,y ∣Ψ⟩ = ∑
w,i, j

wm,(i, j) ({vn,(i′, j′)(...(σx ,y))}) . (11)

The outputs of the final layer were summed to obtain the output of the network. The network
we used consists of three convolutional layers, with channel counts 6, 4, 2, and kernel sizes 4,
4, 2, respectively, amounting to a total of 236 parameters.

A.2 Restricted Boltzmann machine

The single-layer restricted Boltzmann machine is characterized by the wavefunction

⟨{σi}∣Ψ⟩ = e∑i aiσi
M

∏
j

cosh(∑
i

Wi jσi + b j) , (12)

where M represents the number of hidden nodes. We imposed the spatial symmetries of trans-
lation and rotation on the parameters ai , Wi j , b j , reducing the total number of free parameters
by a factor of 16 (the size of the system). With a hidden node count of 160, this wavefunction
has a total of 171 parameters.

A.3 Sign rotation and symmetrization

Since the successful optimization of wavefunctions depends on a sign structure being pre-
imposed, the wavefunctions were rotated in-plane:

∣Ψ⟩→ (⊗
i∈A

e−iπσi
z/2) ∣Ψ⟩ , (13)

where A denotes a subset of lattice sites corresponding to either Néel or stripe order (Figure 6).
The Néel rotation was used for J2 ≤ 0.5 and the stripe rotation used otherwise.

Finally, to ensure that the final wavefunctions respect point group symmetries and time
reversal, we used the same procedure as in [4]. For an Abelian symmetry C , with an irrep Γ ,
the (unnormalized) symmetrization of the wavefunction ∣Ψ⟩ under Γ is given by

∣ΨS⟩ =

∣C ∣−1

∑
r=0
ωr cr

∣Ψ⟩ , (14)

where ω is the character of Γ and c is the generator of Γ . For the C4 rotation group, there
are four possible irreps with characters ±1 and ±i; for time reversal symmetry, there are two
irreps with characters ±1. We chose the combination of representations that yielded the lowest
ground state energy, and in all cases, the energy was lowest with the irrep with character 1 for
both C4 and T .
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(a) (b)

Figure 6: Diagrams of the classical spin structure, used for in-plane wavefunction
rotation, for a) Néel and b) stripe order.

A.4 Consistency of optimization methods

We trained both architectures using stochastic reconfiguration (SR). We evaluated the loss
function (i.e., the variational energy) of the wavefunctions using two different methods: ex-
actly evaluated energy, and also Monte Carlo sampled energy. We also performed training with
different sign rotations at the high frustration point. The reconstruction results with these dif-
ferent optimization schemes did not significantly vary, suggesting that the reconstructed biases
are unlikely to be optimization artifacts for the neural network architectures we considered.

Appendix B Hamiltonian reconstruction

B.1 Benchmarks

With the exact ground state of the Heisenberg model (J2 = 0) obtained via exact diagonaliza-
tion, Hamiltonian reconstruction indeed yields the correct Hamiltonian in all three subspaces
we considered down to machine precision, as shown in Table 1. Because the exact ground state
is used as the input state, reconstructions at any value of J2 will yield the original Hamiltonian.

Table 1: Benchmark reconstructions for wavefunctions obtained via exact diagonal-
ization for the J1-J2 model in the limit J2 = 0. In all cases, the reconstruction yields
the original J1-J2 Hamiltonian to within machine precision.

H[O] Reconstructed parameter
H[δJ2] δJ2 = −6.5 × 10−15

H[J3] J3 = −3.18 × 10−15

H[α] α = 3.73 × 10−15

B.2 Monte Carlo sampling

Various methods can be used when evaluating the elements of the quantum covariance matrix.
Here, we present results of Hamiltonian reconstruction using Monte Carlo sampling for corre-
lation functions. The model in question is the same 4×4 square lattice J1-J2 Heisenberg model,
with J2/J1 = 0.5, i.e., the classical high frustration point. We only present results here for the
reconstruction into the space H[δJ2] using the convolutional neural network wavefunction.

11

https://scipost.org
https://scipost.org/SciPostPhys.13.3.063


SciPost Phys. 13, 063 (2022)

(a) (b) (c)

Figure 7: Results of Hamiltonian reconstruction using Monte Carlo sampling for op-
erator correlation functions at J2/J1 = 0.5, into the space H[δJ2]. In all plots, the
horizontal red line represents the true value as obtained through direct integration of
the correlation functions. a) Correlation function ⟨HJ1J2∑⟨⟨i, j⟩⟩ S⃗i ⋅ S⃗ j⟩ as measured
by Monte Carlo sampling. The error bars represent the standard deviation of the
estimates for the correlation function. b) The reconstructed δJ2 parameter, which
converges slower than the previous correlation function. c) The variance of the vari-
ational wavefunction ∣Ψ⟩ under the reconstructed Hamiltonian. Here, the variance
does not converge within the number of Monte Carlo samples that we used.

The reconstructed δJ2 parameter showed a slower rate of convergence (Figure 7(b)) than
that of the shown correlation function (Figure 7(a)) with the number of Monte Carlo samples.
Further, the variance of the input wavefunction under the reconstructed wavefunction did
not converge for the range of Monte Carlo samples that we used (Figure 7(c)). Considering
these points, we chose for our study to restrict our analysis to correlation functions evaluated
explicitly. As a result, we limited ourselves to systems small enough that they were amenable
to exact diagonalization.

B.3 Comparison with anisotropy measure

In this section, we show that the α parameter is consistent with traditional measures of aniso-
tropy. First, we present a “correlator anisotropy" measure, defined as

f (n) = 1 −
∑⟨i j⟩n ⟨S

z
i Sz

j ⟩

∑⟨i j⟩n
1
2 ⟨S x

i S x
j + S y

i S y
j ⟩

, (15)

where ⟨i j⟩n represents a sum over nth nearest neighbors. As with the reconstructed α, f is
sharply peaked near the high frustration point. We present in Figure 8 the anisotropy f for
various neighbor distances at J2 = 0.55, which is where our reconstructed anisotropy α was
maximal. Although f and α did not completely agree at other J2 values, at J2 = 0.55 they
consistently suggest that the CNN wavefunctions’ anisotropy is somewhat less than that of
the RBM wavefunctions in similar fashions. We conclude that although they are not identical
measures of anisotropy, they are in agreement where the anisotropy is peaked.

B.4 Spin-spin correlation functions of reconstructed Hamiltonians

Here we show how the spin-spin correlation functions support our conclusion that the vari-
ational wavefunctions are systematically less frustrated than the exact ground states. The
spin-spin correlation function for wavevector q is defined as

S(q⃗) =
1
N
∑
i, j

eiq⃗⋅(r⃗i−r⃗ j)⟨S⃗i ⋅ S⃗ j⟩ , (16)
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(a)

Figure 8: Correlator anisotropy f (Equation 16) for RBM and CNN wavefunctions at
various neighbor distances, at the point J2 = 0.55 where our reconstructed anisotropy
was peaked. The RBM anisotropies being closer to 0 than the CNN points is consis-
tent with our reconstructed anisotropy α, where the CNN wavefunction performed
slightly better than the RBM.

(a) (b)

Figure 9: Spin-spin correlation functions of the exact ground state of J1-J2-J3 models.
a) S(π, 0) for J3 = 0, showing how the stripe order is enhanced with increasing J2.
b) Similarly, at J2/J1 = 1, S(π, 0) is enhanced with increasing ferromagnetic J3.

where N = 16 is the system size. The correlation function evaluated at q⃗ = (π,π) is a measure
for the strength of Néel order, while q⃗ = (π, 0) measures the strength of stripe order.

First, we show how the reconstructed δJ2, J3 parameters tend to push the states towards
less frustration, as shown by the spin-spin correlation functions S(q⃗) on the exact ground
states of J1-J2-J3 models. As can be seen from Figure 9, an increase in the J2 parameter in the
large J2 regime leads to enhanced stripe order (Figure 9(a)). Also, small negative values of J3

of similar magnitude to those reconstructed from our variational wavefunctions enhance the
stripe order for states in the same regime (Figure 9(b)). The stripe order parameter here is the
spin-spin correlation function with ordering vector (π, 0) or (0,π). These observations show
that a ferromagnetic J3 parameter, as well as positive δJ2, act to suppress quantum fluctuations
and enhance the ground state order of the model in the large J2 regime.

Next, we directly show that the variational states themselves are less frustrated than the
exact ground states. We compared S(π, 0) and S(π,π) between the CNN wavefunctions and
the exact ground states. Figure 10 shows that Néel correlations of the variational wavefunc-
tions are stronger when J2/J1 < 0.5, while stripe correlations are stronger when J2/J1 > 0.5.
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Figure 10: Difference between spin-spin correlation functions of CNN wavefunctions
and exact wavefunctions, as a function of J2/J1. The variational wavefunctions have
systematically stronger correlations, and are therefore less frustrated than the exact
solutions to the J1-J2 Hamiltonian.

Since strong correlation functions are associated with the J2 ≪ 1 and J2 ≫ 1 limits of the
model, these results show that the variational wavefunctions tend to be less frustrated than
their exact counterparts.
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