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Half-filled Landau levels form a zoo of strongly correlated phases. These include non-Fermi liquids
(NFL), fractional quantum Hall (FQH) states, nematic phases, and FQH nematic phases. This
diversity poses the question: what keeps the balance between the seemingly unrelated phases? The
answer is elusive because the Halperin-Lee-Read (HLR) description that offers a natural departure
point is inherent strongly coupled. But the observed nematic phases suggest nematic fluctuations
play an important role. To study this possibility, we apply a recently formulated controlled double
expansion approach in large-N composite fermion flavors and small ε non-analytic bosonic action
to the case with both gauge and nematic boson fluctuations. In the vicinity of a nematic quantum
critical line (NQCL), we find that depending on the amount of screening of the gauge- and nematic-
mediated interactions controlled by ε’s, the RG flow points to all four mentioned correlated phases.
When pairing preempts the nematic phase, NFL behavior is possible at temperatures above the
pairing transition. We conclude by discussing measurements at low tilt angles which could reveal
the stabilization of the FQH phase by nematic fluctuations.
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FIG. 1. Phase diagram in vicinity of quantum nematic tran-
sition occurring at critical isotropic pressure pc(δ) [red line]
as function of a measure δ of dominance of nematic-mediated
over gauge-mediated bare interactions. The hatched region
is nematically ordered. Along dashed red line the nematic
transition is preempted by paired (composite-)fermion state
(orange). At ambient pressure (p0) a non-Fermi liquid (blue)
and gapless nematic (grey on right) are also present. A con-
tinuous pairing transition occurs on black line.

I. INTRODUCTION

Complexity of a phase diagram is a hallmark of
strongly correlated systems and represents the rich
physics of correlation. It also challenges theoretical
progress by making it hard for one to decide on the min-
imal model that will nevertheless faithfully represent the
system of interest. Interestingly, upon a simple change of
filling tuned by magnetic field, half-filled Landau levels
switch through a zoo of exotic states that are commonly
observed among strongly correlated materials. Specifi-

cally, the ν = 1/2 state is one of the best established
non-Fermi liquid states1–4, the ν = 5/2 state is the
strongest candidate for a non-Abelian fractional quantum
Hall state5–10 with p + ip channel pairing of composite
fermions11,12 and the ν = 9/2 state is an electronic ne-
matic state13–15. More recently, the ν = 1/2 state also at-
tracted intense interest of the theory community16–18 as
a possible gate into correlated topological surface states.

Indeed the zoo of complex phases in the quantum
Hall phase diagram have attracted many authors to
view it as a paradigmatic place to explore quantum
complexity.19–27 Nevertheless, understanding the inter-
play of correlated states through a unified description
remains an open question. In particular, the question of
the mechanism of pairing in the fractional quantum Hall
state remains open despite intense efforts and interest in
the community.28 The clearest indication about pairing
comes from numerical studies of interacting electrons in
the ν = 5/2 ground state29–31. Unfortunately theoretical
understanding remains elusive, since fluctuations of the
internal gauge field prevent the p+ip pairing of composite
fermions in the half-filled Landau level systems.1,32–35

Nematic fluctuations provide a clue to the question
of pairing. Phenomenologically not only the FQH ν =
5/2 state gives way to a nematic state with the gap
closing under in-plane field14,36,37 it exhibits transport
anisotropy before the gap closes19,38,39. In particular a
recent observation of transition between FQH ν = 5/2
state and a nematic induced by isotropic pressure40 strik-
ingly demonstrates the proximity between the nematic
state and the FQH ν = 5/2 state. Interestingly, recently
a number of theoretical works have been establishing the
idea that nematic fluctuations can enhance pairing41–46.
Nevertheless little attention has been given to the role of
putative nematic quantum critical fluctuations in forming
the FQH ν = 5/2 state to date. Here we study the role
of nematic quantum critical fluctuations in the pairing
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FIG. 2. Model and RG scheme. (a) Patch pair j, with corre-
sponding Fermi momenta ±kj . (b) One-loop diagrams con-
tributing to flow of coupling constants, with fermion prop-
agator (full line), nematic propagator (dashed), gauge field
propagator (dotted), and four-fermion interaction (dot).

of composite fermions assuming that a nematic quantum
critical point can be accessed through a tuning param-
eter such as isotropic pressure (see Fig. 1). Moreover,
as it is known that the filled Landau levels change the
effective interactions47, we envision a measure of domi-
nance of nematic fluctuation to change with the changing
of the Landau level (parametrized by δ in Fig. 1). Hence
we have a schematic phase space of Fig. 1 in mind, where
the quantum critical value of pressure pc is changing with
δ and defining a quantum critical line.

Specifically, we build on the recent progress in address-
ing the challenging problem of a Fermi surface coupled
to massless fluctuations through a controlled perturba-
tive renormalization group (RG) double expansion42,48

and investigate the instabilities in systems in which both
nematic and gauge fluctuations are present.

The rest of the paper is organized as follows: In Sec-
tion II we introduce the model and details of the RG pro-
cedure. Section III considers the resulting states, pairing
and non-Fermi liquid behaviors at the NQCL. Behavior
slightly away from the NQCL is considered in Section IV.
We close with discussion of applicability of our work, and
summary of results and experimental predictions.

II. MODEL

In order to study the interplay between the nematic
quantum critical fluctuations and gauge fluctuations1 in
half-filled Landau levels, we extend the model in Ref. 48.
As in Ref. 48 we consider N species of fermions and break
up the Fermi surface of each species into independent
patches49, i.e. decompose the a-th composite fermion
field ψa(τ, r) in two spatial dimensions r and imaginary

time τ with a = 1, · · · , N into patch fields, i.e.,

ψa(τ, r) =
∑
j,s

ψs,aj (τ, r)eiskjr (1)

where the j-th patch pair is located at opposite Fermi mo-
menta skj , s = ±1 (see Fig. 2a) assuming an inversion-
symmetric Fermi surface. The action for the patch
fermions are then given by

Sfj =
∑
k,s,a

ψ̄s,aj (k)Ds(k)ψs,aj (k), (2)

where Ds(k) ≡ −iωk + vF (skx + 1
2K k

2
y) and vF is the

Fermi velocity, K is the local Fermi surface curvature,
and k ≡ (ωf , kx, ky) represent fermionic Matsubara fre-
quency ωf and two-dimensional momentum, the normal-

ized sum is
∑
k ≡

1
β

∑
ωf

∫
d2k
(2π)2 .

Ref. 48 considered fermions coupled to a single boson,
controlling the RG expansion using two small parame-
ters: 1/N , and the deviation50 of the boson’s dynamic
critical exponent from 2. For composite fermions coupled
to nematic quantum critical fluctuations our fermions on
the patch pair j will be each coupled to two bosonic fields:
the massless transverse component (in the direction of
Fermi momentum, see Appendix A) of the gauge field,49

φg(τ, r), and the nematic fluctuation, φη(τ, r) which is
massless at the NQCL. We then follow Ref. 42 and
break the nematic and gauge fields into separate patch
fields41,49 φη(τ, r) and φg(τ, r). The bosonic action is
then

Sbj =
1

2κ2η

∑
q

|qy|1+εη |φj,η(q)|2 +
r0
2

∑
q

φj,η(q)|2+ (3)

+
1

2κ2g

∑
q

|qy|1+εg |φj,g(q)|2 + . . .

with q ≡ (ωb, qx, qy) the bosonic Matsubara frequency
and momentum variables, the bare mass r0 measures the
distance to the NQCL from either side of the transition
and ”. . .” represent all other irrelevant analytic terms
that we will ignore. Here κη and κg, the boson cou-
plings for nematic and gauge boson, respectively, get
renormalized under RG (see Fig 2b). We retain con-
trol of the calculation for small enough nematic mass
(see Appendix F), in a regime of strong fermion-nematic
coupling which is complementary to the one accessed by
Ref.43. The deviation of each boson’s dynamic critical
exponents from 2 represented by εη < 1 for the nematic
fluctuation and εg < 1 for the gauge boson will con-
trol two double expansions together with 1/N . Due to
the non-analyticities in the action, these will not renor-
malize under RG48. Further, we will treat εη and εg as
phenomenological parameters rather than view any par-
ticular value as “physical”. When coupled to fermions,
these bosons mediate interaction between fermions. As
filled Landau levels change the effective interaction be-
tween composite fermions,51 in effect we anticipate the
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bare values of εη and εg to vary with the number of filled
Landau levels and other external controls such as pres-
sure.

All together, the full effective action Sj for each patch
pair j is

Sj = Sfj + Sbj + Sintj , (4)

where Sintj represents the coupling between bosons and
fermions

Sintj =
uη√
N

∑
k,q

φj,η(q)
∑
s,a

ψ̄s,aj (k + q)ψs,aj (k)+ (5)

+
ug√
N

∑
k,q

φj,g(q)
∑
s,a

sψ̄s,aj (k + q)ψs,aj (k),

with coupling constants uη and ug for the nematic-
fermion and gauge-fermion interaction, respectively, be-
ing renormalized under RG (Fig. 2b). Note the differ-
ence in the sign of the coupling:33 nematic field couples
to the density and hence the coupling is independent of
the patch label, contrastingly the gauge field couples the
current and hence the coupling has opposite signs on the
two patches s = ±1.

Finally, our main goal is to investigate how the two
critical couplings affect pairing of the composite fermions
leading to the ν = 5/2 state. For this we analyze fermion
pairing instabilities by considering the residual composite
fermion interaction in the BCS channel

SBCS = −1

4

∑
k,k′,a

V αβγδ(k−k′)ψ̄aα(k)ψ̄aβ(−k)ψaγ(k′)ψaδ (−k′),

(6)
where we explicate spin indices, and use that in rotation-
ally invariant system (true near enough to the NQCL) the
interaction depends only on the angle of q = k − k′ with
momenta k and k′ taken on the Fermi surface. We con-
sider the SBCS term without expanding in patch fermion
species for efficiency. Inter-patch interactions it contains
get renormalized when high-momentum bosons are inte-
grated out and this form enables us to ignore the details
of the patching procedure (Fig. 2b and Ref.42).

III. RG FLOW AND PHASE DIAGRAM ON
THE NQCL

Within the perturbative RG approach we consider the
NQCL Gaussian theory and the free-fermion fixed point,
working in the zero-temperature limit at the NQCL.
The scaling which preserves the functional form of the
fermionic propagator (Eq. (2)) is

kx → tkx (7)

ky → t1/2ky

ω → tω,

with t = e−l, and l being the RG scale. We set the same
scalings for bosonic variables. To define the fermionic

and bosonic modes to be integrated out, for every patch
pair located at ±kj we align the x-axis with kj , fixing
the patches as |kx| < Λx, |ky| < Λy, and then choose
the high-energy fermion modes at tΛx < |kx| < Λx and
bosonic ones at

√
tΛy < |qy| < Λy. The fermionic modes

at
√
tΛy < |ky| < Λy cross the Fermi surface and can-

not be integrated out, so to preserve the patch aspect
ratio with each RG step we relegate these modes to new
patches.

The above RG method introduced in Ref. 42 is a hy-
brid between a two-patch scheme which focuses on inter-
actions within a patch and a multipatch scheme which
focuses on inter patch interactions. It merges the two
schemes by being agnostic about how new patches are
introduces at each RG step. As such the method does
not track information about the geometry of the Fermi
surface. Although recent findings on importance of Fermi
surface geometry was limited to Fermi surfaces in higher
dimensions52, lack of a systematic scheme for introducing
new patches may still harbor problems. Nevertheless, we
proceed here assuming that there exists at least one well
defined way to introduce new patches at each RG step.

The total action in Eq. (4) has two dimensionless cou-
plings at the NQCL: fermion-gauge coupling constant
and fermion-nematic coupling constant, i.e.,

g =
u2gκ

2
g

(2π)2vFΛ
εg
y
, (8)

η =
u2ηκ

2
η

(2π)2vFΛ
εη
y
,

respectively. Both couplings are relevant at our ini-
tial fixed point (Gaussian nematic and free fermion).
For the BCS instability, the coupling constants in Eq(6)
V αβγδ(k−k′) in all spin-symmetric or spin-antisymmetric
channels with fixed angular momentum are rendered in-
distinguishable within 1-loop RG and hence may be la-
beled by single constant V . The corresponding dimen-
sionless coupling constant is

v =
kF

2πvF
V, (9)

where v < 0[v > 0] is attraction[repulsion].

One-loop quantum corrections in our RG (see Fig. 2b)
give the following flow equations for the Cooper pairing:

dv(l)

dl
= −v(l)2 − f(l),

f(l) ≡ η(l)− g(l), (10)

where we introduced the running coupling f(l) to keep
track of the competition between nematic and gauge fluc-
tuations. Positive f promotes attraction in the BCS
channel, and negative f suppresses it. Interestingly,
within our theory not only can f(l) have either sign but
its sign can change during the RG flow. The remaining
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FIG. 3. RG flows at the NQCL projected onto the fermion-gauge (g) and fermion-nematic (η) coupling plane. Fixed points,
stable (large dot) or unstable (small dot) in the plane are marked. In orange region the (composite-)fermions pair with vanishing
bare attraction, i.e., a gapped FQH is formed. (a) The value g∗/η∗ = 0.7 is representative for all εg < εη. In dotted orange
area the NFL energy scale is higher than the pairing gap scale. (b) The choice g∗/η∗ = 1.44 is representative for all εg > εη.
The (g∗, 0) point is isotropic NFL (blue). At the boundary between the regions the pairing energy scale becomes zero. This
phase diagram is robust away from nematic quantum critical line (see Fig. 8).

couplings flow as:

ġ = g
(εg

2
− η

N
− g

N

)
(11)

η̇ = η
(εη

2
− η

N
− g

N

)
˙vF = −vF

( η
N

+
g

N

)
where explicit l dependence is dropped. The last equa-
tion shows that coupling to both the bosons enhances
tendency towards non-Fermi liquid state, which is char-
acterized by vanishing Fermi velocity vF .

The two RG equations for the fermion-boson couplings
g, η in Eq. (11) do not involve other couplings, so we
start from the g, η plane in which there are obvious fixed
points: Beside the unstable free point (g, η) = (0, 0),
there are (g, η) = (g∗, 0) and (g, η) = (0, η∗), where the
defined numbers

g∗ ≡
Nεg

2
(12)

η∗ ≡
Nεη

2
,

can take finite values in the double expansion εg, εη → 0,
N → ∞. As the existence of fixed points is established,
for simplicity in the following we set N = 1 and consider
the g∗, η∗ � 1 limit. In our approach, different experi-
mental circumstances correspond to different bare values
of running couplings η0 and g0, as well as to the balance

between η∗ and g∗ (i.e., εη and εg, respectively). Since we
take the physical value of bare pairing to be v0 = 0, the
pairing instabilities as well as non-Fermi liquid behavior
are then fully determined by the values of η0, g0, η∗, g∗.
The fine-tuned case εg = εη is exceptional, and exhibits a
line of fixed points connecting the two fixed points (g∗, 0)
and (0, η∗) at the one-loop level (see Appendix B). As the
RG flows of (g, η) and especially of the pairing coupling
constant v qualitatively differ depending on which one of
the εg, εη is larger, we analyze the two cases separately.
For each case we infer the possible phases assuming the
bare values of the fermion-boson couplings (g0, η0) rep-
resent different experimental circumstances.

In the case εg < εη with the dynamic critical expo-
nent of nematic boson being larger the only stable fixed
point in the (g, η) plane is (g, η) = (0, η∗) (see Fig. 3a).
Obviously the fermions always pair (except when η0 = 0
exactly), because f(l) (see Eq. (10)) here flows from value
η0 − g0 to η∗ > 0. Therefore eventually f(l) turns pos-
itive and stays so, giving a pairing instability even with
v0 = 0 to realize a gapped FQH state. A remarkable
consequence of this result is that the paired state is real-
ized even in the limit in which the bare coupling of the
fermions to the gauge fluctuations dominates over the
bare coupling to the nematic fluctuations. Gauge fluctua-
tions are no longer impeding pairing enough to push it to
require a finite attractive interaction. Instead they only
suppress the value of the pairing (FQH) gap estimated as
∆P ∼ exp (−lP ) when a pairing instability v = −∞ de-



5

Paired CF

Non-Fermi
Liquid

(a) (b)

Paired CF
nematic

Anisotropic
Non-Fermi
Liquid

FIG. 4. Phases realized for different bare fermion-gauge (g0)
and fermion-nematic (η0) couplings when the system is in
vicinity of the nematic quantum transition. (a) In the disor-
dered phase with positive nematic mass r0 > 0 either a NFL
(blue) or paired state (orange). (b) In the nematically ordered
phase with negative nematic mass r0 < 0 either anisotropic
NFL (shaded blue) or gapped paired nematic state (shaded
orange).

velops at a finite RG scale lP . In the most extreme case
of g0 → ∞, η0 → 0 we obtained an analytic expression
for the suppressed pairing gap in the limit η∗ − g∗ � g∗
to be (see Appendix C):

∆P ∼
(
η0
g0

)1/(η∗−g∗)

exp(−π/√η∗). (13)

Although the NFL dictated by vanishing Fermi velocity
in Eq. (11)) is unstable to infinitesimal pairing in the
entire phase space of (g0, η0) in this case, the NFL effects
may be visible at temperatures above pairing Tc. This
requires the energy scale associated with the NFL to be
larger than the pairing gap scale, which occurs in the
dotted region of Fig. 3a dictated by sufficiently large (g0+
η0) (see Appendix E).

In the case εg > εη with the dynamic critical exponent
of gauge boson being larger, there is a richer set of possi-
bilities (see Fig. 3b). Namely, depending on the two bare
boson-fermion coupling strengths we find either a stable
non-Fermi liquid (blue region in Fig. 3b) or a paired state
(orange in Fig. 3b). Moreover, we find the two phases in
the (g0, η0) plane are separated by a continuous phase
transition at the phase boundary given by

(η0 − g0) ln

(
η0
g0

)
= (g∗ − η∗)

√
g∗, (14)

for g∗−η∗ � g∗. Although the phase boundary in Fig. 3b
needs to be obtained numerically in general (see Ap-
pendix D), a simple intuition can be gleaned from the
beta function in Eq. (10). When g0 > η0 the function
f(l) stays negative throughout the RG flow and pairing
requires above threshold strength of attractive bare in-
teraction. Therefore the fixed point (g∗, 0) controls the
blue region of Fig. 3b. As Eq. (11) dictates, the Fermi
velocity vF flows to zero in this region resulting in a NFL
phase driven by gauge fluctuations as in the original HLR
model.1,50 On the other hand pairing can occur as an in-
finitesimal instability for g0 � η0 despite (g∗, 0) being

the only stable fixed point. This is because f(l) starts off
positive for these bare values of couplings and the pair-
ing instability can take over before f(l) eventually turns
negative. The NFL effects may be visible again in the
dotted region of the paired state (see Fig. 3b and after
Eq. 13). Furthermore, the continuity of the transition
is evident by the fact that the pairing gap vanishes as
(g0, η0) approaches the phase boundary of Eq. (14) with
an analytic form we find for g∗ − η∗ � g∗

∆P ∼ x
1

2
√
g∗

(
g0
η0

)1/δ∗

, (15)

where x parametrizes a small distance in (g0, η0) from
the phase boundary (see Appendix D).

Overall we established that a composite Fermion sys-
tem tuned to NQCL can be in one of two ground states:
a paired state promoted by nematic fluctuations (orange
regions in Fig. 3) or a stable NFL state governed by the
gauge fluctuations (blue region in Fig. 3b). If we asso-
ciate the paired CF state with the ν = 5/2 FQH state
our model indicates pairing in the ν = 5/2 FQH state is
driven by the nematic fluctuations. Further associating
the NFL state with the ν = 1/2 NFL state, we are invited
to postulate influence of nematic fluctuation to be weaker
at lower Landau levels. If the degree of dominance be-
tween the two gapless bosons is varied with experimental
conditions and the filling factor, and further the distance
to the nematic phase can be varied with an external con-
trol such as isotropic pressure, we can now divide the
NQCL into two parts as in Fig. 1.

IV. PHASES IN THE VICINITY OF NQCL

Because accessing the quantum NQCL would require
fine tuning, we now consider the effect of finite distance
from the NQCL with finite r0 in Eq. (3). The positve
mass r0 > 0 will leave the system in the isotropic phase.
But negative mass r0 < 0 will drive the system into a ne-
matic phase where nematic order parameter gains finite
expectation value. However, the analysis of the fluctua-
tion around this expectation value will closely follow the
analysis of the nematic fluctuation in the isotropic phase.
From here on we refer to the dimensionless coupling as-
sociated with the quadratic term in the action for the ne-

matic fluctuation by R ≡ r0κ2η/Λ
1+εη
y which is always rel-

evant. Moreover a runaway flow of the nematic-fermion
coupling η takes the system to a strong-coupling regime
outside the applicability of our methods when εg < εη.
Nevertheless we can study the regime near NQCL by cut-
ting the RG flows when R reaches some limiting value.

The nematic mass generally weakens the influence of
nematic fluctuations and the RG equations now become

f(l) ≡ η(l)

1 +R(l)
− g(l), (16)
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and

ġ = g

(
εg
2
− η

N

1

1 +R
− g

N

)
(17)

η̇ = η

(
εη
2
− η

N

1

1 +R
− g

N

)
˙vF = −vF

(
η

N

1

1 +R
+

g

N

)
.

Again we can establish a phase boundary between a
paired state and NFL state in the (η0, g0) phase diagram
(see Appendix F). In the region of bare couplings where
η0 is sufficiently larger than g0, the f(l) starts out pos-
itive. If pairing instability takes over before R(l) grows
substantially the system will end up in a paired state.
On the other hand, when η0 � g0 f(l) starts off negative
and ultimately the rapid growth of R ensures f(l)→ −g∗
as l → ∞ leaving the system controlled by the gauge
fluctuation without pairing. Now depending on the sign
of r0, the paired state and the NFL state each may be
isotropic or nematic. Hence one can anticipate phase dia-
grams in Fig. 4 with four distinct phases: isotropic paired
CF, isotropic NFL (Fig. 4a), nematic paired CF, nematic
NFL (Fig. 4b). Indeed a systematic study of RG flows
conforms to this anticipation (see Appendix F). Hence
within the regime of validity of our approaches, we see
that the observation of nematic fluctuation driven pair-
ing phase and a stable NFL phase we obtained at NQCL
survives moving away from the NQCL line. The new
facets introduced by considering the nematically ordered
phase are possibilities of having anisotropic paired state
and anisotropic NFL states (see Fig. 1).

V. DISCUSSION AND CONCLUSIONS

To summarize, we used double expansion48 in boson
dynamic exponents50 and number of fermion species49

to study NQCL and its vicinity in composite Fermi fluid.
This approach has several issues including relying on non-
analytic bosonic actions and an incompletely specified
RG prescription. Nevertheless, we found the interplay
between the gauge fluctuations and nematic fluctuations
to account for the entire zoo of correlated states observed
in half-filled Landau levels. To start with we capture the
NFL state at ν = 1/2, FQH state at ν = 5/2 (paired
CF state) and gapless nematic state at ν = 9/2. More-
over, the gapped FQH nematic observed under tilted filed
experiment39 naturally appears on the nematic ordered
side of the NQCL with the pairing driven by nematic fluc-
tuation. Finally, recent observation of transition between
a FQH state and a nematic state driven by isotropic pres-
sure suggests the NQCL we envision in Fig. 1 can be
accessed using pressure40.

The key new insight that emerges from our result is
that the pairing of CF’s in ν = 5/2 systems can be driven
by nematic fluctuations in the vicinity of NQCL. There-
fore we predict the magnitude of FQH gap in ν = 5/2

to be correlated with the nematic fluctuations which can
be quantified through measuring nematic susceptibility.
To achieve this, one possibility is to measure the nematic
susceptibility in ν = 5/2 states by studying nematicity as
a function of small tilt-angles. Then our results predict
the nematic susceptibility so-measured to be monoton-
ically correlated with the size of the FQH gap at zero
tilt-angle.
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Appendix A: From HLR gauge field to a scalar field

We briefly review the HLR model1 and how it leads
to the action for gauge field in Eq. (3) and its coupling
to fermions in Eq. (5). The central insight of HLR is
to attach two flux quanta of a U(1) gauge field ~a to each
electron which creates a composite fermion (CF) denoted
by field ψ(~r), as expressed by the constraint

~∇× ~a(~r) = 2(2π)ψ†(~r)ψ(~r), (A1)

where the CF density on the right-hand side equals the
original electron density. An HLR action with τ the
imaginary time therefore contains a Chern-Simons term
for the gauge field aµ = (iaτ ,~a) which provides the flux
attachment as is obvious when the aτ component is inte-
grated out to recover Eq. (A1):

SCF+gauge=

∫
dτd2~x ψ†

[
∂τ − iaτ + E(−i~∇+ e ~A− ~a)

]
ψ,

(A2)

SCS=

∫
dτd2~x

1

2(4π)
εµνλaµ∂νaλ, (A3)

where ~A is electromagnetic potential and E(~k) the elec-
tron dispersion. In half-filled Landau levels, the attached
aµ gauge flux in mean-field approximation exactly can-
cels the external magnetic flux leaving the CF free, how-
ever both the fluctuations of aµ and the interactions be-
tween the CF particles cannot be ignored and it is advan-
tageous to treat them together. The interaction between
CF particles is effective and therefore considered to have

http://arxiv.org/abs/de-sc/0010313
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varying range

SCFint=

∫
dτd2~xd2~y

U

|~x− ~y|1+ε
ψ†(τ, ~x)ψ(τ, ~x)ψ†(τ, ~y)ψ(τ, ~y),

(A4)
from Coulomb for ε = 0 to short-range as ε → 1, giving
the full HFL action SHLR = SCF+gauge +SCS +SCFint.
The CF density in quartic term SCFint allows one to
rewrite it exactly as a purely gauge field quadratic term
using the constraint Eq. (A1) which also implies that only

the transverse component of the gauge field aT (τ,~k) ≡
(ẑ × k̂) · ~a(τ,~k) at momentum ~k appears:

S′CFint=

∫
dτd2~k

U

|~k|1−ε
1

(4π)2
|~k|2aT (τ,~k)aT (τ,−~k),

(A5)
where we dropped an ε-dependent normalization to ob-
tain the term in our action Eq. (3) where aT is relabeled
to φj,g after restriction of its momenta determined by
patch-pair j (below Eq. (7)). Through transformation
from SCFint to S′CFint it was recognized that a non-Fermi
liquid fixed point can be accessed in a perturbative ex-
pansion of ε.50

The CFs couple strongly to the transverse gauge com-
ponent aT due to the scaling transformation (Eq. (7))
which is chosen to preserve the Fermi surface at patch-

pairs j as they scale towards Fermi point ±~kF,j =
±kF x̂j .49 Since for a circular Fermi surface the CF cur-
rent in patch j gets directed along x-axis, the expansion
of CF-gauge coupling term SCF+gauge in Eq. (A2) has the
lowest order term in powers of gauge field and derivatives

vFaxj (ψ
+
j

†
ψ+
j − ψ

−
j

†
ψ−j ) (note that the fermion species

index is suppressed). On the other hand the patches scale
such that their aspect ratio remains Λxj ∼ Λ2

yj/kF � Λyj
(see below Eq. (7)) so that in RG transformation of
patch-pair j the relevant high-energy gauge modes have
momenta qxj � qyj . Therefore in every patch-pair j
the gauge component that couples dominantly to CF’s is
transverse, i.e. axj with momentum qyj .

Appendix B: RG diagram for εg = εη

In this situation the flow equations (11) lead to flow
along rays through the origin:

η

g
=
η0
g0
, (B1)

and there is a line of fixed points (g∗, η∗) satisfying:

g∗ + η∗ = ε∗, (B2)

where we defined ε∗ ≡ Nεg/2 = Nεη/2.
On the NQCL, the pairing function f(l) changes from

η0 − g0 to (η0 − g0) ε∗
η0+g0

, so there is an infinitesimal

pairing instability only for η0 > g0. Right at the line
η0 = g0 there is BCS behavior which is not expected to
be generic beyond one-loop.

The NFL energy scale dominates over the pairing scale
inside the strip η0−g0 � (η0−g0)2 in the η0 > g0 region,
while the converse is found for η0 − g0 � (η0 − g0)2 (see
Appendix E).

Appendix C: Pairing for εg < εη

We can find analytic approximations for the flow of
pairing in the limit of g∗ and η∗ being similar:

|δ∗| � g∗, where δ∗ ≡ η∗ − g∗. (C1)

This limit is generally convenient as it provides a separa-
tion of scales in the RG flow of fermion-boson couplings:
the flow of (g, η) is near (g0, η0) for l � 1/η∗, near the
line in Eq. (B2) for 1/η∗ � l� 1/|δ∗|, and near the fixed
point for l � 1/|δ∗|. The separation of scales follows
from the analytic solution of RG flow for fermion-boson
couplings g, η on the NQCL:

η(l) =
η0 exp(η∗l)

1 + h(l)− h(0)
, h(l) =

η0
η∗
eη∗l +

g0
g∗
eg∗l. (C2)

For the case g∗ < η∗ we identify several regimes for the
pairing gap scale in the region η0 < η∗. With the sepa-
ration of scales, the f(l) remains approximately constant
for scales l � 1/η∗, and in the least favorable case for
pairing, η0 � g0, the value is f(l) ≈ −g0. It is useful to
analyze in general the flow of pairing v (Eq. (11)) when
f(l) is constant. The outcome depends drastically on the
sign of the constant. For f(l) = −D2, D > 0, the flow is

vD(l) = D
vinit +D + (vinit −D) exp(−2Dl)

vinit +D − (vinit −D) exp(−2Dl)
, (C3)

with attractive fixed point at vinit = D and repulsive
one at vinit = −D. Only if vinit < −D there is a pairing

instability v → −∞ reached at l−D = 1
2D ln

(
D+|vinit|
D−|vinit|

)
.

Therefore the pairing interaction v in the beginning part
of the flow (l� 1/η∗) settles at the repulsive value v+ =
+
√
g0 (we assume v0 = 0). At the scale

lT =
1

|δ∗|
ln

(
g0
η0

)
(C4)

f(l) becomes positive, and most of the ensuing flow has
f(l) ≈ η∗. So here we can use the solution to the flow
with f(l) being positive and constant, and the initial con-
dition being vinit = v+ = +

√
g0. The solution to the flow

of v given f(l) = C2, C > 0, is

vC(l) = C tan[−Cl + arctan(vinit/C)], (C5)

with pairing instability v → −∞ reached at lC+ = π
C

for vinit � C, at lC− = 1
|vinit| for vinit � −C (weak

coupling BCS case), and at lC0 = π
2C for |vinit| � C.

(Note that drastically different from Eq. (C3), there is
always a pairing instability.) Applying Eq. (C5) therefore
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gives for the unfavorable case g0 � η∗ the pairing scale
l′P = π/

√
η∗. The total pairing scale is then lT + l′P ,

leading to Eq. (13).

To estimate the pairing scale when the gauge-fermion
bare coupling diminishes, for example when (g0, η0) is
close to the unstable fixed point (g∗, 0), we solve a dif-
ferential equation obtained in various approximations to
the flow equation of v (Eq. (11)). Let us consider the

function f of the form

f(l) ≡ a exp(kl)− b, (C6)

with a, b, k positive constants. With the substitutions
¯v(l) = v(l)/k, ¯f(l) = (1/k2)(f(l) + b), we obtain the flow

equation

f̄
dv̄

df̄
= −(v̄2 + f̄ − b/k2). (C7)

The solution takes the functional form v̄ = h(f̄ , b/k2, C),
with

h(x, y, c) ≡
√
x

2

CΓ(1− 2
√
y)(J−2√y−1(2

√
x)− J1−2√y(2

√
x)) + Γ(2

√
y + 1)(J2√y−1(2

√
x)− J2√y+1(2

√
x))

CΓ(1− 2
√
y)J−2√y(2

√
x) + Γ(2

√
y + 1)J2√y(2

√
x)

. (C8)

The integration constant C is fixed by initial conditions
v(0) = 0, f̄(0) = a, giving h(a/k2, b/k2, C) ≡ 0 which
is easily solved to obtain the parameter-dependent value
C(a/k2, b/k2). Labeling the denominator of h in Eq. (C8)
by χ, the pairing instability v → −∞ occurs at scale lP
when χ ≡ 0, which gives the implicit equation

χ

(
a

k2
eklP ,

b

k2
, C

(
a

k2
,
b

k2

))
= 0. (C9)

We write lP in the form

lP ≡
1

k
ln

(
k2

a
zP

)
, (C10)

where zP in principle depends on a, b, k. This corre-
sponds to saying that f̄(lP ) ' 1.

We numerically find that zP itself depends very weakly
on the parameters and is practically constant of order 1
up to a/k2, b/k2 . 0.1 (see Fig. 5).

Returning to the physical problem of intermediate and
weak bare fermion-gauge coupling which is still much
stronger than bare fermion-nematic coupling, on the
NQCL the function f(l) can in general be rewritten to
emphasize the dependence on δ∗:

f(l) =
η0

g∗
g0

exp(δ∗l)− g∗
1 +X exp(−g∗l) + g∗η0

g0η∗
exp(δ∗l)

, (C11)

X ≡ g∗
g0

(
1− η0

η∗
− g0
g∗

)
where X measures the distance from the line connect-
ing the fixed points (see Eq. (B2)). The flow of v be-
comes analytically tractable when f reduces to the form
in Eq. (C6). We can therefore consider the example case
of (g0, η0) close to the unstable fixed point (g∗, 0) by its
behavior on the line X = 0. Here the denominator of f is
approximately 1 on scales l � lv ≡ (1/δ∗) ln(η∗/η0 − 1).
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à à à à à
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ì ì ì ì ì
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ô
ô

ô
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Log10@b�k
2
D

z
P

FIG. 5. Pairing scale factor zP (Eq. (C10)) dependence on
the parameters a/k2 and b/k2 (Eq. (C6)). The curves from
bottom to top are for a/k2 = 10−6, 10−5...10−1.

Using X = 0 to eliminate g∗/g0 we have the tractable
form f(l) ≈ η0

1−η0/η∗ exp(δ∗l)− g∗. The consistency con-

dition lP � lv reduces to η0/η∗ � 1. Using this, the
result lP = (1/δ∗) ln(δ∗

2/η0) follows from Eq. (C10) and
the pairing gap is

∆P ∼
(
η0

δ∗
2

)1/δ∗

. (C12)

Next we consider an even weaker gauge-fermion bare cou-
pling g0, more precisely the regime η0

η∗
− g0

g∗
� 1, further

assuming that lP � 1/δ∗ which makes the numerator of
f(l) constant and the X term in denominator dominant
(see Eq. (C11)). The result lP = (1/g∗) ln(g∗

2/(η0− g0))
follows, under the constraint η0 > g0 and lP � 1/δ∗. The
latter condition can be rewritten as η0/η∗ + g0/g∗ � 1
and η0− g0 � g∗

2 exp(−g∗/δ∗), while the gap becomes a
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FIG. 6. Line of continuous transition to paired state in the
plane of bare couplings (g0, η0), for εg > εη. (a) On the
NQCL, with g∗ = 1.3, η∗ = 0.9. Blue dots are obtained from
numerical solutions to RG flow by having the v(l) coupling
diverge near largest available scale l. Boundary of blue shad-
ing is approximate expression Eq. (D3), and upper boundary
of red shading is Eq. (14); see discussion in Appendix D.
Inset: Zoom-in at small bare couplings. (b) Away from
NQCL, R0 = 0.05, and g∗ = 1.3, η∗ = 0.8. Red dots are
obtained from numerical solutions to RG flow by having the
v(l) coupling diverge near largest available scale l. Red line
is obtained by equating l′T (scale at which pairing function
f(l) starts repressing pairing tendency), obtained numerically
from Eq. (F3), to the approximation lP = π/(2

√
η0 − g0)

(see discussion in Appendix D). Boundary of blue and yel-
low shadings use the two approximate expressions for l′T in
Eq. (F4), respectively. Note that blue corresponds to the lT
with R0 = 0, while yellow matches the slope near the origin
better.

stronger power-law:

∆P ∼
(
η0 − g0
η∗2

)1/η∗

. (C13)

Finally, we note that setting g∗ � η∗, i.e., considering a
phase diagram far from the case in Eq. (C1), one expects
the results to reduce to the ones in Ref.42 having fermion-
nematic coupling only. In the η0 � η∗ region of phase
diagram this is indeed true. Taking η0 � η∗, in three
regimes g0 � g∗ � η∗, g0 = g∗ � η∗ and g∗ � g0 � η∗
we find that

f(l) ≈ η0 exp(η∗l)− g0, (C14)

which leads to the result lP = (1/η∗) ln((η∗
2/η0)), due to

zP ≈ 1 (see C10).

Appendix D: Pairing transition line for εg > εη

To derive the expression for the pairing transition line
in the plane of boson-fermion couplings, we focus on the
region η0 > g0. Assuming the separation of scales (see
Eq. (C1)), we can approximately replace the f(l) by the
positive constant η0− g0 in the first part of the flow, and
the negative constant −g∗ in the second part of the flow.
The vanishing pairing gap at the transition line implies

that the pairing scale found in the second part of flow
is l′P → ∞, which is a condition we use to connect the
solutions in the two parts of the flow. The f(l) becomes
negative at

lT =
1

|δ∗|
ln

(
η0
g0

)
, (D1)

and once it does it quickly approaches the constant value
f = −g∗. We can use this in the solution of Eq. (C3)
for the second part of the flow, except that the initial
condition vinit, being the value of v when the flow entered
the regime f ≈ −g∗, is still unknown. Our demand that
l′P →∞ occurs if vinit is just below −√g∗ (see Eq. (C3)).
So we can set vinit ≡ −

√
g∗, and use this as a condition

for the first part of the flow. The vinit can be estimated
as the value v(lT ), while the latter can be estimated by
using the first part of flow, where f ≈ η0 − g0 ≡ C2.
Using Eq. (C5) therefore gives the implicit equation that
corresponds to vanishing pairing gap:

vC(lT ) ≡ −√g∗. (D2)

Assuming ClT � 1 the tangent can be approximated
and Eq. (D2) gives Eq. (14) of main text, which is con-
sistent with ClT � 1 as long as g0, η0 are not orders of
magnitude larger than the values of g∗, η∗.

We tested the prediction in Eq. (14) by numerically
solving the flow, see Fig. 6a. There is good agreement in
the considered regime |δ∗| � g∗; g0, η0 � g∗, however we
note that there is excellent agreement with the line

√
η0 − g0 ln

(
η0
g0

)
= π|δ∗|/2 (D3)

in a wider parameter range. This is a noteworthy prop-
erty of the numerical experiment: it is challenging to
numerically observe a divergence v(l)→ −∞ at large val-
ues of l ≡ lP . Deep in the considered regime |δ∗| � g∗;
g0, η0 � g∗ we could identify flows where v upon enter-
ing into second part of flow (see before Eq. D1) hovers
at a fixed negative value for long stretches of l before di-
verging. This is precisely the expected behavior in the
approximation of f(l) being constant in two parts of the
flow, in which case v in the second part starts out just be-
low its unstable fixed point −√g∗. However, with a given
numerical precision and a wider range of initial condi-
tions, it becomes hard to tune g0, η0 such that this second
part of flow of v is realized. Instead, one easily identifies
the values g0, η0 for which v(l) develops a divergence at a
relatively small l ≡ lP while f(l) is still not too negative
and therefore l is close to value lT where f(l) changes
sign. That kind of numerical identification of transition
point corresponds to equating lP with lT . Identifying
lP = π/(2

√
η0 − g0), which is particularly good approx-

imation for slower flows when η0, g0 are comparable to
η∗, g∗, the quoted expression Eq. (D3) follows directly.
Of course, lT is finite so the condition lP = lT in princi-
ple does not allow lP → ∞ and ∆P → 0. However, the
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FIG. 7. The NFL energy scale exp(−lF ) calculated using
Eq. (E3) along two lines in the (g0, η0) plane (inset). Bottom
line in inset is the pairing transition line, along which the NFL
scale is top (blue) curve. Top line in inset gives the bottom
(red) line for NFL scale. The ratio g∗/η∗ = 1.22.

similarity of curves in Fig. 6a shows that the error in our
numerical identification of lP is small.

The pairing energy scale in the main text is determined
using the total pairing scale lT + l′P .

Appendix E: Flow of Fermi velocity

The Fermi velocity flows to zero for any non-zero bare
fermion-boson couplings (see Eq. (11)), but it does so in
different ways depending on the bare couplings (g0, η0).
We seek to identify two opposite regimes: (1) The “NFL
dominated” regime where the typical NFL energy scale
is much larger than the pairing gap energy; and (2) The
“pairing dominated” regime where the converse is true.
The former case indicates42 that NFL behavior is ob-
servable at temperatures above the pairing (FQH) crit-
ical temperature. The typical NFL energy scale can be
estimated as E ∼ exp(−lF ) with lF the RG scale at
which the Fermi velocity decays. In general the flow of
vF (Eq. (11)) is given by vF /vF0 = exp(−IF (l)), where
we define

IF (l) ≡
∫ l

0

(g(x) + η(x))dx, (E1)

IF (lF ) ≡ 1,

so that non-Fermi liquid effects become appreciable de-
pending on the RG scale lF .

In special case g∗ = η∗ ≡ ε∗, on the NQCL, the exact
solution is

lF =
1

ε∗
ln

(
1 +

ε∗(e− 1)

g0 + η0

)
. (E2)

On the line of fixed points, the exact solution for the scale
of pairing (only happens for η0 > g0) is lP = π

2
√
η0−g0

.

Given that ε∗ � 1, the NFL dominated regime ap-
pears close to the pairing transition at η0 = g0, i.e., for
η0 − g0 � ε∗

2, since lP � lF and both are � 1. Con-
versely, the pairing dominated regime holds for η0−g0 �
ε∗

2, where nematic coupling is much stronger than gauge
coupling.

This analytic argument can be extended to stronger
couplings, g0 + η0 � ε∗, where lP ≈ π

2
√
η0−g0

, and NFL

dominated regime is found for η0−g0 � (g0 +η0)2, while
pairing dominated regime is found for η0−g0 � (g0+η0)2.

In the more general case δ∗ = η∗−g∗ 6= 0 on the NQCL
we get qualitatively the same results as above, which we
use to sketch the dotted area in (g0, η0) plane of Fig. 3
denoting the regime E � ∆P . For completeness, the
exact expression for NFL scale here is:

g0
g∗
eg∗lF +

η0
η∗
eη∗lF =

g0
g∗

+
η0
η∗

+ e− 1. (E3)

In the limit |δ∗| � 1 the approximate solution is E ∼(
1 + η∗

g0+η0

)−1/η∗
, qualitatively the same as Eq. E2.

It is clear from the vF Beta equation (Eq. (11)) that the
NFL effects are enhanced by the “total” fermion-boson
coupling g0+η0. In the unfavorable limit of g0, η0 → 0 the
Fermi velocity takes on a logarithmically slow flow which
makes the RG scale lF diverge and the NFL energy scale
flat and nearly zero, see Fig. 7.

Appendix F: Flow in vicinity of NQCL

We define the dimensionless coupling constant R ≡
rκ2η/Λ

1+εη
y where by r > 0 we label the mass of nematic

fluctuations (see Eq. 3): if r0 > 0 then simply the r = r0,
while for r0 < 0 in the vicinity of the nematic transition
one has an action for the nematic fluctuations of the same
form as Eq. 3, with the bare mass of fluctuations positive
at the new minimum and also labeled by variable r >
0. Since R is the ratio of the two terms quadratic in
the nematic fluctuation field, it is relevant at any fixed
point. The coupling of nematic and fermions remains
strong near enough to the NQCL, where dimensionless
mass rvF /u

2
ηΛy < 1. In the case R0 6= 0, exact flows for

g, η can be given in integral form (see Fig. 8):

η(l) =
η0 exp(η∗l)

1 + p(l)− p(0) + F (l)
, (F1)

g(l) =
g0 exp(g∗l)

1 + p(l)− p(0) + F (l)
,

p(l) =
g0
g∗
eg∗l,

F (l) = η0

∫ l

0

dx
1

exp(−η∗x) +R0 exp(x/2)
.

For the case εg < εη the most important feature of these
flows compared to ones at the NQCL is that F (l) replaces
a term ∼ exp(η∗l). Since F (l→∞) remains finite for any
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FIG. 8. Numerical RG flows projected onto fermion-boson
coupling plane (g, η, in vicinity of the NQCL. Colored re-
gions show (g0, η0) values which give states corresponding to
top[bottom] label when r0 > 0[r0 < 0]. In orange area there
is infinitesimal pairing instability. (a) Case εg < εη corre-
sponds to Fig. 3a, with R0/g∗ = 0.06, g∗/η∗ = 8/13. (b)
Case g∗ > η∗ corresponds to Fig. 3b, with R0/g∗ = 0.008,
g∗/η∗ = 13/8. Here the topology of RG flows is the same
as at the NQCL, except that the unstable fixed point (0, η∗)
is replaced by (0,∞) affecting flow at g = 0. (c,d,e,f) Flows
of g, η, R, and pairing v in (c,e) correspond to initial values
marked in panel (a); same for panels (d,f) marked in (b). The
horizontal axis is ln l.

finite R0, this implies that the η diverges starting from
any non-zero bare η0. Analytical expressions for the F
can be obtained in limiting cases η∗ = 0 and η∗ = 1:

F (l, R0, η∗ = 0) = l − 2 ln

(
1 +R0 exp(l/2)

1 +R0

)
(F2)

F (l, R0, η∗ = 1) =
2√
R0

[
arctan(

√
R0e

l/2)− arctan(
√
R0)

]
with behavior

F (η∗ = 0, l→∞) F (η∗ = 1, l→∞)

2 ln(1 + 1/R0) 2/
√
R0

(
π/2− arctan(

√
R0)

)
R0 � 1 2| ln(R0)| π/R0

The fixed point (0, η∗) which is stable at NQCL in the
case εg < εη is therefore removed away from NQCL, and
replaced by (g∗,∞), see Fig. 8a. Even though η diverges
the nematic fluctuations are suppressed by even faster
growth of mass R, so the new fixed point is equivalent
to a stable NFL fixed point at (g∗, 0). Consequently a

transition line between the paired state and the NFL ap-
pears. We now show how the transition line relates to
the one for the case εg > εη shown in Fig. 8b, and how
both lines weakly depend on value R0 � 1 compared to
the transition line found at the NQCL in case εg > εη.
Following the simplified argument below Eq. D3 (Ap-
pendix D), the pairing can occur if f starts out positive
(implying η0 > g0) and the pairing RG scale l′T is es-
timated by the scale at which f changes sign. Setting
f(l′T ) ≡ 0, we get:

η0
g0

= exp(−δ∗l′T ) +R0 exp

((
1

2
+ g∗

)
l′T

)
. (F3)

In the relevant regime η0 > g0, with |δ∗| � η∗ we obtain
the following limits when δ∗ < 0 (i.e. εg > εη)

l′T =


1

1+g∗
ln
(

η0
R0g0

)
, R0 � b

1
|δ∗| ln

(
η0
g0

)
, R0 � b

, (F4)

where we defined b ≡
(
g0
η0

)(1/2+η∗)/|δ∗|
. The latter limit

connects to the NQCL and gives the same value for tran-
sition scale (Eq. D1), showing a very weak dependence
on R0 in this limit. When εg < εη (i.e. δ∗ > 0) the limit
R0 � b is the one giving

l′T =
1

1 + g∗
ln

(
η0
R0g0

)
, R0 � b, (F5)

so as expected for εg < εη we find that the transition line
exists only away from the NQCL (R0 6= 0). These ana-
lytical results match well with numerical ones (Fig. 6b),
if one takes into account the caveats of numerical ob-
servation of pairing transition discussed below Eq. D3
(Appendix D).

Another way of understanding the presence of a similar
transition line behaviors for both εg ≶ εη in vicinity of
the NQCL is to focus on the general constraints in the
pairing function f(l). Away from the NQCL, it has the
general form in Eq. (10), and in stark contrast to case
R ≡ 0, where f(l→∞) = η∗− g∗ it always has the limit
f(l → ∞) = −g∗ < 0 (no matter if η diverges or not).
So if f(0) < 0, and f(l) does not change sign, there is no
possibility of a pairing instability. In general, analyzing
Eq. (F3) as a function of l′T we can find the number of
sign changes, which together with f(0) = η0/(1+R0)−g0
and f(∞) = −g∗ < 0 gives a qualitative picture of the
pairing function f(l). We find that f(l) changes once
from initially positive (promoting attraction) to negative,
if η0/g0 > 1 +R0. In contrast it stays always negative if
η0/g0 < m, where 0 < m < 1 +R0 is the minimum value
of right hand side of Eq. (F3) as function of l′T . Only
when δ∗ > R0(1/2 + g∗) does m < 1 + R0, creating the
possibility for m < η0/g0 < 1 +R0, for which f(l) starts
out and finishes negative, changing sign exactly twice.
The limit R → 0 is then obviously not universal, since
apart from making m = 1, it also allows values f(∞)
that are not negative.
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