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Abstract
With rapid progress across platforms for quantum systems, the problem of many-body quantum
state reconstruction for noisy quantum states becomes an important challenge. There has been a
growing interest in approaching the problem of quantum state reconstruction using generative
neural network models. Here we propose the ‘attention-based quantum tomography’ (AQT), a
quantum state reconstruction using an attention mechanism-based generative network that learns
the mixed state density matrix of a noisy quantum state. AQT is based on the model proposed in
‘Attention is all you need’ by Vaswani et al (2017 NIPS) that is designed to learn long-range
correlations in natural language sentences and thereby outperform previous natural language
processing (NLP) models. We demonstrate not only that AQT outperforms earlier
neural-network-based quantum state reconstruction on identical tasks but that AQT can accurately
reconstruct the density matrix associated with a noisy quantum state experimentally realized in an
IBMQ quantum computer. We speculate the success of the AQT stems from its ability to model
quantum entanglement across the entire quantum system much as the attention model for NLP
captures the correlations among words in a sentence.

With rapid progress in modern quantum devices [1], the characterization and validation of large quantum
systems becomes an important challenge. Quantum state tomography offers a comprehensive
characterization of quantum systems [2]. However, the exponential-in-Nq Hilbert space of Nq-qubit
many-body states implies that exact tomography techniques, such as Gaussian maximum likelihood
estimation (MLE) [3], require exponential-in-Nq amount of data as well as an exponential-in-Nq time for
processing. Such prohibitive costs limit exact density matrix reconstruction to small system sizes Nq ≲ 10. In
fact, the tomographic measurement method that is integrated into IBM’s Qiskit library is limited to Nq = 3.
Hence, many experiments rely on indirect methods of error determination, for example variants of
randomized benchmarking [4]. Indeed there are efforts to directly estimate properties of quantum states
from measurements showing promising scaling [5]. Nevertheless, the scalability of this approach depends
crucially on the availability of global entangling gates acting on all qubits simultaneously, which are outside
the reach of experimental systems. Thus, new strategies for the characterization of noisy, entangled
many-body quantum states using experimentally realistic measurements are much needed.

Recently, there has been a rapidly growing interest in using machine learning tools, such as deep neural
networks, for quantum state reconstruction through generative modeling [6–8]. The foundation for this
approach was laid in [9], which trained a restricted Boltzmann machine to represent complex quantum
many-body states without requiring exponentially many parameters or memory size. However, the
expressibility of restricted Boltzmann machines and scalability of training is typically restricted to pure,
positive quantum states [6, 9–12], single quantum oscillators [13], and small mixed states [14], which limits
their applicability at the scale of modern noisy quantum computers. In contrast, Carrasquilla et al [7]
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Figure 1. (a) We illustrate the self-attention mechanism, which is key to the success of the transformer architecture. Left: the
transformer describes the ‘state’ of Wikipedia after self-attention learns the correlations among words in the sentence specific to
Wikipedia. Right: the AQT reconstructs the density matrix of a noisy mixed state (pictured: IBMQ) after self-attention learns the
entanglement among qubits as it is reflected in projective measurements of the quantum state. (b) A flowchart illustration of
attention-based quantum tomography (AQT), including a schematic diagram showing the internal structure of the transformer
neural network. In our work, we use Nl = 2 layers and 64-dimensional embedding (see supplement ‘transformer neural network’
for a detailed discussion of the transformer architecture in AQT).

demonstrated, using a recurrent neural network (RNN), that generative neural network models trained on
informationally complete positive operator-valued measurements (IC-POVM) may be capable of providing
a classical description of a noisy quantum many-body state (see supplement (available online at
stacks.iop.org/MLST/3/01LT01/mmedia) ‘Informationally complete positive operator-valued measurements’
for a brief introduction to the POVM formalism and a discussion of the POVM employed in this work).
However, RNN-based tomography has so far only been demonstrated on classically simulated data, and
despite promising indications, its ability to reconstruct a full density matrix has not been demonstrated even
in simulation.

The attention-based quantum tomography (AQT) adapts the transformer architecture, a generative
neural network model recently developed for natural language processing (NLP) tasks [15], for the task of
quantum state tomography. We begin by giving an intuition behind the transformer and the rationale for its
suitability for the tomography task. We then demonstrate that AQT outperforms a previous RNN-based
approach by a significant reduction in the sample complexity of the reconstruction procedure. We also
simulate a simple faulty-qubit model and demonstrate the promise of AQT in the task of mixed-state
reconstruction. Next, we deploy AQT on experimental data from IBMQ’s quantum computer, showing
strong qualitative agreement with MLE. Finally, we demonstrate reconstruction of a density matrix with a
system size that exceeds the reach of the tomographic tools offered publicly by IBMQ [16].

The rationale behind the AQT is our observation of a promising parallel between the task of NLP and
quantum state tomography (see figure 1(a)). Sentences in natural language are highly structured with
long-range relationships among their constituent words. Learning a language with an NLP model is the task
of learning such structures and relationships by training on a set of sample sentences that constitute an
extraordinarily tiny fraction of the complete set of all possible word combinations in the language. In more
technical terms, this means training an autoregressive model to encode the conditional probabilities that
govern which words may appear in which location in a sentence given the words that have come before it. In
quantum state tomography, the key insight is that the density matrix representation of a quantum state is
equivalent to the probability distribution of IC-POVM outcomes. Like sentences in natural language,
entangled quantum states feature long-range correlations among their constituent qubits. The task of
tomography is to learn this quantum state from a number of projective measurement outcomes that are as
small as possible compared to the total space of projective measurement outcomes.

The transformer [15], which is the neural network architecture used in AQT, is an autoregressive model
that employs the ‘attention’ mechanism [17–19]. It has been shown to be a dramatic step forward in efficiency
and accuracy compared to previous state-of-art NLP models such as RNN [20, 21]. Before the transformer,
NLP tasks primarily relied on the RNN architecture [22, 23], which incorporates correlations between words
by passing an encoded ‘memory’ of the words going back to the beginning of the sentence as each new word
was read in sequentially. However, the correlations captured in this approach are inherently short-ranged, as
the encoded memory in a sequential model such as the RNN suffers from exponential suppression in
correlation [24]. The challenge of long-range correlations in semantic modeling were addressed with the
transformer architecture, which uses self-attention to study correlations between all words in a sentence
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simultaneously. As qubits in a many-body entangled quantum state have can have arbitrarily long-range
entanglement, we can anticipate that the ability of the self-attention mechanism of the transformer to
capture long-range correlations among different positions of the data will be well-adapted to tomography.

As we schematically depict in figure 1(b), AQT takes as input a set of positive operator-valued
measurement (POVM) outcomes, whether from a simulation or a real quantum device, and returns the
reconstructed density matrix as output. The transformer in AQT trains on a data set of N s one-shot local
POVM outcomes {⃗ai}Ns

i=1 of a quantum state ρ, where each measurement is a vector a⃗i ∈ {1, . . . ,Na}⊗Nq

sampled from the distribution:

pρ(⃗a) = Tr[Ma⃗ρ], (1)

whereMa⃗ = (Ma)⊗Nq are the operators defining the POVM. From this data, the transformer learns a
distribution pT(⃗a) which is ideally close to pρ and serves as a generative model that can sample from pT in
linear-in-Nq time. Once this training procedure is complete, equation (1) can then be inverted for an

appropriately chosen POVM. The POVM T-matrix is defined as Ta⃗,⃗a ′
= Tr

[
Ma⃗Ma⃗ ′

]
. If Ta⃗,⃗a ′

is invertible,

the reconstructed density matrix ρT can be computed from the learned POVM distribution pT(⃗a) in a
post-processing step:

ρ=
∑
a⃗,⃗a ′

pT(⃗a)T
−1
a⃗,⃗a ′M

a⃗ ′
. (2)

In this work, we use the Pauli POVM, which is invertible and easily accessible in the IBMQ quantum
computers [7].

Our target state both in experiment and in classical simulations will be the Nq-qubit
Greenberger–Horne–Zeilinger (GHZ) state:

|GHZ⟩Nq =
1√
2

(
|0⟩

⊗
Nq + |1⟩

⊗
Nq
)
, (3)

with system sizes ranging from Nq = 3 to 90 qubits. We choose the GHZ because it is a pure state of interest
for quantum communication protocols and we can benchmark our results against others in the literature,
including those that do not reconstruct the full density matrix [5, 7].

A comprehensive measure of reconstruction is the quantum fidelity:

FQ(ρ0,ρ1) =

(
Tr

[√√
ρ0ρ1

√
ρ0

])2

, (4)

where ρ0 is the target density matrix against which we compare the reconstructed density matrix ρ1.
Quantum fidelity in general requires full density matrix reconstruction [25]. We will carry out full density
matrix reconstruction for small system sizes (Nq ⩽ 6), for which we will be able to evaluate the exact
quantum fidelity. However, in order to benchmark our results against the earlier works using neural
networks, we initially investigate the classical fidelity, which can be used when the state reconstruction only
yields measurement probabilities:

FC(p0,p1) =
∑
a⃗

√
p0(⃗a)p1(⃗a). (5)

Here the sum is over all IC-POVM outcomes a⃗= (a1,a2, . . . ,aNq), ai ∈ {1,2, . . . ,Na} and p0 and p1 represent
the measurement statistics of an IC-POVM over states ρ0 and ρ1, respectively. Even though the classical
fidelity contains a number of terms exponential in Nq, it is possible to estimate FC(p0,p1) efficiently by

sampling from the generative model representing p1, i.e. FC(p0,p1) =
∑⃗
a
p1(⃗a)

√
p0 (⃗a)
p1 (⃗a)

=
∑
a⃗∼p1

√
p0 (⃗a)
p1 (⃗a)

, where

the final sum is an average over a⃗ sampled from the distribution p1(⃗a). This choice is enabled by the
transformer architecture, which allows for both exact sampling from p1 and the exact calculation of p1(⃗a) for
any choice of a⃗ in time linear-in-Nq. However it should be noted that the classical fidelity only provides an
upper bound on the quantum fidelity [7], and the discrepancy can be substantial [5].

We first benchmark AQT against previous state-of-art neural quantum state tomography using RNN.
Carrasquilla et al [7] studied an Nq-qubit GHZ state, with Nq = 10–90, using classically sampled
measurements, and demonstrated that N∗

s (Nq), the minimum size of training data for which the RNN can
achieve a classical fidelity of 0.99, increases linearly with Nq. In figure 2(a), we demonstrate a similarly linear
dependence of N∗

s on Nq using AQT, indicating that these NLP models can indeed learn non-trivial
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Figure 2. (a) Log–log plot demonstrating scaling of necessary sample size N∗
S for fixed classical fidelity FC = 0.99 in number of

qubits Nq using RNN [7] and the AQT. (b) Quantum fidelity FQ of states reconstructed using AQT, where each state was created
with error rate p, which is the error parameter in the simulation to be characterized by the reconstruction. From FQ we can read
off the error rate as p= 1− FQ. The expected result FQ = 1− p is plotted in dashed grey.

information about a quantum state from an amount of data that grows sub-exponentially with the system
size. However, AQT exhibits an order-of-magnitude improvement in the sample complexity of learning the
GHZ state compared to RNN tomography with a comparable slope dN∗

s /dNq. As we will see shortly, this
improvement in learning ability from RNN to AQT is even more dramatic in the task of density matrix
reconstruction and quantum fidelity estimation, which is significantly more challenging than the task of
achieving a good classical fidelity, and thus was out of reach for RNN tomography [26].

We now investigate the AQT’s performance on a mixed state with a built-in simulated error. We consider
a 3-qubit GHZ system and assume there is one faulty qubit, which we pick to be qubit-0. We assume that the
faulty qubit flips (0↔ 1) with probability p. More precisely, this represents the mixed state:

ρerr(p) = (1− p)|GHZ⟩3⟨GHZ|3 + p|ψ⟩3⟨ψ|3, (6)

where |ψ⟩3 = 1√
2

(
|100⟩+ |011⟩

)
. For the small number of qubits that we study, we are able to compute the

exact quantum fidelity. First, we consider the fidelity between the reconstructed state and the noisy state in
equation (6), for which we find FQ(ρmodel,ρerr) = 1 within statistical error. This demonstrates that the AQT is
sufficiently expressive to support a successful training procedure. To facilitate comparison to an experimental
setting where p is a priori unknown, we compute the fidelity of the ‘realized’ density matrix ρmodel to the
‘target’ density matrix ρGHZ, which is the error-free pure GHZ state. The numerical results for p= 0.0∼ 0.3
displayed in figure 2(b) are consistent with the expectations from the built-in error (see supplement ‘Error
model # 2’ for another model of error for the 3-qubit GHZ state). Note that as the density matrix
reconstructed in AQT is not guaranteed to be positive, FQ ⩽ 1 is also not guaranteed. However, we find that
the negative eigenvalues are less significant as the quality of reconstruction is increased (see supplement
‘positive density matrix reconstruction’ for a discussion of scaling of negative eigenvalues in sample size as
well as one possible approach for positive density matrix reconstruction).

Next, we benchmark the AQT against the MLE algorithm that is built into the IBM Qiskit library by
performing tomography using the two approaches on the measurements taken on IBMQ_OURENSE on a
3-qubit system (figure 3). For the reconstruction we took 100 measurements in each of 33 = 27 possible
measurement configurations, for a total of 2700 measurements. Figure 3 shows two reconstructed density
matrices using the usual graphical representation. Here, each bar represents a matrix element, in general
complex, with the bar height set by its absolute value. The tall bar to the left is the density matrix element
|000⟩⟨000|, the bar to the rear is |000⟩⟨111|, and so on. Note that the matrix elements represented by the bars
in the rear and front are related by complex conjugation. The AQT-reconstructed density matrix is in strong
qualitative agreement with the MLE reconstruction, capturing the error in realizing the GHZ state on the
quantum computer. From the transformer reconstruction, we find an exact quantum fidelity to the target
pure GHZ state of FQ = 0.917, while the MLE reconstruction has fidelity 0.897 [27]. These results give a
mutually consistent estimation of the reliability of the IBMQ_OURENSE quantum computer. The advantage
of AQT as compared to exact tomographic methods such as MLE is that AQT can be scaled to larger systems.

To further demonstrate the characterization ability of AQT, we reconstruct the density matrix for a
6-qubit GHZ state, already beyond the tomography functionality offered in Qiskit (see figure 4). We use
classically generated data sampled from the noise-free GHZ state rather than data from IBMQ. (This is due
in part to limited number of POVMmeasurements publicly accessible with IBMQ.) The reconstructed
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Figure 3. Benchmarking AQT (a) to MLE tomography offered by IBM’s Qiskit library (b) for a noisy 3-qubit GHZ state data
generated on the IBMQ_OURENSE quantum computer. Each bar represents the absolute value of a density matrix (DM) element.

Figure 4. Reconstructed density matrix of the 6-qubit GHZ state, using classically generated data. Each bar represents the absolute
value of a matrix element.

density matrix in figure 4 uses a total of 200 000 measurements and has quantum fidelity 0.977. The
reconstructed IC-POVM probability distribution p1 (see equation (5)) is in excellent agreement with the
GHZ state, as expected from figure 2(a). Namely, achieving classical fidelity of FC = 0.99, which directly
measures the accuracy of p1 reconstruction, for a 6-qubit state requires even fewer than the 3000
measurements required for the 10-qubit state. On the other hand, the reconstruction of the full density
matrix ρ1 shows noise even with 200 000 measurements, though it is still in reasonable agreement with the
GHZ state (see supplement ‘Reconstruction of Dicke states’ demonstrating reconstruction of simulated 3-
and 6-qubit Dicke states with 2700 and 72 900 measurements for comparison). In general, an accurate
reconstruction of ρ1 requires much more data and computing time than an accurate reconstruction of p1,
since even small errors in p1 are amplified into large errors in ρ1. This is a restatement of the well-known fact
that classical fidelity is an upper bound on quantum (exact) fidelity. Exact error-scaling analysis in the
number of samples is in general NP-hard [28] and remains an open question in AQT. The scaling of the
POVM probability mean-squared error (MSE) in sample size N s for the 6-qubit GHZ state suggests that the
AQT error scaling is comparable to statistical scaling MSE∼ N−0.5

s , but with a significant reduction in
overall magnitude compared to directly using the data (see supplement ‘transformer advantage’ for a detailed
discussion of error scaling in sample size in AQT).
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In summary, we proposed the AQT which adopts elements of the transformer, a generative deep neural
network for NLP, to the task of quantum state tomography. The AQT outperformed earlier neural quantum
tomography based on the RNN architecture on an identical task, demonstrating a significant enhancement
in the sample complexity of the reconstruction. This suggests that the AQT provides a nontrivial inductive
bias suitable for the reconstruction of entangled states such as the ones considered in our experiments. We
constructed a qubit-error model and showed that AQT provides a reliable estimate of a priori unknown
quantum mixed states and error rates in our specific setting. We then demonstrated for the first time that a
machine learning based tomographic technique can reliably reconstruct the noisy density matrix of an
entangled state, by reconstructing the 3-qubit GHZ state realized by a quantum computer provided publicly
by IBMQ. Furthermore, using AQT we have reconstructed a 6-qubit GHZ state, which is a tomography task
of a size beyond the reach of the tomography functionality in IBM Qiskit’s software.

To the best of our knowledge, AQT represents the first machine-learning based approach to successfully
reconstruct density matrices describing the states produced in an experimentally realized quantum
computer. AQT offers a substantial improvement in sample complexity over next-leading neural-network
based tomographic methods, and is demonstrably capable of reconstructing noisy, full-rank states from
experimental measurements. AQT is competitive with MLE in arbitrary density matrix reconstruction at
small system sizes, but is also capable of POVM state characterization at large system sizes. Furthermore,
AQT is designed to work with experimentally realizable local POVMmeasurements, without requiring
globally-acting gates which are inaccessible in current experimental systems. Finally, AQT requires no
assumptions about the entanglement structure or purity of the state being reconstructed and is expressive
enough to characterize arbitrary states. With these features, AQT represents not only a leap forward in the
cooperation of machine-learning and near-term quantum computing, but a powerful tomographic method
uniquely suited to bridging the gap between simulation and experiment in the emerging era of noisy,
intermediate-scale quantum computing.

AQT holds much promise for future progress. Because AQT learns a POVM representation of the
quantum state that can be used to compute operator expectation values, a future investigation of AQT as a
platform for shadow tomography will be fruitful. This work has been largely based on the GHZ state,
facilitating a comparison with previous works without full density matrix reconstruction. Nevertheless the
AQT is not inherently limited to a special pure state, and an examination of how N∗

s scales with Nq in states
with more complex entanglement will provide much insight into machine-learning based tomography. Tests
on a bigger experimental system and other architectures will help us determine the full scalability of the AQT.
Furthermore, whether the AQT approach can build on the initial insight from our elementary error model
towards more sophisticated error modeling and assessment to complement gate-set tomography [29, 30]
would be also an interesting direction.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/KimGroup/AQT.
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