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Fractionalization without time-reversal symmetry breaking is a long sought-after goal that man-
ifests non-trivial correlation effects. While exactly solvable models offered many new theoretical
insights, the physical realization of time-reversal symmetric fractionalization remained out of reach.
The earlier proposal of correlated insulating states at n ± 1/3 filling in twisted bilayer graphene
and recent experimental observations of insulating states at those fillings stongly suggest that moiré
graphene systems provide a new platform to realize time-reversal symmetric fractionalized states.
However, the nature of fractional excitations and the effect of quantum fluctuation on the fractional
correlated insulating states are unknown. We show that excitations of the fractional correlated
insulator phases in the strong coupling limit carry fractional charges and exhibit fractonic restricted
mobility. Upon introduction of quantum fluctuations, the resonance of “lemniscate” structured
operators drive the system into “quantum lemniscate liquid (QLL)” or “quantum lemniscate solid
(QLS)”. We propose experimental strategies to observe the fractons and discuss the theoretical
implications of the QLL/QLS phases.

Introduction – Fractionalization, where the quantum
number of low energy excitations is a fraction of the phys-
ical constituents (such as electrons), epitomizes strong
correlation effects. With reduced phase space amplifying
the correlation effects, fractionalization does not require
magnetic field in 1D systems [1–5]. However, in higher di-
mensions, fractionalization has only been confirmed with
breaking of time-reversal symmetry either under frac-
tional quantum Hall settings [6, 7] or spontaneous time-
reversal symmetry breaking in fractional Chern insula-
tors [8, 9]. Theoretical proposals for fractionalization
without time-reversal symmetry breaking have invoked
the effects of geometric frustration with local constraints,
giving rise to emergent gauge theories in spin models and
quantum dimer models [10–19]. More recently, the no-
tion of constraints has been taken to new directions with
the advent of fracton models characterized by excitations
with restricted mobility [20–26]. While exactly solvable
models often offer much theoretical insight [11, 20–23],
finding a physical realization of such models has been
challenging.

The recent observation of time-reversal invariant in-
compressible states (i.e., zero Chern number) at frac-
tional filling in twisted bilayer graphene [9] presents a
new platform for a strongly correlated state at frac-
tional filling. While the nature of the observed states
is still largely unknown, two of us predicted that “fid-
get spinner”-shaped Wannier orbitals of twisted bilayer
graphene can lead to a correlated insulating phase at frac-
tional filling due to the geometric constraints imposed by
the shape of the orbitals [27]. While the extensive ground
state degeneracy observed in the strong coupling limit

[27] implies novel geometrical frustration effects in widely
available physical platform, little is known about the na-
ture of excitations and effects of quantum fluctuations.
In this paper we evince the fractionalization of doped
holes and fractonic nature of the fractionally charged
excitations in the strong coupling limit. Furthermore,
we derive a resonance in the lemniscate configuration of
Wannier orbitals to be the leading quantum fluctuation
effect that can result in a QLL/QLS (quantum lemnis-
cate liquid/solid) phase. We explore the properties of
the low energy excitations in the QLL/QLS phase and
discuss experimental prospects of detecting the proposed
fractionalization.
The Model – The topological obstruction forbids sym-

metric lattice description of the flat bands of magic an-
gle twisted bilayer graphene [28–35]. However, the com-
mon alignment of twisted bilayer graphene with hexag-
onal boron nitride (hBN) explicitly breaks the C2 rota-
tional symmetry and justifies construction of Wannier
orbitals. Nevertheless, the resulting maximally localized
Wannier orbitals are extended beyond their AB/BA site
centers [29, 36] to the three nearest AA sites, with most
of the weight equally divided among the three AA sites,
forming a “fidget-spinner” shape (see Figure 1(a)). Con-
sequently, the dominant interaction term is an on-site
repulsive interaction projected to the Wannier orbitals
taking a “cluster-charging” form [29, 37],

HU =
U

2

∑
r

∑
i∈9r

ni

2

, (1)

where 9r labels the sites belonging to the r-th hexagonal

ar
X

iv
:2

21
1.

11
62

2v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

1 
N

ov
 2

02
2



2

plaquette and ni is summed over spin and valley degrees
of freedom.

We note that the convention in the literature is to view
the moiré lattice as a triangular lattice with one lattice
site per unit cell. On the other hand, the Wannier centers
form a honeycomb lattice with two sites per unit cell.
Hence the conventional filling of 1/3 electrons or holes for
each spin and valley per triangular lattice is equivalent to
the filling of 1/6 electrons or holes per hexagonal lattice
(see Figure 1(a)). Hereafter, we refer to such filling as
1/3 per moiré unit cell. At such 1/3 total filling for spin
and valley d.o.f., the energy can be minimized by having
the charge carriers occupying only one of the six possible
registries (see Figure 1(b). Having 1/3 charges per moiré
unit cell corresponds to

∑
i∈9r

ni = 1 per honeycomb
plaquette since one charge is shared by three plaquettes.)
As pointed out in Ref. [27], the strong coupling limit
(i.e., classical) ground state of Equation 1 is extensively
degenerate.

FIG. 1. a) Visualization of Wannier states (WSs), AA, and
AB/BA sites in TBG. The light grey lattice denotes a typical
moiré pattern formed by a system with a twist angle of 6◦.
The moiré unit cells formed by the centers of the WSs are
delimited by the honeycomb lattice, and its dual triangular
lattice is shown in dashed line. The yellow and green blobs
schematically represent the shape of Wannier orbitals on the
BA and AB sublattices, respectively, with two overlapping
charge lobes. For each AB/BA site, there are four orbitals,
two from spin and two from valley. (Here the valley d.o.f. is
that of the microscopic graphene Brillouin zone, not of the
moiré mini Brillouin zone.) (b) Schematic representation of
the six-phase registry of AB/BA sites, numbered from 1 to 6
with distinct colors. The vertices of the triangle correspond
to the three charge lobes.

Two types of perturbations can lift the extensive
ground state degeneracy associated with the cluster-
charging interaction of Equation 1: further range interac-
tions and quantum fluctuations. For TBG systems, the
Coulomb interaction projected to low energy Wannier or-
bitals gives rise to various terms including density-density
interactions, Hund’s coupling, pair-hopping, interaction-
mediated hopping, and so on [29, 38, 39]. For the further
range interactions, we focus on the 4th nearest neighbor
interactions and consider the density-density interactions
and Hund’s coupling to obtain (See Appendix A for de-

tail.)

H4 = (V4 − V approx4 )
∑
〈ij〉4

ninj −
J4

4

∑
〈ij〉4

(Sµi S
µ
j + ninj),

(2)

where ni = c†iαciα is the density operator summing

over the spin and valley d.o.f. and Sµ = c†i,αT
µ
αβcj,β

is the SU(4) spin operator, α, β denote the combined
spin-valley d.o.f. with the SU(4) generators Tµ ∈
{σν , τν′

, σν⊗τν′}. Following the notation of Ref. [30], V4

(V approx4 ) is the direct Coulomb interaction between 4th
nearest neighbor (“point-charge-approximated”) Wan-
nier orbitals. The point-charge approximation [30] views
the fidget-spinner-shaped Wannier orbitals as being com-
posed of three point charges at AA sites. Focusing on the
Eq. (2) is justified by the fact that the difference between
the direct Coulomb interaction and the point-charge ap-
proximation is short-ranged while all tiling patterns in
the ground state manifold of Eq. (1) have the same elec-
trostatic potential under the point-charge approxima-
tion. Finally, J4 > 0 is the SU(4) ferromagnetic exchange
interaction [38]. Upon introducing quantum fluctuations

via hopping term HK =
∑
〈ij〉,α,τ tij,τ (c†i,α,τ cj,α,τ + h.c.)

the full Hamiltonian becomes

H = HU +H4 +HK . (3)

The phase diagram in the strong coupling limit of t =
0 was established in Ref. [27]. With finite hopping t,
quantum order-by-disorder [40] would select a different
quantum ground state, resulting in a qualitative phase
diagram we sketch in Figure 2.

FIG. 2. Proposed phase diagram for the model in Eq. 1. In
the strong coupling limit t = 0, the ground state is either a
brick wall tiling (U4 negative) or a

√
3 ×
√

3 tiling (U4 posi-
tive). Brick-wall state has SU(4) spin-valley ferromagnetism
indicated by black arrows. For both of these phases, we show
characteristic tilings, in both triangle and Wannier center rep-
resentations. Upon increasing t, both states eventually melt
“quantum lemniscate liquid” or “quantum lemniscate solid”.

Strong Coupling Limit and Fractional Excitations – In
the strong coupling limit, the characteristic energy scale
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is

U4 = V4 − V approx4 − J4

2
. (4)

For U4 < 0, the system will order into a low-symmetry
state dubbed the “brick wall” [27] (Figure 2). The brick
wall tiling makes the maximal use of the Hunds coupling
to minimize H4, and will thus be an SU(4) spin-valley
ferromagnet. The anisotropic shape of the mesoscale unit
results in low symmetry. Translation, mirror and C3 ro-
tation symmetries of the honeycomb lattice are all broken
in the brick wall phase. From the point of view of the
Wannier orbital centers (circles in Figure 2), the brick
wall state is closely related to the stripe ordered phase
proposed in Ref. [38] at filling n = −3 of TBG since
the brick wall occupies every third sites along a stripe.
Hence, the brick wall may be favored at 1/3 filling away
from n = −3. On the other hand, for U4 > 0, the fa-
vored state would be the

√
3 ×
√

3 ordered state, with
uniform AB/BA registry. In this case, from Equation 2,
configurations with different spin-valley orientations are
degenerate within the model. While the two states break
translational symmetry in terms of the orbital centers
(see filled circles in Figure 2), we anticipate the observ-
able effects of the translational symmetry breaking to be
weak due to the spread of the Wannier orbitals. This con-
trasts the proposed

√
3 ×
√

3 state against the unit-cell
tripled charge density wave states proposed in momen-
tum space based numerical approaches [41, 42].

A natural consequence of the incompressible tiling in
the strong coupling limit at ±1/3 filling is the possibil-
ity of fractionally charged holes. Intuitively, this can be
anticipated by noting that the 1/3 of electron charge is
concentrated at the vertices of the dual triangular lattice
for any of the incompressible states [30]. By assigning

a polarization direction ~P to each of the six phase reg-
istries (Figure 3(a)), we can calculate the local charge of

a tiling configuration as the bound charge qb =
∮
d~l ∧ ~P .

The configuration that binds a 1/3 charge and the energy
cost of such an excitation depends on the classical ground
state. However, as we show below, their movements are
restricted much like fractons and lineons [23, 25, 26].

The
√

3×
√

3 phase has two types of charge 1/3 frac-
tional excitations with restricted mobility: vortices (Fig-
ure 3(b)) and solitons (Figure 3(c)). As it was previously
noted[43], a vortex of phase registry in a charge ordered
state usually carries fractional charge. An unusual prop-
erty of our vortices is their restricted mobility: the cluster
charging energy U makes the vortices practically immo-
bile, similar to fractons [23, 24]. However, due to the
extensive enegry cost proportional to U4 associated with
the domain walls, the observation of these vortices would
require finite temperature. We define a “soliton” of the√

3×
√

3 phase to be the 1/3 charged excitation bound to
the end of a line of flipped trimers. In the limit of vanish-
ingly small U4, a single hole can fractionalize into three

solitons which can only move along one dimension asso-
ciated with the flip line. The soliton dynamics are as if
a domain wall state of the Su-Schrieffer-Heeger model[1]
were embedded in a two-dimensional space. Hence the
soliton behaves like a lineon [23, 24]. However, the soli-
tons in the

√
3 ×
√

3 state are confined. The balance
between the flip-line energy cost (2U4 per flip) and the
Coulomb interaction between the 1/3 charges determines
the size of the bound state (Figure 3(d)). From the es-
timation of U4 in Ref.[44], we have L ∼ 1.13aM (see
Appendix B for detailed discussion).

Solitons in the brick wall phase are more intriguing be-
cause they are deconfined. First we note that as shown
in Figure 3(e), the brick wall phase has sub-extensive
ground state degeneracy since each line of “bricks” can
choose between two degenerate choices of alternating reg-
istries that give different slants to the brick tiling pat-
tern. Hence the ground state degeneracy is 2L where L
is the linear dimension, and the configurational entropy
is L log 2. A defect associated with a domain bound-
ary within a row can also be viewed as a “soliton” car-
rying 1/3 charge (Figure 3(f)) or 2/3 charge (see Ap-
pendix B). Similar to the

√
3 ×
√

3 phase, the solitons
in the brick-wall phase also have restricted mobility, and
can only move along the one dimension of the brick wall
rows, which are 2D analogs to the “lineon” excitations in
the 3D X-cube model [23, 24]. Furthermore, the solitons
in the brick wall phase are deconfined excitations since
they cost a finite energy irrespective of the separation be-
tween the solitons (see Figure 3(g) and a more detailed
illustration in Appendix B.). With the sub-extensive
ground state degeneracy and the restricted mobility of
the frational-charged quasi-particles, namely “solitons”,
the brick-wall phase can be viewed as a gapped fracton
phase [25, 26, 45].

Quantum Fluctuations – We now turn to the verti-
cal axis of the phase diagram Figure 2 and explore the
effects of quantum fluctuations in the limit of U4 � t.
We ask how the hopping t in HK would lift the exten-
sive degeneracy of the HU ground state manifold through
quantum “order from disorder” [40]. To start answering
this question, we look for an operator that can locally
connect two different states in the classical ground state
manifold. Such operator should commute with HU , i.e.,
keep the cluster charge fixed. Moreover, the operator
should act non-trivially in the ground state manifold of
HU at filling n = ±1/3, without annihilating the states
in the manifold. Since the ground state manifold of HU

at filling n = ±1/3 consists of states with exactly one
site of the hexagonal cluster occupied, connecting such
states requires coordinated multi-site hopping. We now
show that the smallest such operator consists of an eight-
site hopping arranged in a lemniscate, or sideways figure-
eight shape (see Figure 4(c))).

The lemniscate operator L2 is constructed from the
intra-hexagon hopping operator O9 = c†i1ci2c

†
i3
ci4c
†
i5
ci6 ,
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FIG. 3. Catalog of charged excitations in the t = 0 phases. a) A single trimer and its associated polarization direction. b) A
vortex excitation consists of a single 1/3-charged vacancy (open circle), surrounded by all six registry domains. c) A soliton
excitation in the

√
3 ×
√

3 phase consists of a trail with differing registry domain from a uniform background, and d) Three
solitons are created from one hole and dessociate. The brown lines indicate the energy cost U4 associated with the domain
walls and L is defined as the linear size of the three-soliton bound state. e) Brick wall state. The sub-extensive degeneracy is
indicated by the freedom to flip the second row of the triangles from the configuration in the left panel to the one in the right
panel. f) A soliton in the brick wall phase can be thought of as a domain boundary between two degenerate configurations. g)
Solitons in the brick wall phase can move along a 1D line with constant energy cost associated with the triangles with brown
contour.

FIG. 4. Visual representation of operators in effective Hamil-
tonian Equation 5. a) The lowest order term consists of a
plaquette operator, in which three sites are acted upon by
annihilation operators (-), and the other three by creation
operators (+). b) The lowest order operator L1, which con-
tains only one creation and one annihilation operators on the
supported hexagonal plaquettes, spans seven plaquettes, with
nontrivial annihilation and creation operators acting on the
outermost 12 sites. The middle plaquette must violate the
cluster-charging constraint (contain a vortex) given that the
surrounding plaquettes satisfy the constraints. c) The lowest
order nonvanishing operator L2 spans 10 plaquettes, where i
is a reference site chosen to labeled the position of the oper-
ator.

where i1,...,6 label the sites belonging to a hexagonal
plaquette, organized in a clockwise order (Figure 4(a)).
Clearly, [O9, HU ] = 0, butO9|ψ0〉 = 0 for any |ψ0〉 in the
ground state manifold of HU at filling n = ±1/3 since O9
annihilates three fermions on a hexagon, but the cluster-
charging constraint requires exactly one fermion on each
hexagon. However, a larger structure involving multiple
hexagons built from alternating O9 and O−1

9 operators
would still commute with HU and can be made to be
compatible with the cluster-charging constraint. A sin-
gle loop of O9s and O−1

9 s, which we define as L1 (Fig-
ure 4(b)), would only act non-vanishingly on a configu-
ration with a vortex in the center. Hence, the lemniscate
operator L2 illustrated in Figure 4(b) is the smallest op-
erator that can semi-locally resonate between two differ-
ent states in the classical ground state manifold. There
are three orientations of lemniscate operators, related by
C3 rotation. For each orientation, the lemniscate oper-
ator connects two local tiling configurations, which we
designate as the “flippable” manifold of that operator.
Therefore, the low energy effective Hamiltonian can be
written as

Heff = HU − t̃
∑
i,α

(L2,i,α + L†2,i,α) +H4 (5)

where t̃ ∼ t8/U7, α ∈ {1, 2, 3} label the three different
orientations and i labels the position of the operator L2

(Figure 4(c)).
The effective Hamiltonian Heff is highly frustrated

since different L2,i,α’s do not commute. Hence map-
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ping out the full quantum phase diagram would re-
quire a serious computational effort. Nevertheless, analo-
gies to the quantum dimer models [46] can offer valu-
able insights. Specifically, as in quantum dimer mod-
els, the quantum fluctuations associated with the lem-
niscate operators would select a novel quantum liquid
state or a solid state as a function of U4/t̃; we re-
fer to these states as “quantum lemniscate liquid/solid”
(QLL/QLS)(Figure 2). Among possible QLS states are a
plaquette-like state that has resonance within supercells
(Figure 4(a)) and a columnar-like state with fixed config-
urations within supercells that repeats for U4 < 0 (Fig-
ure 4(b)) or alternates for U4 > 0. Both the plaquette-
like and columnar-like QLS states break C3 rotational
symmetry in addition to the lattice translation symme-
try. Despite the reduced symmetry, the emergence of the
supercells driven by quantum fluctuations represented by
the lemniscate operator sets the QLS states apart from a
conventional stripe state. The supercells act as an emer-
gent local degrees of freedom analogous to the emergent
orbitals in the so-called cluster Mott insulators on the
kagome lattice [47]. However, the emergent orbitals on
the kagome lattice are pinned to the honeycomb plaque-
ttes of the lattice, while the supercells form an emergent
superstructure in the QLS.

Doping away from 1/3-filling, holes added to the pro-
posed QLS phases can fractionalize into 1/3-charged ex-
citations. However, as in the

√
3 ×
√

3 ordered phase,
movements of these 1/3-charged excitations necessarily
disrupt“flippable” configurations defining the supercells
that are rigidly arranged in the QLS phase(Figure 4(c-
d)). Nonetheless, a cooperation between lemniscate reso-
nance and melting of the rigid arrangement of the super-
cells can lead to deconfinement of the 1/3-charge, which
would be a mechanism to quantum melt a QLS state and
restore the translational symmetry. Hence, the resulting
state at finite doping could be a non-Fermi liquid with
1/3-charged quasi-particles.

Different mechanisms would favor QLL state over QLS
at n = 1/3, where QLL state is defined by translational
symmetry. If such QLL state is gapped, we anticipate
deconfined charge 1/3 excitations [48]. Firstly, with the
addition of a potential energy term associated with the
“flippable” configurations of the lemniscate operator, we
anticipate a QLL state at the so-called Rocksar-Kivelson
point [11]. Such QLL could either be gapped [15] or
gapless [11] but it would be isotropic. Secondly, the res-
onances unconstrained to a rigid cell (e.g. the dotted
hexagon in Figure 5 (b)) could also lead to the melting
of QLS to a QLL state. The minimal effective model
to address this melting mechanism is to only include the
leminiscate operators with one orientation, say the ones
aligned with Figure 5 (b) in Eq. 5 since there is no res-
onance along the other two orientations. (See Appendix
C.) The resulting QLL would necessarily break the C3

rotational symmetry.

FIG. 5. Cartoon picture of candidate states for QLS. (a)
Plaquette-like order, where the resonance happens between
the darker shaded triangles and lighter shaded ones. (b)
Columnar-like order. The dotted hexagon denotes an extra
flippable pattern when the surrounding three states are all
aligned. Typical configurations of three fractionalized charge
excitations are illustrated in (c) and (d) for plaquette-like
order and columnar-like order respectively. The dotted trian-
gles denote the originally occupied sites and the black circles
denote the 1/3-charged excitations.

Experimental Implications – Our rich phase diagram
with exotic states in experimentally accessible platform
opens door for detection and control of novel states. Since
all the states of interest are correlated insulating states
with Chern number C = 0, transport observation of
C = 0 insulating state[9, 49] is a necessary condition.
Solid phases break various symmetries which can be indi-
cators. (i) All the solid phases have characteristic pattern
of the AB/BA registry. Scanning tunneling microscopy
on the remote bands[50] could reveal associated chemical
potential variations. (ii) The brick wall state is a SU(4)
spin-valley ferromagnet. (iii) The

√
3×
√

3 phase have fer-
roelectric polarization. (iv) Fractional charge, especially
deconfined lineons in brick wall state, can be detected
using scanning single electron transistor[51]. The 1D na-
ture of the lineons will give rise to a van Hove singularity
where the density of state will diverge as 1/

√
δE away

from the lineon energy gap [52]. (v) The brick wall and
the QLS phases break C3 rotational symmetry; hence
these phases will couple to strain and linearly polarized
light. Given the broken symmetries, applying electric
field, magnetic field, or lattice strain control the balance
among competing states. Hence the fractional correlated
insulating states can serve as platform to explore new cor-
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related states and fractionalization. How the proposed
quantum ground states should evolve into a Fermi liquid
inevitable at large hopping would be among interesting
future directions, as such tuning are within an experi-
mental reach [53].
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Appendix A: Contributions to 4th nearest neighbor
density-density interaction

We first describe the direct interaction term. The
total electrostatic potential can be written as V =∑∞
m=4

∑
〈ij〉m Vmn̂in̂j , where Vm is the direct Coulomb

interaction between the mth nearest neighbor Wannier
orbitals. The sum starts at m = 4 as the no-touching
constraint forbids smaller m. Similar to the Ewald sum-
mation [54], we split the electrostatic potential V into a
short-range part and a long-range part,

V =

∞∑
m=4

∑
〈ij〉m

(Vm − V approxm )n̂in̂j +

∞∑
m=4

∑
〈ij〉m

V approxm n̂in̂j

≡ Vshort + Vlong,

(6)

where V approxm is the Coulomb interaction between
the mth-nearest neighbor “point-charge-approximated”
Wannier orbitals. The point-charge approximation [30]
views the fidget-spinner-shaped Wannier orbitals as three
point-charges at AA sites. As a result, configurations sat-
isfying the cluster-charging condition have the same elec-
trostatic potential, so Vlong is a constant. Therefore, we
only need to consider Vshort. Since Vm − V approxm decays
quickly with increasing m [30], we only keep the leading
order contribution, which is m = 4.

Other than the direct Coulomb interaction, we also
take into account the exchange interaction. From the
projection of the Coulomb interaction onto the Wannier
basis, the exchange term can be written as

Hexchange =
∑

i 6=j,α,β,τ,τ ′

Jττ
′

ij c†i,α,τ cj,α,τ c
†
j,β,τ ′ci,β,τ ′ , (7)

where i, j represent Wannier centers, α, β ∈ {↑, ↓} la-
bel the spin, τ, τ ′ ∈ {+,−} label the valley and V ττ

′

ij =∑
r,r′ V (|r−r′|)ψ∗i,τ (r)ψj,τ (r)ψ∗j,τ ′(r′)ψi,τ ′(r′) with V (r−

r′) being the Coulomb potential and ψi,τ (r) being the
Wannier function. We ignore the inter-valley Hund’s in-
teraction since it is negligible compared to Equation 7
[44]. We also assume approximate SU(4) symmetry of
the spin-valley d.o.f., that is, J++

ij ≈ J−−ij ≈ J+−
ij ≈

J−+
ij ≡ Jij [38]. Therefore, the leading order exchange

interaction with J4 being defined as Jij for 4th nearest
neighbors i, j is

J4

∑
〈i,j〉4

c†i,α,τ cj,α,τ c
†
j,β,τ ′ci,β,τ ′

=− J4

4

∑
〈i,j〉4

Sµi S
µ
j −

1

4
J4

∑
〈i,j〉4

ninj ,
(8)

where Sµi = c†i,ηT
µ
ηη′ci,η′ and the repeated indices are

summed over. η, η′ ∈ {1, 2, 3, 4} denote the combined
spin-valley indices and Tµ is the SU(4) generator with
µ ∈ {1, ..., 15}, which we choose to be {σν , τν′

, σν ⊗ τν′},
where σν , τν

′
are Pauli matrices. The last equality

in Equation 8 follows from the completeness relation of
SU(2), that is σνη1η2σ

ν
η3η4 = 2δη1η4δη2η3 − δη1η2δη3η4 .

Appendix B: Confinement and deconfinement in√
3×
√

3 and brick wall phases

In this section, we describe the restricted mobility of
the vortex and soliton in the

√
3 ×
√

3 and brick wall
phases and their confinement properties.

Charge 1/3 vortex in
√

3×
√

3

Figure 6(a) shows an immobile vortex quasiparticle,
marked by the black empty circle. The vortex is sur-
rounded by all six phases of the AB/BA site registry,
and has charge 1/3. Attempting to move this quasipar-
ticle to the location marked by the red empty circle, by
flipping the trimer indicated by the arrow, would result
in a double occupancy shown by the red cross. Any dif-
ferent attempt to move the vortex would also result in a
similar double occupancy.

Confined charge 1/3 soliton in
√

3×
√

3

A soliton here has charge 1/3 and can move along
a one-dimensional line. It is a boundary between two
phases of the AB/BA site registry. In Figure 6(b), the
mobility direction is shown by the line of flipped pink
triangles, and the soliton acts as a boundary between
pink and green phases. Attempting to move the soliton
outside of this predefined direction (for example, perpen-
dicular to its mobility direction, to the red empty circle)
would, as above, result in a double occupancy (red cross).
An electron hole with charge 1 would generate three soli-
tons, each of which can move independently. Figure 6(d)
shows a single hole and the individual steps taken in mov-
ing one of the three 1/3 charges, flipping one triangle at
a time. The three solitons move along different axes re-
lated by C3 symmetry, where shown movement is along
the upper-left to bottom-right diagonal.

We now discuss confinement of the solitons. Firstly,
their movement leaves behind a trail in the background
electronic configuration. This can be seen in Figure 8(a)
as trails of blue, magenta, or yellow flipped triangles.
Each trimer flipped by the movement of a soliton is asso-
ciated with a short-range energy cost of 2U4 per unit
length of

√
3aM (crimson bonds), and since the num-

ber of flips increases with the travelled distance of the

https://doi.org/https://doi.org/10.1002/andp.19213690304


8

FIG. 6. Restricted mobility of excitations. a) Attempting to move a vortex quasiparticle from the black to red ring by flipping
the trimer marked with an arrow would cause a double occupancy shown by the red cross. b) Moving a soliton outside of the
allowed direction (upper-left to bottom-right diagonal) in the

√
3 ×
√

3 state would cause a double occupancy. c) Moving a
soliton outside of the allowed direction (horizontal) in the brick wall phase requires two flips, but would still cause a double
occupancy. d) Soliton movement in the

√
3 ×
√

3 phase. e) Soliton movement in the brick wall phase. The initial hole
fractionalizes into a left-moving soliton with charge 2/3 and a right-moving soliton with charge 1/3.
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solitons, they are confined in this phase. There is also
long-range Coulomb repulsion of the charges. Hence, the
total energy cost for a three-soliton configuration with

linear dimension l is given by E(l) = 3
(

2U4
l√

3am

)
+

3 e2

9εam(1+
√

3l)
, where ε is the dielectric constant and aM

is the moiré lattice constant. By minimizing E(l), we ob-
tain the confinement length L. For the solitons to have

finite confinement length, i.e. L > 0, U4 <
e2

6εaM
must

hold. The confinement length is L = 1√
3

[√
aMe2

6εU4
− aM

]
.

Deconfined charge 1/3 and 2/3 solitons in brick-wall

The brick-wall phase also hosts solitons (Figure 6(e)),
but with different mobility and confinement properties.
Due to the reduced symmetry of the brick-wall phase, the
nature of the solitons is significantly more complex than
the
√

3×
√

3 case. We first define the soliton by analyzing
the constraints on the ground-manifold of the brick-wall
state. Without loss of generality, we consider rows of
bricks that are horizontally-aligned (Figure 6(f)). In this
state, the trimers also form rows of alternating AB/BA
(up/down) centers. There are three possible “phases” for
the rows: R1 (cyan/green), R2 (purple/yellow), and R3

(magenta/orange). In order to maximize the number of
U4 bonds per trimer, each row must have a phase differing
from those of the rows above and below. Two adjacent
rows with the same phase would not form any U4 bonds
(Figure 7(c)), and thus be suboptimal in energy. This
constraint is the origin of the subextensive entropy of the
brick wall state. If one “fills up” the lattice sequentially
from top to bottom with rows of trimers, there will always
be two allowed phases for each row (Figure 7(a,b)).

A soliton, then, can be viewed as a boundary between
two phases within a row (Figure 7(d)). A 1/3 charge soli-
ton is a boundary between R1/R2, or R2/R3, or R3/R1

(viewed from left to right). Two 1/3 charge solitons can
also join together to form a 2/3 charge soliton, which
is the boundary between R1/R3, or R2/R1, or R3/R2

(again from left to right). The solitons can move hori-
zontally by flipping trimers. However, like earlier, any
movement of a soliton outside of the mobility direction
would result in a double occupancy (Figure 6(c)). Here,
the movement would require two nearest-neighbor flips
(denoted by the two arrows). Figure 6(e) shows a sin-
gle hole, fractionalized into a 2/3 soliton moving to the
left, and a 1/3 soliton moving to the right. Unlike the√

3×
√

3 phase, all solitons move along the same axis.

Remarkably, the solitons shown in Figure 6(e) are de-
confined. Earlier, confinement arose from the solitons’
movement leaving behind trails of flipped trimers that
cost energy via U4. Analogously, here we ask the question
of whether the solitons’ movement costs energy scaling
with distance. As established earlier, solitons separate

domains of R1, R2, or R3. Fractionalization of a single
hole would result in at least two different phases existing
within the same row. Therefore, if the rows above and
below have differing phases, the solitons would leave be-
hind a trail of flipped trimers that would be in the same
phase as one of the rows above or below, and cost an av-
erage energy of |U4| per two flips (unit length of 3aM/2).
The total energy cost here for a three-soliton configura-
tion where the central 1/3 charge remains stationary is

approximately E(l) = 2|U4| l
3aM

+ 5
2

e2

9εaM l . The confine-
ment length here, obtained by minimizing E, would be

L =
√

5ame2

12|U4|ε .

On the other hand, if the rows above and below the
hole have the same phase, there can be two different do-
mains that satisfy the U4 constraint. This suggests that
the hole could fractionalize into a pair of 1/3 charge and
2/3 charge solitons that are boundaries between the two
allowed phases. Figure 8(b) shows one such case of a
hole in a R1 row, where the rows above and below are
R3. The 2/3 charge and 1/3 charge solitons form left and
right boundaries respectively for the central region of R2.
In this case, the 2/3 soliton must be on the left side; if
it were on the right, the central domain would be R3

and therefore not allowed. In general, the direction that
the 2/3 soliton moves in depends on the surrounding do-
mains. Due to Coulomb repulsion, the individual quasi-
particles that make up the 2/3 soliton would separate
somewhat, leading to a bound state of two 1/3 solitons

(Figure 8(c)) with length scale L =
√

aMe2

6|U4|ε obtained by

minimizing the energy E(l) = |U4| l
3am/2

+ e2

9εaM l . Still,

the 2/3 charge bound state as a whole is deconfined.
Overall, since the energy cost (broken U4 bonds in Fig-
ure 8(b,c)) is localized to a finite area around all of the
solitons, they are deconfined.

Appendix C: Effective model for melting QLS

Here we propose a minimal effective model for study-
ing the melting of the QLS proposed in the main text
by regarding the supercells of the “flippable” configura-
tions as local degree of freedoms. How these local d.o.f
are related to the QLS is illustrated in Figure 9 (a). The
effective model is defined on a distorted triangular lattice
with four orbitals per unit cell labelled by the four colors
in Figure 9 (b). For each site, we define a local three
dimensional Hilbert space spanned by |0〉, |1〉, |−1〉. The
two states | ± 1〉 denote the two “flippable” configura-
tions of the lemniscate operator, where |1〉(| − 1〉) de-
notes the orientation of the middle two triangles being
“up”(“down”)-pointing (Figure 9 (a)). The |0〉 state de-
notes an “un-flippable” configuration. By considering the
possible resonance within the QLS, we arrive at the mini-
mal effective Hamiltonian that could describe the melting
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FIG. 7. Three domains of trimer rows in the brick-wall phase. a,b) Each row must have a differing phase from the rows above
and below. The residual freedom manifests as sub-extensive entropy, which can be seen through the freedom in choosing “slant
directions” for each row of bricks. c) Two adjacent rows with the same phase would not be able to form U4 bonds, and is thus
suboptimal in energy. d) 1/3 charge solitons are domain walls between two of the three phases. Likewise, 2/3 charge solitons
are also domain walls, but with the opposite direction of cycling between the three phases.

of QLS to a nearby QLL phase,

HQLS
eff = −JQ

∑
〈i,j〉,a

τzi,aτ
z
j,a − t̃P

∑
i,a

τxi,a

P, (9)

where a ∈ {1, 2, 3, 4} labels the orbitals, i, j label the
sites, τx,y,z are the Pauli matrices acting on | ± 1〉 states
and P is a projection operator. JQ > 0(< 0) denotes the
nearest neighbor FM (AFM) coupling between the same
orbitals that favors a QLS state. t̃ denotes the strength of
the lemniscate resonance. Without the projector P, the

Hamiltonian HQLS
eff is the same as a transverse field Ising

model, whose phase diagram is well-known. Now let us
specify the definition of P, which encodes the non-trivial
correlation depicted in Figure 9 (a). The projection im-
poses local constraints such that for each triangle formed
by the three nearest neighbor sites with the same col-
ors in Figure 9, if the three sites are all in state |1〉, the
site that is enclosed by the triangle has to be in state
| − 1〉 (|0〉) for right (left)-pointing triangles, similar for
the case where all the three sites are in state | − 1〉. The

projection P makes HQLS
eff non-trivial and whether the

ground state of HQLS
eff could be a spin liquid is an open

question.
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FIG. 8. Confinement cost of solitons in the t = 0 phases. a)
In the

√
3 ×
√

3 phase, the trail of flipped trimers caused by
the movement of a soliton costs an energy of 2U4 per unit
length (red lines show U4 bonds which cost energy). b) In the
brick wall phase, the trail of flipped trimers is able to form
U4 bonds with the surrounding R3 phase above and below
(brown lines show U4 bonds which lower the energy). The
two solitons enclose a new R1 domain in the middle of the
R2 phase, both of which satisfy the U4 constraint. c) The
2/3 charge soliton could separate to form a bound state with
finite size L due to Coulomb repulsion, but the bound state
remains deconfined.
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FIG. 9. The resonance in QLS and effective lattice model.
a) The additional “flippable” configurations in QLS. Left:
an additional “down”-pointing configuration (orange shade)
emerges by arranging three “up”-pointing configurations
(blue shade) arranged in a right-pointing triangle (thick black
lines). Right: an additional “up”-pointing configuration (red
shade) emerges by arranging three “down”-pointing configu-
rations (shaded in blue) arranged in a left-pointing triangle
(thick black lines). b) The lattice constructed by viewing the
centers of the “flippable” configurations in a) (marked by the
elongated hexagons) as lattice sites. The blue, orange and
red sites correspond to the shaded plaquettes with the same
colors in a). (The green sites are not shown explicitly in a).
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