
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 128.84.241.86

This content was downloaded on 07/10/2014 at 18:43

Please note that terms and conditions apply.

Non-abelian statistics in the interference noise of the Moore–Read quantum Hall state

View the table of contents for this issue, or go to the journal homepage for more

J. Stat. Mech. (2008) L04001

(http://iopscience.iop.org/1742-5468/2008/04/L04001)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-5468/2008/04
http://iopscience.iop.org/1742-5468
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.S
tat.M

ech.
(2008)

L04001

ournal of Statistical Mechanics:
An IOP and SISSA journalJ Theory and Experiment

LETTER

Non-abelian statistics in the
interference noise of the Moore–Read
quantum Hall state

Eddy Ardonne1,2 and Eun-Ah Kim3

1 Center for the Physics of Information, California Institute of Technology,
Pasadena, CA 91125, USA
2 Microsoft Station Q, University of California, Santa Barbara, CA 93106, USA
3 Stanford Institute for Theoretical Physics and Department of Physics,
Stanford University, Stanford, CA 94305, USA
E-mail: ardonne@nordita.org and eunahkim@stanford.edu

Received 14 February 2008
Accepted 10 March 2008
Published 8 April 2008

Online at stacks.iop.org/JSTAT/2008/L04001
doi:10.1088/1742-5468/2008/04/L04001

Abstract. We propose noise oscillation measurements in a double point
contact, accessible with current technology, to seek for a signature of the non-
abelian nature of the ν = 5/2 quantum Hall state. Calculating the voltage and
temperature dependence of the current and noise oscillations, we predict the non-
abelian nature to materialize through a multiplicity of the possible outcomes: two
qualitatively different frequency dependences of the nonzero interference noise.
Comparison between our predictions for the Moore–Read state with experiments
on ν =5/2 will serve as a much needed test for the nature of the ν=5/2 quantum
Hall state.
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Non-abelian quantum Hall (QH) states, such as the Moore–Read (MR) QH state [1],
are considered to be the most promising route [2] to fault tolerant topological quantum
computation [3]. The possibility of the ν =5/2 QH plateau [4] being the MR state [5, 6]
attracted interests from a wide range of fields: from string theory to solid state physics.
A configuration of many non-abelian excitations, such as MR quasi-holes/particles
(qhs/qps), is associated with a set of degenerate states. An exchange of two such
excitations amounts to a rotation in the degenerate state space: the most exotic form
of statistics allowed in two space dimensions. For the MR state, the 2n qh state is 2n−1

fold degenerate [7] and four qhs can form a single quantum bit (qubit). This notion is at
the heart of the current enthusiasm for the MR state, from both a fundamental science
and an application oriented view. However, non-abelian statistics has not been observed
to date.

There are proposals for detecting non-abelian statistics of the MR state by exploiting
the braiding properties of underlying Chern–Simons theories [8]–[12]. Effects of non-
abelian statistics on the non-linear transport of a single point contact have also been
predicted [13, 14]. While a signature of non-abelian statistics is yet to be observed, a
recent experiment [15] demonstrated the feasibility of a ν =5/2 single point contact (PC),
whose qualitative tunneling characteristics are those of the MR edge state. Thus, the
edge states can be used as probes [16] of the exotic topological order associated with the
ν =5/2 state.

In this letter, we propose feasible noise measurements in a double PC interferometer
and give a detailed prediction of clear, qualitative signatures of the non-abelian statistics
at finite temperature and voltage. A noise spectrum is a powerful probe for the nature
of excitations since it is determined by the dynamical properties containing information
about the excited states. It is well known (see [17]) that the noise spectrum of an electronic
system in an appropriate geometry can contain statistics-dependent features that are not
contained in the dc conductance. It is natural to expect that the noise spectrum of strongly
interacting systems, such as quantum Hall liquids, should exhibit an even richer behavior
such as the one found in the case of the abelian fractional QH states ([18]), and for the
non-abelian case in this paper. Here we focus on the double PC setup for two reasons. (i)
It is the only interferometer that has been experimentally realized in (abelian) fractional
QH states [19] which was subsequently analyzed theoretically [20]. (ii) By attaching leads
to the edge states of this setup it is possible to realize the physical situation of the four-qh
state which is the simplest state in which the consequences of their non-abelian statistics
become directly observable. We examine the oscillatory part of the noise as a cross-current
fluctuation and present the leading-order perturbation theory result. Our results apply
to both abelian and non-abelian cases. In addition, we provide an interpretation of the
‘even–odd effect’ [9, 10] in the context of the edge state theory.

Double PC interferometer. The double PC setup was first proposed as a testbed for abelian
fractional statistics [22], and there have been discussions on using the setup to detect
non-abelian statistics [8]–[10], [23]. It was first pointed out in [23] that the interference
between two different paths of adiabatic transport surrounding a region with localized qhs
can be used to measure the associated non-abelian braiding. While this picture provides
conceptual intuition, an explicit calculation in terms of the edge theory is still needed.

The edge state theory relevant for the low-energy dynamics of gapless edge excitations
of the MR state consists of two parts: the standard free chiral boson ϕc describing the
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Figure 1. The double point contact setup, indicating the four positions xi,
i = 1, . . . , 4 associated with the point contacts 1 and 2, in terms of the chiral
abscissa coordinate x (defined modulo 2a + 2L) for the chiral edge.

charge modes [24] with Lc = 1/(2π)∂xϕc(∂t+v∂x)ϕc, where v is the edge mode velocity,
and an additional charge neutral part: the chiral Ising conformal field theory (CFT), with
a free Majorana field ψ and the spin-field σ [16]. The non-abelian nature of the Ising
CFT is encoded in the fusion rule σ×σ = 1+ψ, which makes the correlator of multiple

σ’s to form multi-dimensional conformal blocks [25]. The qh creation operator σei/
√

8ϕ(z)
(z≡ i(vt−x)) is the most relevant operator in the renormalization group sense.

The manifestly relativistic nature of the edge CFT in 1 + 1 dimensions reflects
the general covariance (or topological invariance) of the underlying 2 +1-dimensional
Chern–Simons theory [26], as a low-energy effective field theory of the quantum Hall

liquid [23, 27]. An edge qh operator σei
√

8ϕ(z) ‘marks’ a point on the 1+1 D surface,
which corresponds to an end point of a Wilson line in the 2 + 1 D Chern–Simons
theory bounded by the surface (see figure 2(a)). Witten first showed that the multi-
dimensionality of CFT correlators represented by the fusion rules reflects the non-
abelian statistics of the corresponding qhs/qps represented by the associated Wilson
lines. Moore and Read [1] proposed to interpret CFT correlators to represent many-
body wavefunctions for quantum Hall states, now with the complex coordinate z ≡
x + iy defined in 2 + 0 dimensions (see figure 2(b)). The MR state wavefunction so
constructed from the Ising CFT became a candidate description of the ν =5/2 state [5].
Nayak and Wilczek [7] further demonstrated the non-abelian nature of the four-qh
wavefunction through explicit exchange operations. While the wavefunction gives a clear
physical picture of the nature of the state, it in itself is not a measurable quantity.
On the other hand, the edge CFT can bridge between the theoretical structure and
measurements.

We start by observing that a double PC allows one to access the four-σ correlator in
the 1+1 D edge CFT (figure 2(a)). A quantum mechanical tunneling event annihilates
a particle at one side of a point contact while creating one on the other side. Tunneling
response naturally calls for contributions from four point functions with different ordering
of σ operators in this event space, at leading order. Hence, the tunneling response
incorporates the effects of exchange in the 1+1 D event space.

Perturbative calculation. We model the double PC setup with separation a between two
PCs using a single abscissa coordinate x, defined modulo 2a+2L (see figure 1) and time t,
which parameterize a cylinder. By taking the limit L → ∞ at the end of the calculation,
we take the effect of the leads into account properly without allowing the edge current to
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Figure 2. Four points marked in (a) 1+1 D ‘event’ space and in (b) 2+0 D space.
CFT correlators associated with marked points are interpreted as (a) ‘vacuum
expectation values’ associated with current carrying gapless edge modes (the
black lines represent the Wilson lines, see text), (b) ‘wavefunctions’ associated
with excitation configurations with finite energy.

go around the whole sample4. While it is typical to combine two chiral modes to form a
single non-chiral mode [14, 22], it is not possible to take such approach for a MR multi-
PC setup without losing the information about its intricate topological structure. Our
procedure allows us to describe the system using a single chiral edge mode; we checked it
against the non-chiral mode approach in the abelian case [29].

The operators which tunnel a qp at PCs 1 and 2 are

V̂1(t) = σ(x1, t)σ(x2, t)e
i/
√

8ϕc(x1,t)e−i/
√

8ϕc(x2,t),

V̂2(t) = σ(x3, t)σ(x4, t)e
i/
√

8ϕc(x3,t)e−i/
√

8ϕc(x4,t),
(1)

which accounts for the creation and annihilation of qps on opposite edges at equal time
(we note that σ is self dual). The appropriate tunneling Hamiltonian and the current

operator are then Ĥtun(t) =
∑

j Γj(t)V̂j(t) + h.c. and Î(t) = ie∗
∑

j Γj(t)V̂j(t) + h.c. [21].

Here the time-dependent tunneling strength is given by Γj(t) = Γje
iω0t, with ω0 = e∗V

�

the Josephson frequency and e∗ = e/4 the charge of the tunneling quasi-particle. In a
magnetic field, the Aharonov–Bohm phase acquired by tunneling qps can be effectively
incorporated through a flux-dependent relative phase between two tunneling amplitudes
as Γ1Γ

∗
2 = |Γ1Γ2|eiφ/Φ0 [22]. We will assume that the tunneling is sufficiently weak at finite

temperature and voltage and that the lowest Landau level is inert. We only consider
tunneling of the most relevant quasi-holes.

We now calculate the average steady state current

〈Î〉 = −i

∫ t

−∞
dt′〈[Î(t), Ĥtun(t

′)]〉, (2)

which in general is a highly non-linear function of V and T for finite separation a, and
the non-equilibrium noise

S(ω) = 1
2

∫ ∞

−∞
dt′eiωt′〈{Î(t), Î(t′)}〉, (3)

4 This approach was carefully adopted in a different context in [28].
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which we define as the usual two point correlations involving the operator Î [21]. Notice
that the current, which is a causal response, involves a commutator, while the noise, which
is a fluctuation, involves an anti-commutator. This basic fact, when applied to 1 + 1 D
edge tunneling transport, has non-trivial consequences, both in that equations (2) and (3)
require exchange in the event space and that one is restricted by causality while the other
is not. It is amusing that both equations (2) and (3) explicitly depend on the four-σ
correlator at lowest order in Γ, which can take two possible values due to the non-abelian
nature of the σ operators. We label these two possibilities by p = 0, 1.

To leading order, the current and noise are (e∗=1)

〈Î〉(p) ≡ 〈Î〉(p)
d + cos

(
φ

Φ0

)

〈Î〉(p)
osc

= �
∫ ∞

0

dt
2∑

j,k=1

ΓjΓ
∗
k[e

−iω0t(〈V̂jV̂
†
k 〉(p)(t) − 〈V̂ †

k V̂j〉(p)(t))]Ω, (4)

〈S(ω)〉(p) ≡ 〈S(ω)〉(p)
d + cos

(
φ

Φ0

)

〈S(ω)〉(p)
osc

= �
∫ ∞

−∞
dt

2∑

j,k=1

ΓjΓ
∗
k[e

i(ω−ω0)t(〈V̂jV̂
†
k 〉(p)(t) + 〈V̂ †

k V̂j〉(p)(t))], (5)

with the Aharonov–Bohm oscillatory parts which require coherence between two PCs,
and the direct parts which only involve a single PC. The correlators 〈V̂jV̂

†
k 〉(p)(t)’s can

be calculated at finite temperature T (in units where kB = 1 and v = 1) in terms of
s(x, t) ≡ i sinh(πT (x + t)) using the standard conformal mapping:

〈V̂1V̂
†
2 〉(p)(t) =

√
πT/2

(−1)ps(a + L, t)1/4s(−a − L, t)1/4

s(−L, t)1/4s(−a − 2L, t)1/4s(a, t)1/4s(−a, t)1/4

×

√
√
√
√1 + (−1)p

√
s(a, t)s(−a, t)

s(a + L, t)s(−a − L, t)
. (6)

Here, the overall phase (−1)p is determined by requiring that the current flows in the
direction of the applied bias voltage. We used the chiral boson correlator combined with
the four-σ correlator

〈σ(z1)σ(z2)σ(z3)σ(z4)〉(p)

=
1√
2
(z1 − z2)

−1/8(z3 − z4)
−1/8(1 − ξ)−1/8

√

1 + (−1)p
√

1 − ξ, (7)

with the cross-ratio ξ = (z1 − z2)(z3 − z4)/(z1 − z4)(z3 − z2) [25]. Note that this
expression is valid for |z1| < |z2| < |z3| < |z4|. For other orderings, one has to analytically
continue the expression above.
Hearing the non-abelian statistics. Rather unexpectedly, we find that the channel
dependence, a hallmark of non-abelian statistics, shows up in the noise but not in the
current. This is due to an intriguing interplay between the inherently relativistic nature
of the edge state theory and the causal nature of current as a response. The evaluation
of the tunneling current and the noise of equations (4) and (5) requires combining four
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Figure 3. The (dimensionless) amplitude of the noise oscillations 〈S(ω)〉(p)
in

two states (0) (left) and (1) (right) for a = 5 μm, V = .38 μV (ω0 = 100 MHz),
v=1.107 m s−1, for various temperatures.

different terms of the type 〈V̂jV̂
†
k 〉(p)(t). Explicitly exchanging these operators by means

of analytic continuation, with much attention to branch cuts and taking the limit L → ∞
afterward, we find for the Aharonov–Bohm oscillation amplitude of the current and the
noise [29]

〈Î〉(p)
osc = 4e∗

√
πT |Γ1Γ2|

∫ ∞

a

dt
sin(ω0t)

sinh(πT (t − a))1/4 sinh(πT (t + a))1/4
, (8)

〈S(ω)〉(p)
osc = 4(e∗)2

√
πT |Γ1Γ2| ×

( ∫ ∞

a

dt
cos((ω + ω0)t) + cos((ω − ω0)t)

sinh(πT (t − a))1/4 sinh(πT (t + a))1/4

+ (−1)p

∫ a

0

dt

√
2(cos((ω + ω0)t) + cos((ω − ω0)t))

sinh(πT (t − a))1/4 sinh(πT (t + a))1/4

)

. (9)

The direct, single PC contributions which yields the shot noise results (S(0) = e∗〈I〉) can
be obtained from equations (8) and (9) by taking the limit a → 0. The above results can
be generalized to other fractional QH states in a straightforward manner. Note that for
(abelian) Laughlin states at filling ν = 1/m, the exponents change from 1/4 to 1/m, and
only the p=0 state is possible.

The state (p) dependence only appears in the second term of the noise oscillation
equation (5), which is absent in the single PC limit. In order to understand this we note
that the ‘light cone’ |t|=a (here the speed of light is the edge mode speed v≡1) divides the
causally connected (time-like separated) region |t|>a from the space-like separated region
|t|< a, for the correlator equation (6). Due to the branch cut structure, the correlators
behave differently under exchange of operators in these two event space regions, and we
find the channel dependence to vanish in any causally connected regions (|t| > a) [29].
Hence the current, which is a causal response (see equation (2)), is state independent. In
contrast, the noise, which is a fluctuation unrestricted by causality (see equation (3)), will
display state dependence when the space-like separated contribution is significant.

Figure 3 shows a clear, qualitative difference in the frequency dependence of the noise
oscillations in the two states: p = 0 and p = 1. Here we plotted the dimensionless noise

oscillation amplitude 〈S(ω)〉(p) ≡ 〈S(ω)〉(p)
osc/〈S(ω)〉d (assuming |Γ1| = |Γ2|) for different

temperatures and parameters within reach of current technology. We find that there is an
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Figure 4. Two distinct states of double PC. Left: a Wilson loop which can be
shrunk to a point. Right: a Wilson loop looping around both Wilson lines, which
is equivalent to two Wilson lines exchanging a ψ up to a factor of −

√
2.

optimal range for the distance a. If a is too small, the system reaches the single PC limit
without state dependence. On the other hand, if a becomes comparable to the thermal
decoherence scale set by T , interference features get washed out as exp(−aT ) [29]. The
qualitative difference in the two states traces back to the fact that the contributions from
two event space regions are added for state (0) while they are to be subtracted for state (1)
(see equation (9)). This relative negative sign for state (1) reflects the hidden Majorana
fermionic character of this state which is symbolically represented in the second term of
the fusion rule, σ × σ = 1 + ψ. Only in state (1) does the rearrangement of σ’s needed in
equations (4) and (5) effectively exchange two Majorana fermions. This fermionic nature
results in the decreasing concave frequency dependence.

Effect of localized qhs. The distinction between these two equally allowed states is the
configuration of bulk quasi-holes. We have depicted two topologically distinct Wilson
line configurations corresponding to states (0) and (1) in figure 4. The underlying braid
properties of the Wilson lines [29, 30] for the two configurations of figure 4 allow the
interference noise to access the two state nature (and hence the essence of the non-abelian
statistics) of the MR state. The observed result depends on the state of the system. For
instance, if the bulk quasiparticles are in a coherent linear superposition, the measured
noise will be a linear combination of the results for states (0) and (1). This is in contrast
to the abelian case which can only be in the pure state (0) since in this case the state is
unique [29]. Hence, even all possible superpositions will have a signature that distinguishes
the non-abelian state with two-dimensional Hilbert space from an abelian state.

The Aharonov–Bohm oscillations vanish for both the noise and the current when
the Wilson line of a qp–qh pair in the bulk loops around only one of the Wilson lines
associated with the tunneling. In this case, one pair of σ’s fuses to ψ while the other
fuses to 1, and thus the correlator equation (7) vanishes [29]. This is the edge-theory
interpretation of the even–odd effect [9, 10]. We have shown that there are two distinct
possibilities, which we called (0) and (1), within the non-vanishing ‘even’ case which is
evident in the interference noise. This provides an alternative way of looking for the
signature of non-abelian statistics, which can easily be generalized for other non-abelian
states.

Conclusion. We perturbatively calculated the tunneling current and noise of a double PC
interferometer in the MR quantum Hall state using the associated edge state theory. This
setup provides direct experimental access to the four-σ correlator which describes two
topologically distinct states. Exploiting the fact that the measurable quantities naturally
involve exchange in the event space, we find that the Aharonov–Bohm oscillatory noise
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can be used to ‘hear’ a clear signature of non-abelian statistics. We predict a qualitative
difference in the low-frequency behavior of the oscillatory noise between the two states.
Our detailed predictions for the voltage and temperature dependence can be compared
with future measurements. Due to the non-local entanglement between bulk and edge qhs,
which is tied to the non-abelian nature, the preparation of a system in a pure state of any
of the topologically distinct possibilities considered here or in [9, 10] requires the control
of pinned bulk qhs. The problem of how to effectively control the state is an important
and open question of direct relevance to experiments on non-abelian interferometers.

We thank P Bonderson, C Chamon, S B Chung, L Fidkowski, E Fradkin, M Freedman,
C Nayak, S Shenkar, J Slingerland, K Shtengel, Z Wang for illuminating discussions.
EAK was supported by the Stanford Institute for Theoretical Physics and in part by the
Microsoft Station Q.
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