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Abstract. Rashba spin–orbit coupling together with electron correlations in
the metallic interface between SrTiO3 and LaAlO3 can lead to an unusual
combination of magnetic and orbital ordering. We consider such phenomena
in the context of the recent observation of anisotropic magnetism. Firstly, we
show that Rashba spin–orbit coupling can account for the observed magnetic
anisotropy, assuming a correlation driven (Stoner type) instability toward
ferromagnetism. Secondly, we investigate nematicity in the form of an orbital
imbalance between dxz/dyz orbitals. We find an enhanced susceptibility toward
nematicity due to the van Hove singularity in the low-electron-density regime.
In addition, the coupling between in-plane magnetization anisotropy and nematic
order provides an effective symmetry breaking field in the magnetic phase. We
estimate this coupling to be substantial in the low-electron-density regime. The
resulting orbital ordering can affect magneto transport.
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1. Introduction

Rashba spin–orbit-coupling (SOC) effects have been mostly studied in weakly interacting
systems such as semiconductor heterostructures designed for spintronics applications [1], and
occur in two-dimensional (2D) systems without mirror symmetry [2]. However, the effects
of Rashba SOC in a 2D system with strongly interacting electrons, found for example in
interfaces, are emerging as a new frontier. There is thus a pursuit for new emergent phases
of matter in this regime, both theoretically [3] and experimentally [4], with the electron gas
at the interface between the two non-magnetic insulators LaAlO3 and SrTiO3 (LAO/STO) the
widest-studied such example. The observed ferromagnetic instability at this interface [5] could
well be of Stoner type, which suggests that electronic correlations may be enhanced due to low
dimensionality and poor screening at low densities. Hence, combined with its demonstrated
tunability [6, 7], the LAO/STO interface is an ideal testbed for physics of Rashba SOC in
correlated electron systems.

Recent observation of magnetic anisotropy may signal further richness in the phase
diagram of the interface. Specifically, Bert et al [8] and Li et al [9] observed strong in-plane
preference for magnetization (see figure 1(a)). Bert et al attributed this observed anisotropy to
the shape anisotropy of the interface: energetic bias toward a certain magnetization direction e.g.
along the longest axis of an ellipsoid, driven by an anisotropic demagnetization field. However,
for ultra thin films consisting of only a few atomic layers this effect is subdominant next to
microscopic effects [10, 11].

If the shape anisotropy is negligible in the interfaces, the dominant source of magnetic
anisotropy would be SOC. However, the typical alignment of the spin with the largest angular
momentum in itinerant d-electron systems [12] would predict an out-of-plane magnetization
upon occupation of dxz and dyz orbitals, in disagreement with experiments [8, 9, 13]. In this
work, we show that Rashba SOC leads to the unusual circumstance of an anisotropic (spin)
susceptibility. Assuming Stoner ferromagnetism close to a van Hove singularity near band edges
due to SOC, we argue that this in turn leads to a magnetization anisotropy.

We further investigate the possibility of nematic order in the form of orbital ordering
between the dxz and dyz orbitals, since the large density of states near the band edge also leads to
an enhanced tendency toward such ordering. This order can couple to an in-plane magnetization
anisotropy and we show here that a consequence of the Rashba SOC is a strong such coupling
in the low-density regime near the band edge. This implies that orbital ordering accompanies
the magnetic phase and leads to an additional magnetization anisotropy within the plane.
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Figure 1. (a) The distribution of the dipole-moment direction in terms of
the angle from the z-axis as observed in [8]. Reprinted by permission from
Macmillan Publishers Ltd, Copyright 2011. (b) Dispersion ε(k) and density of
states ρ(ε) of the three-band model equation (1) along kx . The two quasi-1D
bands are shifted by 1 = 50 meV compared to the 2D band. The inset shows a
spin-texture along Rashba-spilt parabolic bands.

2. Anisotropic susceptibility

We use a three-band model for the Ti t2g orbitals in the xy plane to describe the electronic
structure of the interface [14]. For now, we ignore the atomic SOC in order to gain more analytic
insight. In the presence of an external magnetic field EH , the Hamiltonian reads

H=H0 +HR
soc − µB EH · ES. (1)

Here, H0 is the hopping Hamiltonian

H0 =

∑
l,k,s

ξ
(0)

lk c†
lksclks (2)

with bare dispersions ξ
(0)

lk = k2
x/2ml

x + k2
y/2ml

y − µl and c†
lks creates an electron in band l =

(1, 2, 3) ≡ (dxz, dyz, dxy) with momentum k, and spin s. We use mass parameters from [15]: the
light masses m = m1

x = m2
y = m3

x = m3
y = 0.7me and the heavy masses M = m1

y = m2
x = 15me

with me the electron mass. The chemical potentials are related by µ = µ1 = µ2 = µ3 + 1 and
we use in the following 1 = 50 meV. In the Zeeman term (the last term in equation (1)),
ES =

∑
l,k,s,s′ c†

lks Eσss′clks′ is the total spin with Eσ being the Pauli matrices. Finally, HR
soc is the

Rashba SOC at the interface due to the absence of the in-plane mirror symmetry, which can
phenomenologically be introduced as a relativistic effect due to an electric field EE in z direction:
the spin of an electron moving with velocity Ev couples to an effective magnetic field ( EE/c × Ev).
Since the velocity vl = ∂ξ

(0)

lk /∂k for an electron in band l is k-dependent, the Rashba SOC is

HR
soc = α

∑
l,k,s,s′

Eglk · (c†
lks Eσss′clks′), (3)

where Eglk = (vl,y, −vl,x , 0) and the overall scale α ≈ 10−11 eV m [16]. The Rashba term HR
soc

changes the zero-field bandstructure by splitting the spin degeneracy of the individual bands,
as shown in figure 1(b). Notice how different bands have different band-edge configurations:
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a ring of lowest energy momenta for the 2D dxy band and a saddle point for the two quasi-
one-dimensional (quasi-1D) bands stemming from the dxz and dyz orbitals. This difference is
due to the isotropic (anisotropic) momentum dependence of the Rashba coupling Eglk for the 2D
(quasi-1D) bands and leads to different types of divergences in the density of states ρ(ε) at the
respective band edges: A 1/

√
ε divergence at the bottom of the dxy band and a logarithmic

divergence near the bottom of the dxz, dyz bands. In the regime of low electron densities,
this system can thus have instabilities to broken-symmetry phases even for weak interactions.

Now we turn to the impact ofHR
soc on the in-field ( EH 6= 0) bandstructure, which leads to one

of our main results: the anisotropy in the bare uniform susceptibility near band edges. In order
to calculate the bare susceptibility, we first diagonalize the Hamiltonian (1) for each momentum
k to obtain the in-field spectrum ξkν( EH), where ν = 1, . . . , 6. Then, the (diagonal) susceptibility

is given through χi =
∂2ω

∂ H2
i

∣∣∣
EH=0

, with ω = �/N the grand potential per lattice site,

χi =
1

N

∑
ν,k

 1

4T cosh[ξkν( EH)/(2T )]2

[
∂ξkν( EH)

∂ Hi

]2

− nF[ξkν( EH)]

[
∂2ξkν( EH)

(∂ Hi)2

] | EH=0, (4)

where T is the temperature and nF(ξ) is the Fermi distribution function. In the absence of
the Rashba term, the Hamiltonian (1) is diagonal for the spin-quantization direction parallel
to EH and ξkν( EH) is linear in EH . Hence, only the first term in equation (4) contributes to the
susceptibility: the usual Pauli susceptibility. Since the Rashba term HR

soc does not commute
with the Zeeman term, ξkν( EH) is not linear in EH once HR

soc is present and the second term of
equation (4), the so-called van Vleck susceptibility, becomes non-zero. The direction-dependent
balance between the two contributions determines a possible anisotropy χz 6= χx .

As the Hamiltonian in equation (1) is block diagonal in the orbital basis, the total bare
susceptibility is the sum of contributions χi(l) from each orbital l. We start with the contribution
from the quasi-1D orbitals. The two dxz bands have dispersions

ξ xz
k±

( EH) =
k2

x

2m
+

k2
y

2M
− µ ± |(αEgxz,k − µB EH)|. (5)

They contribute to the total susceptibility through

χP
i (xz) = µ2

B

∑
k,±

(ĝi
xz,k)

2 1

4T cosh[ξ xz
k±

(0)/(2T )]2
(6)

and

χvV
i (xz) = µ2

B

∑
k

[1 − (ĝi
xz,k)

2]
nF[ξ xz

k−
(0)] − nF[ξ xz

k+(0)]

|Egxz,k|
(7)

with ĝxz,k the unit vector along Egxz,k. For T → 0, we substitute k̃y = (M/m)ky and change the
sums in equations (6) and (7) into (cylindrical) integrals. For µ > 0, we obtain

χP
i (xz) =

µ2
B M

2π2

∫
dφ

(g̃i
xz,φ)

2

cos2 φ + M
m sin2 φ

(8)

and

χvV
i (xz) =

µ2
B M

2π2

∫
dφ

1 − (g̃i
xz,φ)

2

cos2 φ + M
m sin2 φ

(9)
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with g̃i
xz,φ = (sin φ, −cos φ, 0) and φ is the angle relative to the crystalline x-axis. Clearly,

the total dxz contribution to the susceptibility χi(xz) = µ2
B

√
mM/π is independent of the field

direction i or the Rashba SOC strength α.
On the other hand, near the band edge of the 1D bands, i.e. −α2/2m < µ < 0, the

susceptibilities in equations (6) and (7) yield

χP
i (xz) =

µ2
B M

2π2

∫
dφ

(g̃i
xz,φ)

2

cos2 φ + M
m sin2 φ

[
1 + 2 µm

(
cos2 φ +

M

m
sin2 φ

)/
α2

]−1/2

(10)

and

χvV
i (xz) =

µ2
B M

2π2

∫
dφ

1 − (g̃i
xz,φ)

2

cos2 φ + M
m sin2 φ

[
1 + 2 µm

(
cos2 φ +

M

m
sin2 φ

) /
α2

]1/2

. (11)

The total contribution to the susceptibility is thus anisotropic at the band edge.
For the total bare susceptibility, we also need to consider the 2D orbital dxy contribution. We

can read off χi(xy) from the quasi-1D contribution χi(xz) discussed above by setting M = m
and shifting the band edge by 1. Therefore, χi(xy) = χ

xy
0 is isotropic for µ > −1. When

contributions from all the orbitals are combined, the total susceptibility shows two regions in
the chemical potential where χx = χy > χz: near the band edge of the 2D bands and that of the
quasi-1D bands. Figure 2(a) shows the total susceptibility for the three bands near the quasi-1D
band edge as a function of chemical potential, where we shaded the anisotropic region.

Figure 2(b) summarizes two ways atomic SOC impacts the phase diagram: (i) it widens the
region of anisotropic susceptibility (gray region), (ii) it causes anisotropy in the spin direction
by aligning the spin with the largest angular momentum when the susceptibility is isotropic
(white region). The first effect results from adding the atomic SOC,

HSOC = i
αat

2

∑
lmn

εlmn

∑
k,s,s′

c†
lkscmks′σ

n
ss′ (12)

to the Hamiltonian (1) and evaluating the susceptibility (4) numerically. For the second effect,
the atomic SOC is treated as a perturbation in the magnetic phase [12]. This again predicts in-
plane magnetization below the gray region where only the 2D band is occupied, but a switch to
out-of-plane magnetization above this region.

In order to compare our phase diagram with experiments, we need to translate the chemical
potential to a gate voltage. While such a translation is non-trivial, Hall measurements under
gate-voltage sweeps can offer hints as to where the as-grown samples lie. Joshua et al [13]
showed that the interface acquires heavy carriers when under a gate voltage, which indicates
that the as-grown samples are near the quasi-1D band edge. Though the gray region is narrow
in figure 2(b), the density changes by a factor of ≈2 in this range. This pushes the density upper
bound for in-plane magnetization substantially, consistent with experiments [17].

3. Orbital order and magnetization

In the regime of low electron densities, the van Hove singularity can promote broken symmetry
phases in the presence of suitable interactions. While we focused so far on a magnetic instability,
which could for instance be driven by repulsive intra-orbital interactions, we now turn to orbital-
ordering possibilities. Even though the three-fold degeneracy of the t2g orbitals is already broken
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Figure 2. In-plane (solid line) and out-of-plane (dashed line) total spin
susceptibility for the three-band model (a) without and (b) with atomic
SOC (αat

= 5 meV) with the gray area denoting the region with anisotropic
susceptibility. The scale in these plots is given by χ

xy
0 = µ2

Bm/π and χ all
0 =

χ
xy
0 + 2µ2

B

√
Mm/π (right vertical axes). In (a), the contributions of the two

quasi-1D bands for χx are also shown separately. The arrows in the insets denote
the preferred magnetization direction, where in (b) also the anisotropy outside
the ‘Rashba’ regime due to atomic SOC is shown.

due to the interface symmetry, the dxz and dyz orbitals remain degenerate. A spontaneous orbital
symmetry breaking described by a non-vanishing order parameter η ≡ n1 − n2, with n1/2 the
occupation of the dxz/dyz orbital, can be driven by inter-orbital repulsive interactions [18].
We first analyze the tendency toward such an instability by studying the (bare) nematic
susceptibility. For this purpose, we introduce the field Hη conjugate to η, which enters the
Hamiltonian (1) through µ1/2 = µ ± Hη, i.e. it acts through an opposite shift of the chemical
potential for the two orbitals. The nematic susceptibility then yields

χη =
∂2ω

∂ H 2
η

∣∣∣∣∣
Hη=0

=
∂2ω

∂µ2
1

+
∂2ω

∂µ2
2

(13)

and is given by the contribution of the dxz and dyz orbitals to the density of states. Hence, the
van Hove singularity near the band edge of the quasi-1D bands (see figure 1(b)) allows for a
nematic order for sufficiently strong inter-orbital interaction [18].
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Figure 3. Coupling constant λ ∝ χxxη for coupling η = n1 − n2 to M2
x − M2

y as
a function of chemical potential for different atomic SOC parameters. Note that
λ for atomic SOC only would in this plot not significantly deviate from the zero
line (thin dotted line).

Next, we consider the coexistence of nematic and magnetic order. While a system with
C4 symmetry does not allow for coupling of η and | EM | directly, there is an allowed tri-linear
coupling between η and an in-plane anisotropy M2

x − M2
y , as both acquire a factor of −1 under

C4 rotation. Specifically, a coupling of the form λ(M2
x − M2

y )η enters the free energy. Given
the Hamiltonian (1), we can explicitly calculate the coupling constant λ. It is given by the
generalized susceptibility

λ ∝ χηxx =

(
∂3ω

∂ Hη∂ H 2
x

)
| EH |=0

, (14)

which measures the change in the spin susceptibility χx upon shifting the chemical potential of
the two quasi-1D bands against each other. Figure 3 shows the result with and without atomic
SOC in the presence of Rashba SOC. (We find the coupling to be negligible without Rashba
SOC.) The coupling becomes substantial in the above-identified density range with the in-
plane preference in the bare spin susceptibility. This is due to the inequivalence between the
two quasi-1D band contributions to χx shown as dotted and dash/dotted lines in figure 2(a),
more specifically the difference in the slope of χx(xz) and χx(yz). The sign of λ determines
the relative sign between η and (M2

x − M2
y ) and whether the majority orbitals will be along

or perpendicular to the magnetization axis. Notice how our result shown in figure 3 predicts
a change of the sign of λ over the chemical potential range exhibiting the magnetization
anisotropy.

Given the observed magnetism, we finally investigate the effects of coupling between
magnetic order and nematic fluctuations associated with the nearby nematic phase. In particular,
we may ask on the one hand how the proximity to a nematic instability influences the in-
plane magnetization, and on the other hand, how a magnetization effects the orbital ordering.
Assuming an XY ferromagnet in the absence of a coupling to nematic order, the Landau free
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energy becomes

f (Mx , My, η) = f0 +
a(T )

2
| EM |

2 +
b

4
| EM |

4 + λ(M2
x − M2

y )η +
aη

2
η2 + · · · , (15)

where Mx (My) is the magnetization along the crystalline x (y)-axis. Since we assume
no independent instability towards an orbital-ordered nematic, aη > 04. Integrating out η by
minimizing the free energy with

η = −
λ

aη

(M2
x − M2

y ), (16)

the free energy for the magnetization becomes

f (Mx , My) = f0 +
a(T )

2
| EM |

2 +
b

4
| EM |

4
−

λ2

aη

(M2
x − M2

y )
2. (17)

For finite λ, the coupling to orbital order therefore locks the magnetization along one of the
crystal axes, leading to an additional in-plane anisotropy.

For the orbital ordering, the magnetization anisotropy acts as a driving field. For aη very
small, i.e. the system close to an instability, we should include additional terms to the free energy
for η,

f (η; EM) =
aη

2
η2 +

bη

4
η4 +

cη

6
η6 + λ(M2

x − M2
y )η + · · · . (18)

For bη < 0, the system undergoes either a metanematic crossover, or a first-order transition at a
critical magnetization. This is in analogy to metamagnetic transitions observed in systems close
to ferromagnetism [19] and could be driven indirectly here by an applied magnetic field.

4. Concluding remarks

We have shown that the combination of Rashba SOC and atomic SOC leads to an electron-
density dependent magnetization anisotropy in LAO/STO interfaces. While experiments so
far appear to lie in the in-plane-magnetization region, we predict a switch to out-of-plane
magnetization at sufficiently high gate voltages. We have identified a regime near the band
edge with anisotropic susceptibility as a non-trivial effect of the Rashba SOC in a low carrier
density system. The high density of states near the band edge in principle also allows for a
spontaneous orbital ordering and we predict in this regime an enhanced coupling between
the magnetization direction and this kind of nematic order. This coupling locks the in-plane
magnetization direction to be along one of the crystal axes and promotes Ising nematicity.

Next, we comment on the issue of heterogeneity detected in [8]. The observed
heterogeneity is likely driven by both extrinsic and intrinsic effects. For instance, a recent
study showed that strong Rashba SOC can promote phase separation [20]. The proposed
magnetization–nematicity coupling has important consequences in both extrinsic and intrinsic
fronts. On the one hand, oxygen vacancies and other spatial inhomogeneities act as a random
field for the Ising nematic and in turn cause a distribution of moment directions. On the other
hand, the reduction of the magnetic order parameter symmetry due to the coupling changes the
type of magnetic textures and their energetics. Furthermore, we expect the coupling to cause

4 Even if strong correlations drive orbital order there will be no qualitative change in the effect of the coupling λ

in driving the in-plane magnetization anisotropy.
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non-trivial in-plane anisotropy in the magneto transport [21]. Moreover, the sign change in the
coupling λ could be observed through the rotation in the dominant direction upon gate voltage
sweep. Finally, we note that the range in the density with magnetization–nematicity near the
band edge of the quasi-1D bands has also been shown to exhibit critical scaling in recent Hall
measurement [13].
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[14] Popović Z S, Satpathy S and Martin R M 2008 Origin of the two-dimensional electron gas carrier density at

the LaAlO3 on SrTiO3 interface Phys. Rev. Lett. 101 256801
[15] Santander-Syro A F et al 2011 Two-dimensional electron gas with universal subbands at the surface of SrTiO3

Nature 469 189–93
[16] Caviglia A D, Gabay M, Gariglio S, Reyren N, Cancellieri C and Triscone J-M 2010 Tunable Rashba

spin–orbit interaction at oxide interfaces Phys. Rev. Lett. 104 126803

New Journal of Physics 15 (2013) 023022 (http://www.njp.org/)

http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/PhysRevB.85.035116
http://dx.doi.org/10.1038/nmat3223
http://dx.doi.org/10.1038/nmat1931
http://dx.doi.org/10.1038/nature07576
http://dx.doi.org/10.1126/science.1146006
http://dx.doi.org/10.1038/nphys2079
http://dx.doi.org/10.1038/nphys2080
http://dx.doi.org/10.1063/1.341397
http://dx.doi.org/10.1088/0953-8984/10/14/012
http://dx.doi.org/10.1038/ncomms2116
http://dx.doi.org/10.1103/PhysRevLett.101.256801
http://dx.doi.org/10.1038/nature09720
http://dx.doi.org/10.1103/PhysRevLett.104.126803
http://www.njp.org/


10

[17] Kalisky B, Bert J A, Klopfer B B, Bell C, Sato H K, Hosoda M, Hikita Y, Hwang H Y and Moler K A 2012
Critical thickness for ferromagnetism in LaAlO3/SrTiO3 heterostructures Nature Commun. 3 922

[18] Raghu S, Paramekanti A, Kim E A, Borzi R A, Grigera S A, Mackenzie A P and Kivelson S A 2009
Microscopic theory of the nematic phase in Sr3Ru2O7 Phys. Rev. B 79 214402

[19] Levitin R Z and Markosyan A S 1988 Itinerant metamagnetism Sov. Phys.—Usp. 31 730
[20] Caprara S, Peronaci F and Grilli M 2012 Intrinsic instability of electronic interfaces with strong Rashba

coupling Phys. Rev. Lett. 109 196401
[21] Fischer M H et al in preparation

New Journal of Physics 15 (2013) 023022 (http://www.njp.org/)

http://dx.doi.org/10.1038/ncomms1931
http://dx.doi.org/10.1103/PhysRevB.79.214402
http://dx.doi.org/10.1070/PU1988v031n08ABEH004922
http://dx.doi.org/10.1103/PhysRevLett.109.196401
http://www.njp.org/

	1. Introduction
	2. Anisotropic susceptibility
	3. Orbital order and magnetization
	4. Concluding remarks
	Acknowledgments
	References

