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Stabilizer codes allow for non-local encoding and processing of quantum information. Deforma-
tions of stabilizer surface codes introduce new and non-trivial geometry, in particular leading to
emergence of long sought after objects known as projective Ising non-Abelian anyons. Braiding
of such anyons is a key ingredient of topological quantum computation. We suggest a simple and
systematic approach to construct effective unitary protocols for braiding, manipulation and readout
of non-Abelian anyons and preparation of their entangled states. We generalize the surface code to
a more generic graph with vertices of degree 2, 3 and 4. Our approach is based on the mapping of
the stabilizer code defined on such a graph onto a model of Majorana fermions charged with respect
to two emergent gauge fields. One gauge field is akin to the physical magnetic field. The other one
is responsible for emergence of the non-Abelian anyonic statistics and has a purely geometric origin.
This field arises from assigning certain rules of orientation on the graph known as the Kasteleyn
orientation in the statistical theory of dimer coverings. Each 3-degree vertex on the graph carries
the flux of this “Kasteleyn” field and hosts a non-Abelian anyon. In our approach all the experi-
mentally relevant operators are unambiguously fixed by locality, unitarity and gauge invariance. We
illustrate the power of our method by making specific prescriptions for experiments verifying the
non-Abelian statistics.

Topological quantum computation1–3 can be realized
by a macroscopic quantum system with a few control-
lable collective degrees of freedom, called non-Abelian
anyons. Multiple non-Abelian anyons define a Hilbert
space, whose dimension is set by the number and type of
non-Abelian anyons. States in this Hilbert space encode
information non-locally. Hence they can serve as a quan-
tum memory protected from local perturbations. Quan-
tum gates that process this quantum information are to
be implemented through exchanges of pairs of anyons
that braid their space-time trajectories [see Fig. 1(a)].
A double braiding of identical non-Abelian anyons, an
exchange of the positions of a pair of anyons twice that
returns them to a locally indistinguishable state, may
nonetheless change physical observables of the system.
Since the braiding outcome of non-Abelian anyons are
insensitive to details of the anyon trajectories the im-
plementation of quantum gates by braiding non-Abelian
anyons are topologically protected.

A simple construction of non-Abelian anyons is based
on Majorana fermions αj , satisfying {αj , αk} = 2δjk.
Two Majorana operators define a parity for a complex
fermion with number n, iα2α1 = (−1)n. Separating
them in space is sufficient to realize quantum mem-
ory. We now describe how Ising non-Abelian4–6 braid-
ing arises for Majorana fermions bound to π flux, fol-
lowing an argument of Ivanov [7] for the case of p + ip

superconductors. Consider a system of four Majoranas,
αi, i = 1, .., 4, in Fig. 1(b-c). Bringing Majoranas to-
gether allows local measurement of the fermion parity
iα2α1. Double braiding of α3 and α2 [see Fig. 1(c)] is
equivalent to moving α2 around α3 [see Fig. 1(b)]. Since
Majorana α3 carries π flux and the Majorana α2 carries
charge, the latter picks up a phase α2 → −α2 similarly
to Aharonov-Bohm effect. Therefore the fermion parity
iα2α1 changes sign. Hence this double braiding results
in a rotation in the Hilbert space of anyons. In other
words, if iα2α1 is identified with a Pauli Z operator, the
braiding realizes an X logical gate. However, despite
decades of research4,7–14 non-Abelian anyons were never
unambiguously observed in experiment.

Recent development of gate based quantum
processors15 provides a new avenue for direct preparation
of a many-body quantum state without involving the
Hamiltonian and the difficulty in reaching its ground
state. We introduce the plaquette surface code (PSC)
as a stabilizer code16 defined on a specific type of
qubit graph [see Fig. 1(d)]. As in any stabilizer code,
the multi-qubit state |ψ〉 can be prepared to satisfy
commuting constraints,

B(P ) |ψ〉 = |ψ〉 , (1)

where B(P ) are operators called stabilizers for each pla-
quette P of the qubit graph [see Fig. 1(d)]. The states
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FIG. 1. (a) A schematic of the counter-clockwise swap R12 of two anyons 1 and 2. (b) Aharonov-Bohm effect of flux-bound
Majorana fermions. (c) Double braid of anyons 2 and 3. The wavy blue/red line show fermion parity operator defined
before/after the double braiding operation. (d) Plaquette surface code graph with qubits drawn as gray diamonds. D3Vs are
marked with red circles and a D2V is marked with a double-circle. (e) The decorated version of the PSC graph in Fig. 1
(d) with Kasteleyn orientation. Red dots correspond to Majorana fermions. Black links connect different qubits, and yellow
and purple links are intra qubit. (f) An example counter-clockwise canonical loop enclosing a single σ. (g) The two emergent
Z2 gauge symmetries in our model. Both local symmetry actions correspond to (contractible) loops in the dual graph shown

in dashed lines. (g.i) the Z(K)
2 symmetry transformation from one Kasteleyn orientation to another flips all arrows touching

a vertex. (g.ii) the Z(s)
2 symmetry transformation generated by Γq flips all L-type links touching the diamond q. (h) A

diagrammatic rule for assigning directed edges to Majorana bilinears on the `-edges.

|ψ〉 satisfying Eq. (1) form the code subspace. A state
|φ〉 with B(P ′) |φ〉 = − |φ〉 for a plaquette P ′ has a “sta-
bilizer flux” at P ′. In the rest of the paper, we focus
on states with few to no stabilizer fluxes. In the PSC,
the qubits form vertices of a surface graph, which only
contains degree 4 (D4Vs), degree 3 (D3Vs), and degree 2
(D2Vs) vertices [See Fig. 1(d)]. We will show D3V’s host
Ising anyons.

The standard surface codes (on manifolds with and
without boundary)1,17–19 are a special case of the PSC.
Kitaev [6] pointed out the topological degrees of freedom
at dislocations of the square lattice, and Bombin [20] and
Kitaev and Kong [21] pointed out that such dislocations
act as non-Abelian Ising anyons when they are intro-
duced to the toric code ground state1. This observation
motivated efforts to exploit the projective non-Abelian
nature22–24 of the so-called “twist defects” which were
found to carry Majoranas25,26. However, the microscopic
mechanism of flux attachment was not identified and a
protocol for moving the defects unitarily is absent. More-
over, manipulation of anyons can be realized by code de-
formation, i.e. reconfiguration of the stabilizers and the
movement of the edges of the graph. In absence of the
microscopic gauge theory, the design of optimal anyon
manipulation protocols is challenging. The operational

use of the graph in our approach is to define directed
paths. Those directed paths enable us to simply and sys-
tematically find all essential operators: the stabilizers,
unitary operators for dynamics, and Hermitian operators
for the logical qubit state measurements.

In this paper, we explicitly identify a gauge field re-
sponsible for the flux attachment on a graph, and demon-
strate its purely geometric origin. By formulating a new
graph gauge theory, we construct optimal unitary pro-
tocols for projective Ising anyon state preparation and
braiding, and predict specific experimental outcomes.
Note that the surface codes were recently implemented on
gate based NISQ superconducting processors15,27. Our
unitary protocols are advantageous for such platforms
since for them unitary operations are typically faster than
measurement based protocols by an order of magnitude.

As usual the gauge field is associated with a global
conserved quantity. On any graph G where all vertices
are of degree 2, 3, and 4, the number Nσ = ND3V +
2ND2V = 0 mod 2, where NDjV is the number of degree
j vertices, is conserved (mod 2)28. In fact, the value
of Nσ also has an important physical consequence and
associated conservation law: if there are NS stabilizer
plaquettes, Euler’s formula for the Euler characteristic
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χ(M) yields

NQ −NS =
Nσ
2
− χ(M), (2)

where we take our surface graph on some manifold with
boundary M . From this formula we find that the dimen-
sion of the code subspace in the most important case,
M topologically a disk, is max{2Nσ/2−1, 1}29. This is
the first hint that each σ corresponds to non-local de-
grees of freedom, as each is roughly “half” a qubit30.
Importantly, if the number of stabilizers is fixed, Nσ is
conserved.

To make the conservation of Nσ more manifest, we
decorate each qubit vertex with a diamond as shown in
Fig. 1(e). On the decorated graph G̃, Nσ is the number
of vertices with two incident edges, which we call σ or
“unpaired”. We construct a field which assigns flux to
these vertices in a particular way.

First, we need a local rule to lift directed paths γ
through the “physical” qubit graph G [Fig. 1(d)] to di-
rected paths γ̃ through G̃ [Fig. 1(e)]: every diamond is
traversed counter-clockwise [Fig. 1(f)]. Such paths γ̃ are
called canonical. Our field is the assignment of arrows
to each link, which follows the local rule that an odd
number are clockwise about each face (such an orienta-
tion is called Kasteleyn3132). We find [See Fig. 1(f) and
Appendix B]

(−1)Nσ(γ̃) = −
∏

`∈Edges(γ̃)

(−1)n
(K)
` (γ̃), (3)

for any counter-clockwise canonical loop γ̃, where

n
(K)
` (γ̃) is 1 (0) if the arrow on the edge ` is in the

opposite (same) direction as γ̃, and Nσ(γ̃) is the num-
ber of σ enclosed by the loop γ̃. The Kasteleyn orienta-
tion is not unique: for example, flipping all the arrows
touching a vertex is a local Z2 transformation (which we

call Z(K)
2 ) from one Kasteleyn orientation to another [See

Fig. 1(g.i)], while manifestly preserving Eq. (3) [See also
Appendix B]. In this sense, we have attached flux of a Z2

field to the σ.
We now place a Majorana at each vertex of the dec-

orated graph, Fig. 1(e). An orientation is natural in a
theory of Majorana fermions on a graph: after assign-
ing a direction, links ` with an arrow αj → αk define a
Hermitian fermion parity [See Fig. 1 (h)]

(−1)n` = iαkαj . (4)

The link operator is clearly not invariant under choice

of particular Kasteleyn structure. Since the Z(K)
2 trans-

formation at a vertex hosting Majorana αj flips all the
link operators involving αj , we can think of the Majo-

ranas as “charged” under the local Z(K)
2 symmetry. If

physical meaning could be given to canonical paths, the
Majoranas at σ vertices would be bound to π flux. We

describe a qubit model, the PSC, where there is both
an emergent Kasteleyn structure as well as a second Z2

field associated to a gauge transformation we call Z(s)
2

[See Fig. 1(g.ii)]. Keeping the second field flat ensures
Wilson lines in the gauge theory maintain a canonical
form under local unitary evolution. Moreover, since no
physical observable depends on the particular Kasteleyn

orientation chosen, in other words Z(K)
2 is gauged, the

Majoranas at σ vertices are bound to π flux of a gauge
field.

We start by using the Kasteleyn orientation on the
decorated graph to explicitly determine two standard el-
ements defining a gauge theory: the physical subspace of

the Majorana Hilbert space (giving rise to Z(s)
2 ), and the

mapping from physical qubits into the subspace. Recall
we placed a Majorana at each vertex of the decorated
graph, so that each qubit q of the PSC corresponds to
a diamond with 4 Majoranas. Note that at each dia-
mond, opposite links la, lb do not touch, so the opera-
tors [See Fig. 2(a)] τ1 = (−1)nla , τ ′1 = (−1)nlb satisfy
τ2
1 = τ ′21 = 1, [τ1, τ

′
1] = 0, and neither can be propor-

tional to 1 since they anti-commute with the other pair
of link operators. In a qubit Hilbert space, these condi-
tions imply that τ1 = ±τ ′1, and the choice τ1 = τ ′1 in the
qubit space gives rise to the physical subspace condition
[see Fig. 2(b)]

Γq |ψ〉 = |ψ〉 , Γq = (−1)nla (−1)nlb . (5)

The Kasteleyn condition ensures that as an operator Γq
is independent of the chosen pair of edges, so if we con-
struct τ2, τ

′
2 in an analogous way for the other pair we

also find τ2 = τ ′2 in the physical subspace. Γq generates a

local gauge transformation Z(s)
2 under which each Majo-

rana fermion carries a charge, i.e. αqj changes sign upon
conjugation with Γq. The second ingredient of the gauge
structure, a mapping from qubits to the Majoranas, is
fixed33 by choosing a qubit operator to correspond to
each pair of opposing edges, e.g. Pauli operators τ1 = Z
and τ2 = X. Note that, by construction, the spin op-
erators defined by the l-type links, τ1, τ2, are invariant

under Z(s)
2 and Z(K)

2 .

Stabilizers and Z(s)
2 – The final ingredient to define

our gauge theory is a local flatness condition for the

Z(s)
2 gauge field formed by the inter-diamond L-type link

operators34. In contrast to the intra-diamond l-type link

operators, which are Z(s)
2 -invariant, L-type link operators

all commute (since these links never touch) but are odd

under both Z(s)
2 and Z(K)

2 [See Fig. 1(g)]. Specifically,

the Z(s)
2 transformation flips all (−1)nL touching a dia-

mond. The simplest Z(s)
2 -invariant combination is a loop

of L-type edges around a stabilizer plaquette P ,

B(P ) =
∏
L∈P

(−1)nL . (6)
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Moreover, by writing B(P ) in terms of the gauge-
invariant l-type link operators (this is a special case of

Eq. (11)), we find that it is Z(K)
2 invariant as well. This

gives both the definition of and physical meaning to the
stabilizers defining the PSC code subspace alluded to in
Eq. (1).

Emergence of Z(K)
2 – Since the Kasteleyn orientation is

not a conventional Z2 gauge field, let us briefly describe
an alternative construction of the same theory where the
gauge structure is emergent. A consistent mapping from
the single qubit Hilbert space into a fixed parity sector
of 4 Majoranas is fully specified33by associating a dia-
mond with Kasteleyn orientation to the qubit, and pairs
of opposite edges on the diamond to two generators of the
Pauli algebra, as above. Extending this construction to
a multi-qubit system, by additionally assigning arrows to
L-type links the corresponding (gauge-non-invariant and
hence unphysical) operators combine to measure a (phys-

ical) Z(s)
2 gauge flux Eq. (6). If the arrows are assigned so

that every plaquette has a Kasteleyn orientation, B(P )
is simply a product of Pauli operators at each diamond
determined by the local embedding at each qubit of the
plaquette, regardless of the size or shape of P .35 We note
that a static graph with a preferred mapping between
qubits and Majoranas dictated by a Hamiltonian, as in
the model studied by Kitaev [6], may fix part of the Kaste-
leyn structure. However, as D3Vs and D2Vs move, the

PSC evolves. In this case, the emergent Z(K)
2 plays a

critical role in tracking the PSC evolution.

Having defined the complete gauge theory, we consider
two families of multi-qubit operators that act on the PSC
state, distinguished by the condition that they generate
stabilizer flux only at controlled locations3637. Acting
with a Majorana on a given vertex flips the edge opera-
tors (−1)n` for every edge ` touching the vertex, creating
a pair of stabilizer fluxes if the vertex is not unpaired [See
Fig. 2(c.i)]. The local condition not to create stabilizer
flux is to flip an even number of L-type edge operators
around each plaquette: either acting with Majoranas on
both ends of an L-type edge, i.e., (−1)nL [See Fig. 2(c.ii)],
or to flip 2 or more L-type links about each stabilizer
plaquette [See Fig. 2(c.iii)]. Combined with local gauge
invariance, the first method builds Wilson lines38, while
the second builds ’t Hooft lines39.

Wilson lines – Flipping each L-type link twice means
we act with L-link operators, which manifestly commute
with B(P ). While (−1)nL is not gauge invariant un-

der Z(s)
2 , if we chain L-link operators (connected by di-

amonds), the bulk of the chain commutes with Γq. To

make the ends of the chain Z(s)
2 invariant, we must add an

additional Majorana from the diamonds at the ends, ar-
riving at the definition of a valid path for the augmented
Wilson line in Fig. 2(d). Formally, a valid path is one
that starts and ends on l-links. To give a definition of an
operator that is both consistent with the Majorana anti-

commutation relations and invariant under Z(K)
2 , we take

the path γ (from αI → αF ) to be directed. Explicitly,
the gauge-invariant “augmented Wilson line” associated
to the path γ is defined by [See Fig. 2(e)]

Wγ = iαFWγαI , Wγ = W (s)
γ W (K)

γ (7)

W (s)
γ =

∏
L∈γ

(−1)nL , W (K)
γ =

∏
`∈γ

(−1)n
(K)
` (γ), (8)

where we refer to Wγ as the Wilson line. If the line is
open, its ends are either paired or unpaired vertices. If
the vertex is paired, a pair of stabilizer fluxes sharing an
edge are created when acting on a state with no stabilizer
flux: we call such flux configurations an ε-particle1 [See
Fig. 2(d)]. No stabilizer flux is created at an unpaired
end.

Wilson loops and line deformations – When γ is a (di-
rected) loop the Wilson loop Wγ , which can be defined by
the same Eqs. (7) and (8), is gauge invariant on its own.
We define the augmented Wilson loop (Eq. (7) is not
defined for coinciding ends) as Wγ = −Wγ (to empha-

size the type we sometimes write W(loop)
γ ). A canonical

counter-clockwise augmented Wilson loop measures the
parity of stabilizer and Kasteleyn flux:

W(loop)
γ = (−1)NΦ(γ)(−1)Nσ(γ), (9)

where NΦ(γ) is the operator measuring the stabilizer flux
enclosed by the loop. It is practically useful that the op-
erator B(P ) is just the counter-clockwise augmented Wil-
son loop about only the stabilizer plaquette P : one per-
spective is that B(P ) should only count the stabilizer flux
B(P ) = (−1)NΦ(P ), so is not equivalent to a canonical
loop in the presence of anyons. The most important ap-
plication is to the ratio of canonical Wilson lines for two
paths γ, γ′ between same anyons 1 and 2 [See Fig. 2(f)].
The gauge-invariant operatorWγW−1

γ′ = WγW
−1
γ′ can be

decomposed to a product of canonical augmented Wilson
loops, such that for canonical paths

WγW−1
γ′ = WγW

−1
γ′ = (−1)NΦ(γ,γ′)(−1)Nσ(γ,γ′). (10)

where NΦ(γ, γ′) is the stabilizer flux enclosed between
the paths, whereas Nσ(γ, γ′) is the number of enclosed
anyons (see Appendix B.1 for the precise definition,
which is only needed when one of the paths γ, γ′ goes
directly through a diamond containing an anyon away
from the endpoints of γ, γ′, and therefore does not play
an important role in braiding).

’t Hooft lines and loops – We represent an ’t Hooft
line39 as a directed path of even length through the dual
graph, whose links represent the flipped L-type bonds
[See Fig. 2(g)]. The definition ensures that we can al-
ways find a local, gauge-invariant operator corresponding
to the ’t Hooft line. Specifically, an ’t Hooft line can be
written as a product of augmented Wilson lines by tak-
ing the Majoranas to the right of the path which touch
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FIG. 2. (a) The parity operators on the l-edges and L-links. (b) Pauli operator τ1, τ2 assignment to the diamond edges
{τ1, τ2} = 0. For instance, τ1 = Z and τ2 = X. (c) Two examples of how to locally avoid creating stabilizer flux, ignoring
gauge invariance. (c.i) Acting with the Majorana circled in orange flips the L-link it touches, and creates ε, i.e., a pair of
stabilizer fluxes sharing an edge, shown in lavender. (c.ii) The basis for the Wilson line. Flip the same L-link again by
acting with a second Majorana touching the link. (c.iii) The basis for the ’t Hooft line. Flip an even number of L-links.
(d) Augmented Wilson lines: (d.i) An example of a canonical augmented Wilson line action on a state with no stabilizer flux.
The link at the start of the line is flipped, creating an ε, while there is no bond to flip at the unpaired vertex. If there were an
ε particle at the start of the line, this augmented Wilson line would “sink” it into the unpaired vertex, removing any stabilizer
flux. (d.ii) A non-canonical Wilson line. (e) The diagrammatic rules for constructing a Wilson line operator from a directed
path on the graph. The blue wavy arrow indicates the orientation of the path γ. The black and gray arrows indicate Kasteleyn
orientation on the L-links and on the l-edges respectively. (f) Two canonical augmented Wilson lines between the same pair of
unpaired vertices. We show the common part of the two lines, which in this case lie on the first and last links, in dark yellow.
(g) An open ’t Hooft line is shown in moss green, with stabilizer fluxes at its ends. The shown ’t Hooft line is equivalent to
the gauge-invariant Wilson line segments shown in orange. (h) An open ’t Hooft line wrapping an unpaired vertex, marked
with a red circle, creating an ε from a state with no stabilizer flux.
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the links crossed, and making this product gauge invari-
ant in the most local way [See Fig. 2(g)]. If the path is
open, stabilizer fluxes are created at its ends. Flips cor-
responding to odd length paths through the dual lattice
are always products of ’t Hooft lines and an augmented
Wilson line with one unpaired end. Finally, we note that
’t Hooft loops create no flux; for simplicity, we always
take such loops counter-clockwise.

’t Hooft and canonical Wilson lines – Two relationships
between the two families of operators are of particular
importance. First, note that a Wilson and ’t Hooft line
anti-commute at each point of crossing, because ’t Hooft
lines flip L-type links. Since ε live at the end of aug-
mented Wilson lines [See Fig. 2(d)], roughly speaking ’t
Hooft loops detect the parity of enclosed ε. More impor-
tantly, certain ’t Hooft lines going around a single anyon
counter-clockwise are equivalent, in a no-flux state, to
canonical Wilson lines [See Fig. 3(a)]. Specifically, an ’t
Hooft line going around a single anyon counter-clockwise
cannot be closed to a non-intersecting loop. The ends
can be brought to adjacent plaquettes, where an ε will
be created [See Fig. 2(h)]. This acts in the same way as an
augmented Wilson line starting at the anyon and ending
at the ε. As we demonstrate in Fig. 3(a), the augmented
Wilson line that has the same action including the global
phase can always be taken to follow a canonical path.

Extension of canonical lines – General principles of
gauge theory38 dictate that the Wilson line Wγ between
α1 and α2, associated to the augmented Wilson line Wγ ,
should “extend” when α2 moves by a local unitary U
starting from a state |ψ〉. Specifically, locality, unitar-
ity, and gauge invariance determine the key aspects of
the path γ′ one should take after moving α2 so that
Wγ′ “acts the same way” as Wγ . Explicitly, as shown
in Fig. 3(b) the path γ′ is just an extension of γ into the
region where U acts and ending at the new location of
α2, so that Wγ′U |ψ〉 = UWγ |ψ〉. This way, the Wilson
line keeps track of the path and history of the anyons.

Therefore, the last key ingredient of our theory of non-
Abelian anyons is the requirement that Wilson lines are
extended by motion. This is the physical condition which
distinguishes canonical Wilson lines: any local unitary
U acting in a region A with a single anyon, without
stabilizer flux and preserving the anyon and stabilizer
flux number, extends any canonical Wilson line between
anyons to a canonical Wilson line. In most cases, this
can be seen by taking a canonical Wilson line ending at
the anyon and extending beyond A, and (partially) ex-
panding it to an ’t Hooft line that lies strictly outside
A; the first steps of this expansion are shown on the
right column of Fig. 3(a). Acting with the unitary can-
not change the action of the ’t Hooft line on the state.
Therefore, we can deform the ’t Hooft line to a necessar-
ily canonical Wilson line ending at the new position of
the anyon. Without this fundamental property, the be-
haviour of Wilson lines would depend on non-topological

details of the dynamics. Instead, referring to Eq. (10),
we find that unpaired Majoranas carry both a π flux and
charge of the Kasteleyn field.

As discussed in the introduction, we can now conclude
that the unpaired Majoranas, or D3Vs, in our model are
projective Ising anyons. To illustrate this point directly,
we formulate a simple braid to unambiguously demon-
strate non-Abelian statistics (see Fig. 1(c)). Initialize the
system at time tI with four anyons arranged on a line,
and suppose measurement of Wγ21

yields the value +1
[See Fig. 3(c)]. As we move α2 around α3, the path γ21

gets extended to a path γ′21 around α3. The measurement
of Wγ′′

21
at time tF will give −1, since it is different from

the measurement of Wγ21
at time tI by Wγ′

21
W−1
γ′′

21
= −1

by Eq. (10) (NΦ(γ′21, γ
′′
21) = 0, Nσ(γ′21, γ

′′
21) = 1). In

other words an observable changes sign after double
braiding with probability 1, which is sufficient to demon-
strate non-Abelian statistics. On the other hand, if α3

was attached to a stabilizer flux the observable will not
change sign since now NΦ(γ′21, γ

′′
21) = 1, so braiding

about such a composite could serve as a control experi-
ment. We note that the composites are on equal footing
to what we consider the “bare” anyons, and our notion
of which anyon is a composite would switch if we had
chosen to prefer the opposite chirality, clockwise instead
of counter-clockwise, in the definition of the Kasteleyn
structure and preferred loops. In particular, amongst
themselves the composites braid precisely as projective
Ising anyons as well.

Below we suggest specific protocols and predict out-
comes for several experiments.

Spin operators for augmented Wilson lines and loops
– We will use augmented Wilson lines and loops as the
basis for all physical operations, so it will only be nec-
essary to give a qubit-space formula for these operators.
Fortunately, they can be constructed simply and system-
atically from paths drawn on the decorated PSC graph
(without assigning any explicit Kasteleyn orientation).
First, assign diamonds to each qubit, and two Pauli gen-
erators, say X and Z, to pairs of opposite edges on each
diamond [Fig. 4(a)]. In general, we call the Pauli associ-
ated to the l-link τl, and we keep this assignment static.
Now, L-type edges are drawn between diamond vertices
to construct a PSC graph. Given a valid directed path γ
in this graph, we simply read off the operator along the
path

Wγ = (−i)Nll(γ)
←−∏
l∈γ
τl. (11)

For multi-qubit loops γ, we delete an L-link and ap-
ply Eq. (11) to the resulting open path. Here Nll(γ)
is the number of vertices in γ with adjacent l-edges [See
Fig. 4(a)]. The arrow over the product specifies that the
product is to be taken in order from right to left accord-
ing to the path: τl for the earliest l appears at right end.
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FIG. 3. (a) Examples of an explicit deformation of ’t Hooft lines (moss green) to augmented Wilson line (orange) (left) and
canonical Wilson lines (right), in a state with no stabilizer flux. (b) Motion of the anyon 2 generated by a local unitary
U , acting only on a region containing anyon 2. (c) A manifestly gauge invariant illustration of Ising anyon braiding in the
long-distance limit, tracking the extending augmented Wilson line and the world line of the anyons. The augmented Wilson
lines associated with γ21 and γ′′21 are measured before and after the double braid respectively. The comparison between the
two measurements should only depend on the topological form of the motion of α2.

’t Hooft lines are constructed using the correspondence
to products of augmented Wilson lines in Fig. 2 (g). We
note that to make the rules of the protocol simple, we will
use both canonical and non-canonical lines and loops.

Stabilizers and initial state – As an immediate ap-
plication, we recall that the stabilizers B(P ) are sim-
ply the unique counter-clockwise Wilson loops, generally
not canonical, in the stabilizer plaquette P [See Fig. 4b].
Hence, Eq. (11) offers the necessary input for a protocol
to prepare a state in the code space of the PSC15.

Creation, measurement, and fusion – The creation of
anyon pairs only requires the removal of an L-type link
[See Fig. 4(c) top]. When we modify the graph by delet-
ing an edge, we do not need to perform unitary action
for the operators obtained on the new graph to remain
meaningful in the new code subspace. The link touches at
least one stabilizer plaquette P . If the link is a bound-
ary link, we simply drop B(P ) from the list of stabi-
lizers. If the link touches another plaquette, Q, delet-
ing the edge forms a larger plaquette P ′, and we find
B(P ′) = B(P )B(Q). Notice that if we remove a link
shared by the stabilizer fluxes of an ε, we also end up in
the no stabilizer flux state of two additional anyons [See
Fig. 4(c) bottom]. This embodies the Ising anyon fusion
rule6

σ × σ = 1 + ε. (12)

Since arbitrary unitary motion preserves canonical Wil-
son lines40, if we wish to determine the fusion state of
separated anyons we should measure a canonical Wilson
line between them (according to the path along which
they would be physically fused). We could also measure
the equivalent ’t Hooft loop around the anyon pair, but
this is generally less efficient. We note that the other σ

fusion rule σ × ε = σ is simply a consequence of the fact
that Wilson lines can terminate on an anyon without cre-
ating flux, while ε × ε = 1 is an immediate consequence
of the definition of ε.

Gauge-invariant Majorana swaps – Since L-type links
pair Majoranas, edge rearrangements in the graph cor-
respond to Majorana swaps. Naively, to “move” Majo-
ranas from position 1 to position 2, i.e., α1 → ±α2 with
some unitary Ũ±, we mean Ũ†±α2Ũ± = ±α1. If α1, α2

are on different Majorana diamonds q, q′, such a Ũ± can-
not be gauge invariant. The reason is that {Γq, α1} = 0,

but [Γq, α2] = 0, so necessarily [Γq, Ũ±] 6= 0. In other

words, Ũ± takes the state away from the gauge-invariant
Hilbert space. The simplest non-gauge invariant swap is
Ũ± = exp

(
±π4α2α1

)
, which also takes α2 → ∓α1. The

closest gauge invariant operator requires a path γ from
α1 → α2, from which we define,

U± = exp
(
∓iπ

4
Wγ

)
. (13)

For this particular unitary, we can see explicitly how Wil-
son lines are extended as the Majoranas are swapped

U†±(γ)α2WγU±(γ) = ±α1, U
†
±(γ)α1U±(γ) = ∓α2Wγ .

(14)
We note that as long as a PSC is chosen where all the τl
are Pauli operators, U± is always in the Clifford group,
and can therefore be decomposed efficiently to CNOT (or
CZ) and single-qubit Clifford gates.

Gates for moving anyons – Graphically, moving a sin-
gle anyon from vertex 1 to vertex 2 corresponds to a
rearrangment of L-type links [See Figs. 4(d-f)]. The cor-
responding swaps Eq. (13) are built from paths γ that
run between an anyon α1 and a Majorana α2 paired
by an L-type edge to α3 [See Figs. 4 (d-f)]. To ensure
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FIG. 4. (a) A valid path defining an augmented Wilson line. The static assignement of the Pauli operators are indicated by
yellow for Z and purple for X. In this case, Nll(γ) = 3 in Eq. (11). (b) A Wilson loop enclosing a stabilizer plaquette P . The
Wilson loop operator graphically specifies the stabilizer B(P ). (c) Deleting an L-link in the graph creates two unpaired vertices
marked with red circles. It also changes the stabilizers. If we take the new definition, B(P ′) |ψ〉 = |ψ〉 whether or not there was
a fermion on P,Q, without any unitary operation. This is a microscopic manifestation of the fusion rule σ × σ = 1 + ε. (d) A
basic edge move generated by a counter-clockwise augmented Wilson line shown in blue. Since the path is counter-clockwise,

U− should be used to avoid creating Z(s)
2 flux. The vertex 3, initially paired with 2, pairs with 1 after the edge move leaving

2 unpaired. (e) A basic edge move generated by a clockwise augmented Wilson line shown in blue. U+ should be used to

avoid creating Z(s)
2 flux. (f) Clockwise Wilson line with an anyon along the path. Since Nll(γ) = 1, one needs to use U− to

avoid creating Z(s)
2 flux. (g) A protocol for implementing the braid group generator Fig. 1(a) and restoring the lattice. We

show a 10-qubit section for concreteness, but on a larger device the anyons could be further separated. (h) The time slices
corresponding to the protocol in Fig. 4(g). (i) The protocol for preparing a GHZ state of three logical qubits. Four anyons at
the corner and the two pairs created in the bulk together supply three logical qubits. The vertical ’t Hooft line (moss green)
and the two augmented Wilson lines (wavy blue) measures the logical qubit state. Dashed braiding or dotted braiding will
both entangle the logical qubits to yield a GHZ state. (j) The protocol for implementing the logical X operator.

the graph remains locally planar, it is sufficient to build
larger moves from elements where α1 and α2 share the
same stabilizer plaquette P . There is a unique allowed
path γ between them within P . Similarly to the line for
B(P ), in general this path is not canonical. The sign in
Eq. (13) is determined by the condition that no flux is
created in the new graph (with an L-type edge between

1 and 3). Specifically, if the path γ is counter-clockwise
about the plaquette containing α2 and α1, we use the
U− [See Fig. 4(d)]. If the path is clockwise about this
plaquette, we find Uζ with ζ = (−1)Nll(γ) where Nll(γ)
is the number of vertices with adjacent l-type edges in γ,
defined in Eq. (11) [see Figs. 4(e) and (f)]. By construc-
tion, this is an example of a unitary motion of anyons
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without creation of Z(s)
2 flux. It follows that the canonic-

ity of Wilson lines connecting anyons is always preserved,
despite the fact we chose to use a non-canonical line give
the rules for the unitaries. Finally, we remark that to

move the composite of an anyon and Z(s)
2 flux, one sim-

ply uses the opposite sign in U± to the one for the bare
anyon.

Braid generators – Figures 4(g-h) show one minimal
implementation of the fundamental generator of the braid
group, R23. All other generators can be constructed in an
analogous manner. One advantage of this protocol is that
it restores the lattice: practically, this means such gener-
ators can be iterated an arbitrary number of times, and
theoretically it allows directly comparing states before
and after braiding. Another advantage is that it can be
implemented on small systems, and simply extended to
make use of larger ones. The version shown requires only
10 qubits and can therefore be implemented on existing
devices15. A direct experiment to establish non-Abelian
statistics is to perform the lattice version of Fig. 3 (c):
simply create two anyons from the vacuum at the loca-
tions t = 1, and perform this braid twice to implement
R2

23. After R2
23 each pair of anyons will fuse to an ε.

In the future, periodic measurements of stabilizers
would allow quantum error correction, with the distance
between anyons serving as an effective code distance. On
a larger device, extending the protocol in Figs. 4(g-h)
simply by starting the anyons further apart, and continu-
ing the vertical motion of the initially rightmost anyon at
t = 3, would allow maintaining a larger code distance41.
The protocol involves local code deformations, as a re-
sult of which the graph and stabilizer sizes change, but
the most non-local stabilizers can be restricted to be the
smallest possible 5-local operators42. We leave the anal-
ysis of this overhead to future work.

A GHZ experiment – Another key element of topologi-
cal quantum computation is preparation of an entangled
state of anyons. We give a protocol such that a sin-
gle braid takes a logical product state |000〉 to a GHZ
state43, which is a starting point for the discussion of
multi-qubit entanglement. Our protocol also serves as
a concise demonstration of computational primitives in-
troduced above. Observe that the standard surface code
encoding one logical qubit is nothing else than our model
with 4 Ising anyons at the corners44. We define logical Z
operators using the shortest Wilson lines for bulk anyons
and an ’t Hooft line for the anyons at the corners, [See
Fig. 4(i)]. The ’t Hooft line is chosen to run down the
center of the sample, so that anyon pairs can be on either
side. When it splits anyon pairs, such an ’t Hooft line is
shorter than any equivalent Wilson line.

To prepare the logical state |000〉, it is simplest to start
from the |0〉 state of the surface code, and create anyon
pairs from the vacuum at the locations shown in Fig. 4(i).
An exchange of bulk anyons 1 and 2 then prepares a state

of the form |GHZφ〉 = 1√
2
(|000〉+ eiφ |111〉), where φ de-

pends on the phase choice of the logical basis. To fix
an unambiguous convention for φ and perform full to-
mography, it is sufficient to define logical X operators
as in Fig. 4(j). Then exchange of anyons 1 and 2 pre-
pares

∣∣GHZπ/2
〉
. An exchange of anyons 1 and 3, which

can be generated by conjugating the above braid with an
exchange of 2 and 3, prepares |GHZ0〉.

To summarize, we constructed a graph gauge theory
with projective Ising anyons. The consistency of the the-
ory requires identification of two gauge fields: one associ-
ated with the flux created by a plaquette (stabilizer) vio-
lation and the other, the Kasteleyn orientation, is associ-
ated with the flux carried by a D3V, degree three vertex
of the graph. The presence of both fields ensures that a
loop physical path of an unpaired Majorana fermion mea-
sures the number of unpaired Majoranas enclosed by it,
giving rise to non-Abelian braiding statistics. The formu-
lation of physical operators in terms of augmented Wilson
lines and the graphical rules to construct them allows a
simple way to design unitary protocols for manipulation
and measurement of anyons. The unitary evolution can
be thought of as the motion of anyons directly realizing
elementary braiding operations. We propose specific ex-
periments to realize the dynamics of anyons and verify
their fusion rules and braiding statistics as well as prepa-
ration of an entangled state of anyons. The protocols we
proposed were implemented experimentally on a super-
conducting processor as reported in the forthcoming pub-
lication. Our recipe for constructing protocols could be
used to realize quantum computation with non-Abelian
anyons that allows for quantum error correction.45
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M. Kieferová, S. Kim, A. Kitaev, P. V. Klimov, A. R.
Klots, A. N. Korotkov, F. Kostritsa, J. M. Kreikebaum,
D. Landhuis, P. Laptev, K.-M. Lau, L. Laws, J. Lee,
K. Lee, B. J. Lester, A. Lill, W. Liu, A. Locharla,
E. Lucero, F. D. Malone, J. Marshall, O. Martin, J. R.
McClean, T. Mccourt, M. McEwen, A. Megrant, B. M.
Costa, X. Mi, K. C. Miao, M. Mohseni, S. Montazeri,
A. Morvan, E. Mount, W. Mruczkiewicz, O. Naaman,
M. Neeley, C. Neill, A. Nersisyan, H. Neven, M. New-
man, J. H. Ng, A. Nguyen, M. Nguyen, M. Y. Niu, T. E.

https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1016/0550-3213(96)00430-0
https://doi.org/10.1016/j.aop.2005.10.005
https://arxiv.org/abs/cond-mat/0506438
https://arxiv.org/abs/cond-mat/0506438
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.86.268
https://arxiv.org/abs/cond-mat/0005069
https://doi.org/10.1103/PhysRevB.61.10267
https://arxiv.org/abs/cond-mat/9906453
https://arxiv.org/abs/cond-mat/9906453
https://doi.org/10.1103/PhysRevLett.96.016803
https://doi.org/10.1103/PhysRevLett.96.016803
https://doi.org/10.1103/PhysRevB.84.035120
https://doi.org/10.1103/PhysRevB.84.035120
https://arxiv.org/abs/1012.0296
https://arxiv.org/abs/1012.0296
https://doi.org/10.1038/nphys1915
https://doi.org/10.1038/nphys1915
https://arxiv.org/abs/1006.4395
https://doi.org/10.1103/PhysRevX.2.041002
https://doi.org/10.1103/PhysRevX.2.041002
https://arxiv.org/abs/1204.5733
https://doi.org/10.1126/science.1231473
https://doi.org/10.1038/ncomms2340
https://arxiv.org/abs/1204.5479
https://doi.org/10.1126/science.abi8378
https://arxiv.org/abs/2104.01180
https://arxiv.org/abs/quant-ph/9705052
https://arxiv.org/abs/quant-ph/9705052
https://doi.org/10.1103/PhysRevLett.90.016803
https://arxiv.org/abs/quant-ph/0205004
https://arxiv.org/abs/quant-ph/0205004
https://arxiv.org/abs/quant-ph/9811052
https://doi.org/10.48550/arXiv.quant-ph/9810055
https://doi.org/10.48550/arXiv.quant-ph/9810055
https://arxiv.org/abs/quant-ph/9810055
https://doi.org/10.1103/PhysRevLett.105.030403
https://doi.org/10.1103/PhysRevLett.105.030403
https://arxiv.org/abs/1004.1838
https://arxiv.org/abs/1004.1838
https://doi.org/10.1007/s00220-012-1500-5
https://doi.org/10.1007/s00220-012-1500-5
https://arxiv.org/abs/1104.5047
https://doi.org/10.1103/PhysRevB.88.235103
https://doi.org/10.1103/PhysRevB.88.235103
https://doi.org/10.1103/PhysRevB.86.161107
https://doi.org/10.1103/PhysRevB.86.161107
https://arxiv.org/abs/1204.0113
https://arxiv.org/abs/1204.0113
https://arxiv.org/abs/2103.08381
https://doi.org/10.1103/PhysRevB.92.245139
https://arxiv.org/abs/1508.04166
https://doi.org/10.1103/PhysRevX.7.021029
https://doi.org/10.1103/PhysRevX.7.021029
https://arxiv.org/abs/1609.04673
https://arxiv.org/abs/1609.04673


11

O’Brien, A. Opremcak, J. Platt, A. Petukhov, R. Potter,
L. P. Pryadko, C. Quintana, P. Roushan, N. C. Rubin,
N. Saei, D. Sank, K. Sankaragomathi, K. J. Satzinger,
H. F. Schurkus, C. Schuster, M. J. Shearn, A. Shorter,
V. Shvarts, J. Skruzny, V. Smelyanskiy, W. C. Smith,
G. Sterling, D. Strain, M. Szalay, A. Torres, G. Vidal,
B. Villalonga, C. V. Heidweiller, T. White, C. Xing, Z. J.
Yao, P. Yeh, J. Yoo, G. Young, A. Zalcman, Y. Zhang,
and N. Zhu, Suppressing quantum errors by scaling a sur-
face code logical qubit (2022), arXiv:2207.06431 [quant-
ph].

[28] As a consequence of the “handshaking lemma” that every
graph has an even number of odd degree vertices48.

[29] On a general manifold there may be relations amongst
the stabilizers that depend on topology and boundary
conditions which can increase the effective code subspace.

[30] In other words, an anyon with the quantum dimension√
2.

[31] P. W. Kasteleyn, Dimer Statistics and Phase Transitions,
Journal of Mathematical Physics 4, 287 (1963).

[32] Kasteleyn structures were introduced to study
dimer models31, and were later related to 2D spin
structures46,47.

[33] More precisely, up to a global phase, which for us is ir-
relevant.

[34] Note that we have given the analogous condition, an odd
number of clockwise arrows in each plaquette, for the
Kasteleyn orientation.

[35] In general, the same would be true if we fixed the parity
of clockwise edges across all stabilizer plaquettes.

[36] E. Fradkin, Field Theories of Condensed Matter Physics,
2nd ed. (Cambridge University Press, Cambridge, 2013).

[37] More precisely, we will find violations of different type
are created in pairs at the ends of string operators.

[38] K. G. Wilson, Confinement of quarks, Physical Review
D 10, 2445 (1974).

[39] G. ’t Hooft, On the phase transition towards permanent
quark confinement, Nuclear Physics B 138, 1 (1978).

[40] Equivalently, since ’t Hooft loops measure ε parity and
deform to canonical augmented Wilson lines.

[41] More complicated braids can achieve larger code dis-
tances by constant factors in certain cases.

[42] The precise procedure to accomplish this depends slightly
on the available geometry when the devices are small, for
example in many cases it is convenient to modify the step
from t = 2 to t = 3 by moving edges to the right instead
of the left of the anyon to move it upwards. Such an
extension is shown in Appendix A.

[43] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going
Beyond Bell’s Theorem (2007), arXiv:0712.0921 [quant-
ph].

[44] S. Bravyi, M. Englbrecht, R. Koenig, and N. Peard, Cor-
recting coherent errors with surface codes, npj Quantum
Information 4, 55 (2018), arXiv:1710.02270 [quant-ph].

[45] In our system of Ising anyons Clifford gates can be imple-
mented fault-tolerantly. A non-Clifford T -gate necessary
for universal computation can be constructed by replac-
ing π/4 → π/8 in Eq. (13) and taking the line between
any two anyons. This operation is not fault-tolerant.

[46] D. Cimasoni and N. Reshetikhin, Dimers on sur-
face graphs and spin structures. I, Communications
in Mathematical Physics 275, 187 (2007), arXiv:math-
ph/0608070.

[47] D. Cimasoni and N. Reshetikhin, Dimers on surface

graphs and spin structures. II, Communications in
Mathematical Physics 281, 445 (2008), arXiv:0704.0273
[math-ph].

[48] L. Euler, Solutio problematis ad geometriam situs per-
tinentis, Commentarii academiae scientiarum Petropoli-
tanae , 128 (1741).

Appendix

A. Examples on a 5× 5 qubit system

In this section, we illustrate some of the above steps
explicitly in a 5×5 qubit system. First, we specify the ini-
tial state by giving appropriate stabilizers, see Fig. 5(a).
The initial PSC is simply a square graph in the bulk,
with 4 anyons at the corners: this is just a surface code
encoding 1 qubit18, and has previously been prepared on
a superconducting quantum processor15. We assume the
state can be prepared so that the vertical ’t Hooft line
shown, whose explicit form is also given, takes a definite
value.

Next, in Fig 5(b) we show the Pauli string that gen-
erates a motion that appears in the middle of a possible
extension of the braid in Fig. 4(g) to a larger system. Ac-
cording to the rules from the main text, we use Eq. (13)
with U+ to perform this move. As discussed in the main
text, if we wished to move the composite of an anyon

with attached Z(s)
2 flux, we would use U−.

B. Kasteleyn orientations and path deformations

A Kasteleyn orientation31 always exists on a surface
graph with an even number of vertices46,47. There is a
precise sense in which such an orientation behaves like
a typical Z2 gauge field. One Kasteleyn orientation can
be taken to any other by flipping arrows on links crossed
by cycles through the dual graph46,47, with contractible

cycles generated by the Z(K)
2 transformation described

in the main text. This is the same way that a conven-
tional Z2 field configuration can be taken to any other
with the same pattern of local flux (the transformations
corresponding to the contractible loops are gauge). The
reason is that any cycle flips an even number of arrows
in each plaquette.

We will re-use the definition W
(K)
γ from Eq. (8) for

directed paths and loops in a general graph (i.e. it
is +1 (−1) if there are an even (odd) number of ar-
rows along the path that point opposite the direction
of the path). Importantly, the above discussion proves

that for a directed contractible loop γ, W
(K)
γ is inde-

pendent of the choice of Kasteleyn orientation. The in-
variant value can be understood by contracting a simple
(no self-intersections) counter-clockwise loop to a single
face F0, where the definition of a Kasteleyn orientation
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FIG. 5. (a) The surface code as a PSC, with several visualizations of Eq. (11). We show the two stabilizers associated to
the plaquettes P and Q, as well as the Wilson line for B(P ). We also apply the rules from Fig. 2(g) to construct the Pauli
string for the logical Z ’t Hooft line (the Pauli string appears to the right of the line). (b) The Pauli string that generates a
movement circuit, associated to the Wilson line shown. This is another direct application of Eq. (11).

is that W
(K)
∂F0

= −1. To do this, we give a useful rule
for “pushing” segments of a path γ through a face F .
Part of ∂F is γ1 ⊂ γ. The complement of γ1 in the
boundary ∂F of the face F is γ2. To “deform” the path
γ is to replace γ1 with γ2 (in the same direction), ob-
taining a path γ′. To compute the accompanying sign

change W
(K)
γ (W

(K)
γ′ )−1, note that γ2 traverses F clock-

wise, so the Kasteleyn condition for F refers to the re-

versed path R̂γ2. We have the general formula W
(K)

R̂γ
=

(−1)length(γ)W
(K)
γ = −(−1)vertices(γ)W

(K)
γ . Combining

with the Kasteleyn condition, we find in the case of de-
formation through a single face

W (K)
γ1

= (−1)vertices(γ2)−2W (K)
γ2

. (15)

But vertices(γ2)−2 simply counts the number of vertices
that are in the interior of γ but not γ′. Continuing this
way until we arrive at a single face, calling VB(γ) the
number of vertices in the interior of the loop γ we find

W (K)
γ = −(−1)VB(γ) (16)

for any counter-clockwise simple loop γ.

B.1 Canonical paths and loops

We now return to the special case of the decorated
PSC graph, and always focus on a disk-like region. Every
simple counter-clockwise loop in the undecorated graph,
γ̂, could naturally correspond to 2length(γ̂) directed loops

through the decorated graph, because at each added di-
amond we can choose whether to go around it clockwise
or counter-clockwise.

For open paths we also choose which diamond vertex

the path ends at. The physical requirement of Z(s)
2 in-

variance for the augmented Wilson lines that are built
from this path constrains it to end on a different vertex
of the endpoint diamonds than where it entered. This is
the definition of a valid path.

In fact, we can see by inspection of Eqs. (7) and (8)
that the choice of how diamonds are traversed only affects
the Kasteleyn part of a loop or line, and therefore simply
changes the sign of the operator. Moreover, by the de-
formation formula Eq. (15) we see that if a line touches
a diamond an odd number of times, it does not matter
which way we traverse that diamond. Thus we only have
to keep careful track of “wedges” where a diamond is
touched precisely twice in a row. When building various
operators this can simply be chosen as convenient (c.f.
the movement gates in Fig. 4(d-f)), but to predict braid-
ing outcomes by deformation of Wilson lines we need to
know which way to take the wedges. Remarkably, unitar-
ity, locality, and gauge invariance determine that we can
always take Wilson lines with wedges pointing to the right
(i.e. traversing the diamond counter-clockwise) to mea-
sure fusion outcomes. In the main text, to give a more
concise definition of canonicity we simply insisted on all
lines traversing the diamonds counter-clockwise, which is
equivalent to the definition here. The more refined def-
inition here is convenient for various proofs since fewer
cases need to be checked. Note in particular (−1)Nll(γ)
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(defined below Eq. (11)) only depends on the number of
wedges.

Consider now a simple canonical loop γ, and cut away
the exterior edges and vertices, so that γ becomes the
boundary of a graph G̃. The important geometric prop-
erty of a canonical loop is that, when viewed as the
boundary of G̃, γ has an even number of odd degree ver-
tices. By the “handshaking lemma”48, this means that
the number of odd-degree vertices on the interior of the
loop is even. The only even-degree vertices are the un-
paired ones, so VB(γ) = Nσ(γ) and for a contractible
canonical loop

W (K)
γ = −(−1)Nσ(γ). (17)

This proves the results Eqs. (3) and (9).
To prove Eq. (10), we note that, as usual, the ra-

tio of the Kasteleyn Wilson lines, W
(K)
γ (W

(K)
γ′ )−1 of

two valid canonical paths γ, γ′ with endpoints at the
same two anyons 1,2 is a product of ratios of canoni-
cal paths that form simple closed loops. Each loop con-
sists of two segments, one from γ and one from γ′. We
only need to consider one such loop. One of the seg-
ments is counter-clockwise about the loop and the other
clockwise; call the counter-clockwise segment γ1 and the
other γ2. In fact, by enumerating the ways in which

canonical paths can split from each other, one finds that
γ2 is always valid (this is not necessarily the case for
γ1). The reversed path R̂γ2 may not be canonical, and

W
(K)

R̂(γ2)
= −(−1)Nll(γ2)W

(K)
γ2 . To make the reversed path

canonical, each wedge should be flipped, which cancels
the factor (−1)Nll(γ2); call this path Rγ2. The path
γ = γ1 ∪Rγ2 is now a canonical loop, and we find

W (K)
γ1

(W (K)
γ2

)−1 = −W (K)
γ = (−1)Nσ(γ) ≡ (−1)Nσ(γ1,γ2).

(18)
This expression gives a precise definition of Nσ(γ, γ′) in
the main text, which is only necessary when the Wilson
lines pass directly through unpaired anyons away from
the endpoints (the latter are of course in common, and it
is straightforward to check that they never contribute to
this flux difference). In practice, if there are few anyons
on the Wilson line it is often simpler to deform the line
by one plaquette using Eq. (15) first, and then apply the
counting formula. We also note that because of some ex-
ceptions at the endpoints, in the main text we only stated
Eq. (10) for Wilson lines between anyons. The formula
also applies with other conditions, most obviously when
the paths γ, γ′ differ only away from their endpoint dia-
monds.
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