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Abstract

The original proposal to achieve superconductivity by starting from a quantum spin-liquid (QSL)

and doping it with charge carriers, as proposed by Anderson in 1987, has yet to be realized.

Here we propose an alternative strategy: use a QSL as a substrate for heterostructure growth of

metallic films to design exotic superconductors. By spatially separating the two key ingredients

of superconductivity, i.e., charge carriers (metal) and pairing interaction (QSL), the proposed

setup naturally lands on the parameter regime conducive to a controlled theoretical prediction.

Moreover, the proposed setup allows us to “customize” electron-electron interaction imprinted on

the metallic layer. The QSL material of our choice is quantum spin ice well-known for its emergent

gauge-field description of spin frustration. Assuming the metallic layer forms an isotropic single

Fermi pocket, we predict that the coupling between the emergent gauge-field and the electrons of

the metallic layer will drive topological odd-parity pairing. We further present guiding principles

for materializing the suitable heterostructure using ab initio calculations and describe the band

structure we predict for the case of Y2Sn2−xSbxO7 grown on the (111) surface of Pr2Zr2O7. Using

this microscopic information, we predict topological odd-parity superconductivity at a few Kelvin

in this heterostructure, which is comparable to the Tc of the only other confirmed odd-parity

superconductor Sr2RuO4.
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An intimate connection between the quantum spin liquid (QSL) state and superconduc-

tivity has long been suspected. Anderson conjectured that a QSL could turn into a supercon-

ductor upon doping holes in 1987.1 His idea is based on the resonating valence bond (RVB)

description of a QSL2 which involves a quantum superposition of singlet configurations in

which all spins form a singlet with a partner (See Fig1A). Such spins simultaenously point

in many directions due to quantum fluctuation effects and hence show no sign of magnetic

order. Nevertheless widely separated spins in a QSL maintain a high degree of entanglement

driven by the exchange interaction Jex.3,4 Anderson conjectured that a RVB state can turn

into a superconducting state by removing spins (doping holes) and allowing singlets to move

around, which promote spin singlets to Cooper pairs (See Fig 1A). However so far no QSL

has been successfully doped into becoming a superconductor to the best of our knowledge.

Here we propose a conceptually new framework for using a QSL to drive superconductivity

without doping: grow a heterostructure consisting of a QSL and a metal (See Fig 1B).

We propose to “borrow” the spin correlation of a QSL without destroying QSL phase.

This is conceptually distinct from Anderson’s proposal and it has several advantages. Firstly,

the superconductor need not be a singlet superconductor. Instead the pairing symmetry now

depends on the dynamic spin-spin correlation function and the structure of the interlayer

coupling and hence it can be “chosen” at will, through the choice of the QSL layer. Specif-

ically, we will show that the quantum spin ice5 as a QSL material will drive topological

triplet pairing at the interface. Secondly the two distinct characteristic energy scales of each

layers, namely the Fermi energy of the metal EF (or equivalently N(0)−1, the inverse of the

density of states at the Fermi level) and the spin-spin exchange interaction of the QSL Jex,

enables us to be in the regime where Jex/EF � 1. Theoretically this small parameter can

play the role of ωD/EF � 1 (where ωD represents characteristic phonon frequency) in the

Migdal-Eliashberg theory which justifies ignoring a certain set of diagrams and in turn serves

as the key to their essentially exact treatment of phonon-mediated superconductivity.6 Fi-

nally, the coupling between the spins and the itinerant electrons in the form of a Kondo-like

coupling JK
7 across the interface is expected to be small, i.e., JKN(0) � 1, making a per-

turbative treatment in this parameter reliable. These advantages in concert with advances

in the atomically precise preparation of relevant heterostructures8–10 present an unusual

opportunity for a theoretically guided “design” of a new topological superconductor.

Interestingly the problem of coupling between local spin-moments and itinerant electrons
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has a long and celebrated history itself, especially in the context of heavy-fermion systems.11

In the strong coupling limit of JKN(0)� 1, the conduction electrons hybridize with the local

moments to form Kondo singlets resulting in a heavy Fermi liquid ground state (the gray

phase labeled HFL in Fig 1C). On the other hand, in the weak coupling limit JKN(0)� 1

of our interest, the spins are asymptotically free and there are many more possibilities

depending on the strength of the spin-spin exchange interaction Jex. When Jex = 0, the

RKKY interaction mediated by itinerant electrons, which is a perturbative effect of the

coupling to the local moments with the characteristic interaction strength JRKKY ∼ J2
KN(0),

typically drives an antiferromagnetic order12 (see Supplemental Material (SM) Figure 1).

However when Jex 6= 013 and furthermore frustrated14 as it is expected for the QSL, such

antiferromagnetic ordering will be suppressed. Further, for sufficiently strong JKN(0), the

Kondo singlet, the RVB singlet and Cooper pairs may all cooperate to form an exotic

superconductor (the purple phase labeled SC×QSL in Fig.1C).13–15 However, the coupling

through the interface would naturally put the proposed heterostructure in the small JKN(0)

region which has not received much attention to-date.

For JKN(0) � 1, the effect of the interfacial coupling on the metal can be treated

perturbatively. Moreover when the QSL has a gapped spectrum with the gap scale ωsf ∼
2Jex, we anticipate the QSL to stay intact on the insulator side (see Fig 1C) as long as

JRKKY ∼ J2
KN(0) < Jex. Under these conditions, one can safely “integrate out” the local

spin degrees of freedom to arrive at an effective interaction for the itinerant electrons. In the

absence of the JK coupling, the ground state for the heterostructure will consist of decoupled

and coexisting Fermi liquid and QSL for a trivial reason (labeled FL|QSL in Fig.1C).86

However the Fermi liquid state of the metal may be unstable against ordering once the

effective electronic interaction due to the coupling JK is taken into account. In the absence

of Fermi surface nesting, the only such instability that is accessible at infinitesimal coupling

strength is a superconducting instability.16 Hence as long as JRKKY < Jex, we anticipate the

ground state in the JKN(0) � 1 regime to consist of superconducting itinerant electrons

from the metallic side coexisting with the QSL. This interfacial superconductor, which we

dubbed a SC|QSL phase (the yellow phase in Fig1C), will be the focus of the rest of this

paper.

In order to materialize the SC|QSL phase, we propose to grow a metallic layer on a QSL

substrate. The goal will be for each sides of the heterostructure to be individually well-
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understood and to provide one of two essential ingredients of superconductivity: the charge

carriers and the pairing interaction. For this, we will focus on a class of QSL materials

known as the quantum spin ice (QSI) family. The QSI materials are frustrated pyrochlore

magnets that not only show no sign of order down to low temperatures, but also exhibit

quantum dynamics.5,17–24 For our purpose, the advantage of the QSI materials over other

spin-1/2 QSL materials87 is that the QSI’s appear to be quantum fluctuating relatives of the

well-understood classical spin ice.24 Specifically, the classical spin ice materials obey the ice

rule which amounts to the divergence-free constraint, i.e., ∇· ~S(r) = 0 for the coarse-grained

spin field ~S(r). This constraint, which can be elegantly expressed in terms of an emergent

gauge field ~A(r) as ~S(r) = ∇× ~A(r),25,26 appears to simply gain relaxational dynamics in

QSI.5 Specifically we will focus on Pr2Zr2O7 for concreteness and for its appealing properties.

Experimentally, Pr2Zr2O7 exhibits QSL phenomenology over a large temperature window

(T < 1.4K). Inelastic neutron scattering results on single crystals of Pr2Zr2O7 reveals a

gapped spectrum with a single frequency scale ωsf ∼ 0.17meV24 and a peak around Q = 0.

Theoretically, the magnetic degree of freedom is a non-Kramers doublet governed in the

absence of disorder by a simple Hamiltonian.5 Armed with these facts we can construct a

reliable phenomenological model for the heterostructure.

We first consider the relevant low energy effective theory H = Hc+Hs+HK . Hc describes

the metallic layer with an isotropic Fermi surface:

Hc =
∑
kα

(
}2k2

2m
− EF

)
ψ†α(k)ψα(k), (1)

where ψ†α(k) (ψα(k)) creates (annihilates) an electron with momentum k and spin index

α, m is the electron’s mass and EF is the Fermi Energy. The spin Hamiltonian Hs for the

QSI substrate in isolation encodes the exchange energy scale Jex and the effect of geometric

frustration through the emergent gauge field ~A. Finally the dynamic degrees of freedom

of each side will couple at the interface through the coupling term HK .88 Specifically, we

consider a Kondo-like coupling7 between the conduction electron spin density ~s(r, t) =∑
αβ ψ

†
α(r, t)~σαβψβ(r, t) and the coarse-grained spin operator ~S(r, t)25,26:

HK = JKvcell

∑
aαβ

∫
d2rψ†α(r)~σαβψβ(r) · ~S(r⊥ = r, z = 0)

= − JKvcell

∑
aαβ

∫
d2r

(
~∇× ψ†α(r)~σαβψβ(r)

)
· ~A(r⊥ = r, z = 0), (2)
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upon integrating by parts. Here ~σ denotes the Pauli matrices, vcell the volume of the unit

cell and z = 0 the interface. Notice the rather obvious form of the coupling in the spin

language takes a rather unusual form in the emergent gauge boson language. Usually when

fermions are “charged” under a gauge boson ~A, it couples minimally via ~j · ~A coupling,

with current ~j = Q k
m
ψ†kαψkα where Q is the charge of the fermion field ψ with respect to

the gauge boson ~A. The unusual form of coupling between the electrons and the emergent

gauge boson in Eq. (2) in the form of (~∇ × ~s) · ~A is due to the fact that the electrons are

“not charged” under the gauge boson, i.e. the electrons are not magnetic monopoles. This

exotic coupling has striking consequences when we consider pairing possibilities.

In the regime of interest, the leading effect of the coupling (2) on the spin physics is to

induce the RKKY interaction that can drive ordering. However, for a gapped spin liquid like

Pr2Zr2O7, the QSL state would be stable as long as JRKKY < Jex. Hence we can “integrate

out” the local moments and focus on the effect of the interaction induced on the metallic

layer. Given a QSL substrate ( 〈~S(r, t)〉 = 0 by definition) the leading effect of the coupling

Eq. (2) is

Hint(t) = −J
2
Kv

2
cell

2}

∫
dt′
∫
d2rd2r′ ~s(r, t) · 〈~S(r, 0, t) ~S(r′, 0, t′)〉 · ~s(r′, t′) (3)

= −J
2
Kv

2
cell

2}
∑

abαβα′β′

∫
dt′
∫
d2rd2r′

[(
~σαβ × ~∇

)
a
ψ†rαψrβ

]
Dab

[(
~σα′β′ × ~∇

)
b
ψ†r′α′ψr′β′

]
(4)

where Dab(r− r′, t− t′) ≡ 〈Aa(r, 0, t)Ab(r′, 0, t′)〉 represents the emergent gauge field prop-

agator, whose classical limit in momentum space 〈Aa(q)Ab(−q)〉 ∼ 1
q2

(δab − 2q̂aq̂b)
25,26 en-

capsulates the ice-rule. Note that Eq (3), which would apply to any QSL-based heterostruc-

ture, shows how the dynamical entanglement between spins of the QSL gets imprinted on

the effective interaction between itinerant electrons. Therefore one can “manipulate” the

interaction between itinerant electrons through the choice of the QSL. On the other hand,

Eq (4) is specific to QSI-metal heterostructure and it reveals a critical insight into the lead-

ing pairing channel. Minimally coupled gauge boson prohibits pairing because the induced

current-current interaction is repulsive for two electrons with opposite momenta. One way

to circumvent this issue is to form finite momentum carrying pairs out of electrons with

nearly parallel momenta.27,28 Remarkably the exotic form of fermion-gauge boson coupling

(Eq. (2)) offers an alternative channel for gauge bosons to mediate pairing. Specifically,

since the induced interaction in Eq.(4) is obviously attractive between electrons of equal
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spin ~s(r) = ~s(r′), one can anticipate triplet pairing even at the mean-field level.

Now the low energy effective theory defined by Eq.(1) and Eq.(3) describes an interacting

electron problem, which is generically hard to solve. To make the problem worse, the effective

interaction Eq. (3) is highly structured as a result of the spin ice rules. However, we can

make non-trivial progress building on the renormalization group based perspectives and

the classic justification for the mean-field theory treatment in the BCS theory. Firstly, we

know from the renormalization group theory that the only weak-coupling instability of a

Fermi liquid in the absence of Fermi-surface nesting is the superconducting instability.16

Secondly, armed with the separation of scale ωsf/EF � 1, we expect the mean-field theory

treatment in the pairing channel to yield a reliable prediction for the interacting fermion

problem when the interaction is weak, i.e., λ ∼ N(0)V ∼ J2
KN(0)/Jex < 1. Thirdly, the

interaction in Eq (4) is clearly attractive in the equal-spin pairing channel and hence we can

anticipate pairing instability at mean-field level. All together the problem at hand promises

an opportunity to predict an exotic superconductor whose pairing channel is determined by

spin- and momentum-dependent interaction of Eq. (4), in a theoretically reliable approach.

Therefore we use mean-field theory to look for pairing. We first note that the symmetry

of the effective interaction Hint Eq. (3) can be read off directly from the measured spin

susceptibility. For Pr2Zr2O7, the measured spin susceptibility24 (the Fourier transform of the

spin-spin correlation function 〈Sa(r, t)Sb(0, 0)〉 in Eq. (3)) exhibiting relaxational dynamics

is well captured by the following approximate analytic form17,25,26,29–31

χab(q, ω) =
χ0

1− iωτ

(
δab −

qaqb
q2

+
1

1 + q2ξ2

qaqb
q2

)
≡ 1

1− iωτ Sab(q), (5)

where τ = ω−1
sf denotes relaxation time, ξ denotes the correlation length, χ0 ≡ }/(Jexvcell),

and Sab(q) denotes the momentum dependence of the susceptibility. The first two terms are

the transverse components originating from the ice-rule that reflect the propagator of the

emergent gauge fields,25,26 albeit with relaxational dynamics. The third term is an ice-rule

breaking longitudinal component. Due to the entanglement between the spin direction (a)

dependence and the momentum direction (q) dependence in Eq. (5), the total angular mo-

mentum and the total spin are not separately conserved in Hint. This situation is analogous

to that of the the three dimensional magnetic dipole gas32 except that our system is confined

to two-dimensions. Hence the effective interaction Hint Eq. (3) reduces the total orbital and

spin rotational symmetry of SO(3)× SU(2) down to U(1) leaving only the z-component of
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the total angular momentum Jz = Lz + Sz a good quantum number for the Cooper pairs.

In addition, the effective interaction is even under parity and so parity is another good

quantum number.

Now we seek the dominant pairing channel. For this we will keep the frequency depen-

dence implicit and mean-field decouple Hint using pair operators formed out of 2×2 matrices

in the spin basis Pµ(k) ≡ 1√
2

∑
αα′ [iσyσµ]αα′ ψα(k)ψα′(−k), where σµ = I for µ = 0 and Pauli

matrices for µ = x, y, z.33 Further since pairing occurs near the Fermi surface, we can focus

on the angular (ϕk) dependence of the pair operators and decompose the pair operators into

different partial wave components: Pµ(Lz) ≡
∫

dϕk

2π
e−iLzϕkPµ(k). Guided by symmetry we

then combine pair operators with different orbital angular momentum Lz and total spin Sz

into the Jz basis, and diagonalize the interaction Hamiltonian Eq (4) into

Hint =
∑
κ=±

∞∑
Jz=−∞

V (κ)(Jz)P
†
Jz ,κ

PJz ,κ, (6)

where PJz ,κ denotes the pair operator with the z-component of total angular momentum Jz,

and parity κ (+ for even parity, − for odd parity). (See SM section SI.)

Before turning to the numerical results of V (κ)(Jz), we can gain much insight by consid-

ering the limit ξ →∞ and solving Cooper’s pair-binding problem. This amounts to solving

the quantum mechanics of two electrons interacting via dipole-dipole interaction

Vdd =
1

r3
[~S1 · ~S2 − 3(~S1 · r̂)(~S2 · r̂)] ∝ R(2)(r1, r2) · S(2)(s1, s2) (7)

where ~S1,2 represent the spin operators of the two electrons and both R(2) and S(2) are

rank-two tensors, with R(2) acting on coordinate space, and S(2) (magnetic quadrupole

moment) on spin space [34]. First we note that 〈Vdd〉 = 0 in the even parity channel due

to a selection rule (see SM section SIV). The celebrated selection rule that forbids optical

transition between 1s and 2s state (Fig. 2A), but allows the transition between 1s and 2p

state (Fig. 2B) is an example of how a tensor operator of rank r, T (r) connects two angular

momentum states |l〉 and |l′〉 according to the Wigner-Eckart theorem. The theorem states

〈l′|T (r)|l〉 = 0 unless |r − l| ≤ l′ ≤ (r + l). In the case of optical transitions of a hydrogen

atom, the tensor operator involved is a rank r = 1 vector field as the photon is a spin

s = 1 boson. In our case, the scattering potential carries a quadrupolar moment which is

a rank r = 2-tensor. Hence the selection rule forbids pairing in the singlet channel, i.e.,

〈S = 0|Vdd|S = 0〉 = 0 (Fig 2C). Since the Pauli principle dictates all even parity pairing
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to be singlet, the selection rule limits possible pairing to the odd-parity channel (Fig 2D).

Second we note that among the odd-parity states,

|Jz = 0〉 ∼ (kx + iky)| ↓↓〉+ (kx − iky)| ↑↑〉 (8)

and

|Jz = ±1〉 ∼ (kx ± iky)
| ↑↓〉+ | ↓↑〉√

2
∼ ky

|⇒〉x − |⇔〉x√
2

∓ kx
|⇒〉y − |⇔〉y√

2
. (9)

states indeed yield pair-binding (see Fig 2E and SM section SIV). This is consistent with

the earlier insight that Eq. (4) is attractive in the equal-spin pairing channel. Indeed

full numerical calculation of interaction strengths V (κ)(Jz) confirms the above analysis

and predicts the two odd-parity pairing channels with Jz = 0 and Jz = ±1 to be over-

whelmingly dominant, with predicted Tc ∼ ωsf e
−1/λ, with the dimensionless parameter

λ ∼ N(0)V (κ)(Jz) ∼ J2
KN(0)/Jex (see SM section SIV). Pairing in either of these channels

on a single Fermi surface will be topological.35,36

There remains the important question of the effect of short distance physics. As we show

in SM section SIV, microscopics affect the above considerations in two ways. Firstly, the

Kondo coupling (Eq.2) acquires spatial dependence which gives rise to extra form factors in

the pairing interaction Vµν . Secondly, the spin structure factor Sab(q) (Eq.5) gains richer

momentum dependence at high momentum points. Nevertheless, as long as Fermi surface

stays small compared to the high momentum points, such short distance structures do not

change the dominant pairing channels. Indeed our mean-field calculations of a microscopic

model for the heterostructures (see SM section SIV) confirm that the main effect of the short

distance physics to be quantitative rather than qualitative.

We now turn to a material proposal for the metallic layer that is expected to fit the

above long-wave length description. The requirements of chemical stability at the interface

between the two materials and matching of lattice constants restrict the choice of materials.

In particular, we need the metallic layer to stably grow with the interface along the (111)

surface in order to avoid the generation of orphan bonds and preserve the spin correlations

of QSI. Electronically we require the metallic layer to be a good metal without strong Fermi

surface nesting, the simplest example being an s-band metal. Such a metal would have

several merits: (1) large band width, (2) weak correlation, which helps to avoid ordering

by itself; (3) non-degenerate bands, which helps to provide odd numbers of Fermi surfaces
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to generate topological superconductivity. Unfortunately, existing metallic pyrochlores such

as Bi2Ru2O7 or Bi2Ru2O7 do not satisfy these criteria since they show complicated Fermi

surfaces due to the conduction electron of d-electron character.

A robust strategy to realize the targeted metallic system is to dope a band insulator

with an empty conduction band of s-character. Simple crystal chemical rules point to

compounds with Sn4+ or Bi5+ at the B-site of A2B2O7, e.g., Y2Sn2O7 or La2Sn2O7, as

prime candidates for the insulating starting material. In practice, doping of the empty

conduction band can be performed in a few different ways. For example, one could dope

the B-site with Sb or substitute the A-site with Ce4+ to form, e.g., (La/Ce)2Sn2O7. For

illustration of the principle, we performed ab initio calculations using Density Functional

Theory(DFT) on Y2Sn2−xSbxO7 /Pr2Zr2O7 heterostructures (see Fig 3A and SM section

SIII). In order to minimize the proximity effect which lowers the superconducting gap, we

considered one unit-cell thick metallic layer and imposed periodic boundary condition in the

direction perpendicular to the interface. As shown in Fig 3C we find a single circular Fermi

surface centered at the Γ point for the heterostructure with Y2Sn2−xSbxO7 at doping level

x = 0.2. Moreover, the conduction electron wavefunction penetrates into the first two layers

of Pr2Zr2O7 (Fig. 3B), generating a finite Kondo coupling across the interface. Our estimates

for the parameters are EF = 300 meV, τ−1 ∼ 2Jex = 0.17 meV, 5meV . JK . 14 meV. Of

these, EF was obtained directly from DFT, Jex from experiment and JK from second order

perturbation on a realistic atomic Hamiltonian (see SM section SIII). These parameters

display a separation of energy scales, i.e. τ−1/EF � 1, that ensures the reliability of the

above BCS-like treatment of the superconducting instability.

Carrying out a microscopic treatment of interfacial superconductivity for the heterostruc-

ture of Fig.3A using the electronic structure of Fig.3C (see SM section SIV), we confirmed

the predictions of the low energy effective model Eqs.(5,6) and obtained an estimate of Tc

from Tc ∼ τ−1e−EF Jex/J
2
K . Using our parameters, this is of order 1 K.89 We note that the

predicted Tc is comparable to the only other solid state candidate for topological supercon-

ductivity Sr2RuO4 with Tc ' 1.5 K.37

The strategy we developed here for predictively achieving an exotic superconducting state

we dubbed SC|QSL has profound theoretical and experimental consequences. At the level

of theoretical principle it is an alternative approach to that of Anderson’s to drive supercon-

ductivity from a quantum spin liquid. Our proposal to borrow the quantum spin fluctuation
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of a quantum spin liquid3 to form exotic superconductors through heterostructure growth

bears similarities to excitonic fluctuation proposals.38–42 However, the latter charge fluc-

tuation based mechanism suffers from various issues. For instance, tunneling of electrons

from the metal can damage the small charge gap of the semi-conductor and kill the charge

fluctuation. Further, the local charge fluctuations only drives s-wave pairing which needs

to overcome the Coulomb repulsion. By utilizing the goodness of the quantum spin liquid,

i.e., spin-fluctuation, our proposal bypasses these issues. At the level of a specific choice

of quantum spin-ice, we for the first time demonstrated how emergent gauge fluctuations

can mediate attractive interaction in the triplet channel through unconventional coupling

between the gauge field and the fermions, which is nevertheless natural coupling in the

language of spins. Our concrete material proposal can guide experimental pursuit of the

proposed heterostructure. Clearly the experimental control over atomic interfaces and thin

films have reached the state that can support superconductivity.8,9,43–45 Successful materi-

alization of the proposed topological superconductor will not only be a major breakthrough

in superconductivity research, but would also be the first application emanating from the

discovery of quantum spin liquids.
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FIG. 1: General considerations of spin-fluctuation-mediated-pairing in the

metal/quantum-spin-liquid (QSL) heterostructure. (A): The resonating valence bond

(RVB) proposal of unconventional superconductivity by Anderson.1 Left represents the parent

insulating system where the spins form RVB pairs (blue ellipsoid). By doping holes (dashed cir-

cle) into the system, as shown on the right, the RVB pairs become mobile (red ellipsoid), and

the whole system becomes superconducting. (B): The proposed metal/QSL heterostructure. The

metal provides the charge carriers and the QSL provides a pairing interaction via quantum para-

magnetic spin-fluctuations 〈SiSj〉. The two systems are coupled via a Kondo type coupling JK ,

which generates Cooper pairing among charge carriers (red ellipsoid). (C): Phase diagram of the

metal-QSL heterostructure. In the FL|PM, FL|QSL and SC|QSL phases, the conduction electrons

from the metal and the local moments from the QSL coexist, but are decoupled at the mean field

level. The conduction electrons form a Fermi liquid (FL) or a superconductor (SC), while the

local moments form an incoherent paramagnet (PM) or a coherent QSL. In the HFL and SC×QSL

phases, the conduction electrons and the local moments hybridize and form Kondo singlets. The

aim is to design the heterostructure to be in the SC|QSL phase. This phase diagram applies to the

parameter region JRKKY < max {Jex, TK} for all coupling strength JKN(0) (see SM section SI).
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Jz!=1! Jz!=0!

A" B"

C" D"

E" F"

|1&0|≤!1!≤1+0!

|2&1|≤!1!≤2+1!

FIG. 2: The dominant pairing channels in the metal/quantum-spin-ice heterostructure.

(A,B,C,D): Understanding the emergence of parity-odd spin-triplet pairing from selection rules.

A and B represent the dipole transitions for atomic hydrogen: transition from 1s state with angular

momentum l = 0 to 2s state also with l = 0 is forbidden by the selection rule (|1− l| ≤ l′ ≤ 1 + l),

while transition from 1s state to 2p state with l = 1 is allowed. C and D represent the pairing

problem under the rank-two magnetic dipole-dipole interaction: spin-singlet pairing with total

spin S = 0 is forbidden by the selection rule (|2− S| ≤ S ≤ 2 + S), while spin-triplet pairing with

total spin S = 1 is allowed. (E): Illustration of spin and angular momentum configurations of

the dominant pairing channels. The larger (brown) arrows represent the orbital angular momenta,

and the smaller (red) arrows represent the electron spins. Spin and orbital angular momentum are

coupled to yield the total angular momentum Jz = 0, 1. (F): The leading negative eigenvalues of

the pairing interaction matrix for different parity and Jz channels in the low energy effective model.

The eigenvalues are dimensionless numbers in arbitrary units. The dominant pairing channels have

odd parity with Jz = 0,±1.
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B"
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FIG. 3: A concrete material realization of the metal/quantum-spin-ice heterostructure:

Pr2Zr2O7/Y2Sn2−xSbxO7 (111). (A): Lattice structure. Two layers of Sb-doped Y2Sn2O7

deposited on top of 16 layers of Pr2Zr2O7 along the [111] direction. The magnetic moments are

on the Pr sites (blue), which form alternating layers of triangular and Kagome lattices. The

conduction electrons are donated by the Sn atoms (brown). Red is O, Green is Y and Gray is

Zr. (B): Amplitude of the conduction electron wavefunction in the direction perpendicular to the

interface showing penetration into the first two or three layers of Pr2Zr2O7. (C): Band structure,

with Fermi surface shown in the inset. There is a single band crossing the Fermi energy, and

a single circular Fermi surface around the Γ point, with Fermi energy EF ' 0.3 eV, and Fermi

momentum kF ' 0.37(2π/a), where a is the lattice constant of Pr2Zr2O7.
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Supplemental Material

In the Supplemental Material, we first lay out the general framework to describe interfacial

spin-fluctuation-mediated superconductivity in our heterostructure (SI). Then we include a

list of possible candidate materials for the insulating substrate (SII). Finally, choosing the

quantum spin ice candidate material Pr2Zr2O7 as the insulating substrate, we study the

resulting heterostructure in detail (SIII), in particular the pairing problem (SIV).

SI: Superconductivity in metal/quantum-spin-liquid heterostructure

We include here a general description of interface superconductivity in the heterostructure

of metal and quantum-spin-liquid (QSL). We consider the metal to be described by a tight-

binding model with Hamiltonian Hmetal. The QSL is described in terms of local moments,

and the moments interact via exchange interactions with Hamiltonian HQSL. The conduction

electrons from the metal penetrate into the QSL, generating a Kondo type coupling with

Hamiltonian HK . The coupling strength is determined by the overlap of the conduction

electron and the localized electron wavefunctions [46]. The heterostructure is then described

by the Hamiltonian

Hmetal =
∑
mnα

tmnc
†
mαcnα − µ

∑
mα

c†mαcmα, (1)

HK =
∑
imαβ

Iimc†mα~σαβcmβ · ~Si, (2)

HQSL =
∑
ijab

Jabij S
a
i S

b
j . (3)

Here we use m,n to label the conduction electron sites, i, j for the spin sites, ~σ = (σx, σy, σz)

represent the Pauli matrices.

A. Phase diagrams

With the presence of both geometric frustration and Kondo coupling, such systems are

strongly correlated, and possess a rich phase diagram. The global phase diagrams of such

frustrated Kondo systems have attracted much attention recently in the context of heavy

fermion systems since the pioneering work of [14,47–49]. Following the seminal work of

Doniach [12], the phase diagram can be obtained by comparing the energy scales of the
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FIG. 1: (Color online) Phase diagrams for three different cases: (a) the Doniach phase diagram

with Jex = 0, (b) JRKKY < max {Jex, TK} for all coupling strength JKN(0), and (c) Jex, JRKKY

and TK are comparable. With JRKKY = CJ2
K/EF , TK = EF e

−1/JKN(0), there are two dimen-

sionless parameters C ∼ O(1) and B ≡ EF /Jex � 1. When C < (logB)2/B, phase diagram (b)

applies; when C > (logB)2/B, phase diagram (c) applies. The system consists of two components:

conduction electrons and local moments. Here | represents a phase where the two components co-

exist but are effectively decoupled, and × represents a phase where the two components hybridize,

forming Kondo singlets.

competing interactions in the system: (1) the spin exchange interaction Jex, (2) the Kondo

temperature TK , and (3) the RKKY interaction JRKKY. The conduction electron Fermi

energy EF is typically much higher than these interaction scales. The spin exchange inter-

action Jex is a property of the insulating substrate. The Kondo temperature TK and the

RKKY interaction JRKKY arise from coupling the metallic layer to the insulating substrate.

Their forms can be found in standard textbooks (see e.g. [7]). To be self-contained, we

include below a short discussion of these two energy scales.

15



When a local moment is placed in the conduction electron sea, the conduction electron

cloud Kondo-screens the local moment. This is a non-perturbative effect, and the charac-

teristic energy scale is the Kondo temperature [7]

TK ∼ EF e
−1/JKN(0), (4)

where JK is the Kondo coupling strength, and N(0) ∼ 1/EF is the conduction electron

density of states at the Fermi level. Above TK , the local moment is essentially decoupled

from the conduction electrons. Below TK , the local moment forms Kondo singlets with the

conduction electrons. The change around TK is not a sharp phase transition, but a crossover.

When two local moments are placed in the conduction electron sea, the conduction elec-

trons mediate a long-range oscillating interaction among the local moments. This interaction

is called the RKKY interaction, with the corresponding energy scale [7,50]

JRKKY ∼ J2
KN(0). (5)

When the local moments form a lattice, the corresponding RKKY interactions are encoded

in the Hamiltonian HRKKY =
∑

ij JRKKY(Ri−Rj)~Si · ~Sj, which generically leads to magnetic

ordering of the moments.

The competition of Jex, TK and JRKKY gives rise to a high dimensional phase diagram.

We consider below representative two dimensional cuts of such a high dimensional phase

diagram in the plane expanded by the (normalized) Kondo coupling JK and temperature T

(see Fig.1). We consider three different cases here, as specified by the different choices of

the dominant energy scales.

When the spin exchange interaction is small, i.e. Jex � JRKKY and Jex � TK , we re-

cover the original Doniach phase diagram [12] (Fig.1a). At high temperatures, the local

moments are incoherent, residing in a paramagnetic (PM) state, decoupled from the con-

duction electrons which form a Fermi liquid (FL). Coherent many body states develop as one

lowers the temperature. In the parameter region where the Kondo coupling JK is small, one

has JRKKY > TK , and the RKKY interaction dominates. The system develops long range

magnetic order, e.g. antiferromagnetic (AFM) order. We note that since the spin lattice is

frustrated, RKKY interaction can also lead to more complicated magnetic ordering patterns.

In the parameter region where the Kondo coupling JK is large, one has TK > JRKKY, and

the Kondo effect dominates. The conduction electrons and the local moments form Kondo
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singlets, and the system is in a heavy Fermi liquid (HFL) state with a large Fermi surface,

which counts both the conduction electrons and the local moments.

Of more relevance to the present paper is the case where the RKKY interaction is never

the dominant energy scale, i.e. JRKKY < Jex for small JK and JRKKY < TK for large JK . The

corresponding phase diagram has been studied in [14,47] (see Fig.1b). At low temperatures,

the phase diagram is determined by the competition between Jex and TK . For large Kondo

coupling JK , where TK is the dominant energy scale, the system is in the HFL state as in the

previous case. For JK small, where Jex is the dominant energy scale, the local moments are

in a QSL state, decoupled from the conduction electrons. Such a coexisting and decoupled

FL and QSL phase (hence named SC|QSL here) corresponds to the FL∗ phase of [14,47].

Of central importance to the present paper is the fact that at low temperatures, the

FL|QSL phase is unstable towards pairing instability. The spin fluctuations of QSL induce

pairing interactions among the conduction electrons, which then give rise to a supercon-

ducting (SC) phase at the interface, that coexists with the QSL phase in the insulating

substrate. Such a SC|QSL phase is the main target of the present paper. We want to design

our heterostructure in a proper way so that the interface lies in the SC|QSL phase. We note

that in the slave-fermion mean field theory, for Z2 spin liquids where the spinons have finite

pairing amplitude, the HFL state also becomes superconducting at low temperatures [14].

Such a phase with superconductivity entangled with spin liquid via the formation of Kondo

singlets (hence the name SC×QSL phase) is absent for U(1) spin liquids [47].

There is also the possibility that as one varies the Kondo coupling, Jex, JRKKY and TK

dominate respectively over different parts of the 2d phase diagram (see Fig.1c). At small JK

where Jex dominates, the local moments are in the QSL state, decoupled from the conduction

electrons. At intermediate JK where JRKKY dominates, the local moments develop long range

magnetic order, but are still decoupled from the conduction electrons. At large JK where TK

dominates, the conduction electrons and local moments form Kondo singlets. In this case,

we can still obtain the desired SC|QSL phase as a result of the low temperature instability

of the FL|QSL phase. Since the spin liquid correlation (here in particular spinon pairing)

has been destroyed at the corresponding JK , the HFL will not become superconducting at

low temperatures.
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B. Spin-fluctuation mediated superconductivity

We now study in more detail the spin-fluctuation mediated superconductivity in

the SC|QSL phase. Coupling to the local moments induces interactions among the

conduction electrons. The partition function of the metallic part becomes Zmetal =

Tr exp (−βHmetal − Sint), with the induced action [51]

Sint = −
∞∑
l=1

(−1)l

l

∫ β

0

dτ1 · · ·
∫ β

0

〈TτHK(τ1) · · ·HK(τl)〉. (6)

Here τ denotes imaginary time, β = 1/T , and Tτ represents time ordering. We set ~ = kB =

1. The expectation value is taken over the spin Hamiltonian HQSL. The first order term in

the action is

S(1)
int =

∑
ima

∫
dτβ0 Iim〈Sai 〉sam(τ), (7)

where the conduction electron spin density sam =
∑

αβ c
†
mασ

a
αβcmβ, and the expectation value

is taken over the spin Hamiltonian. One can see that when the magnetic insulator has

long range order, it generates a potential that polarizes the conduction electron spins. The

potential term can also be generated by other more exotic orderings, e.g. scalar spin chirality

〈~Si ·(~Sj×~Sl)〉 (see e.g. [52–54]), even when 〈Sai 〉 = 0. Such a potential term changes the band

structure of the original metal, and is generally detrimental for superconductivity. Hence

we require this term to vanish in our heterostructure. This can be achieved by choosing the

proper magnetic insulator.

When the magnetic insulator does not have long range order, the leading order term of

the induced interaction among the conduction electrons is of second order in the Kondo

coupling,

S(2)
int = −1

2

∑
ijmnab

∫ β

0

dτ

∫ β

0

dτ ′IimIjn〈TτSai (τ)Sbj (τ
′)〉sam(τ)sbn(τ ′), (8)

which represents a retarded exchange interaction among the conduction electron spin density.

Rewriting the above action in the form S(2)
int =

∫ β
0
dtHint(t), we obtain the induced interaction

Hamiltonian Hint(t) as shown in Eq.(3) of the main text.

If the Fermi surface of the metallic layer is not too close to perfect nesting, pairing

will be the only weak coupling instability [16]. We will then proceed to study the pairing

problem using standard mean field theory. We first decompose the spin fluctuation induced
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interaction (8) in the pairing channel in terms of the the pair operator Pαα′(k, q;ω,Ω) ≡
ck+q/2,ω+Ω/2,αc−k+q/2,−ω+Ω/2,α′ . The resulting pairing action reads

Sint =
∑

kk′qωω′Ω

∑
abαβα′β′

Vab(k − k′, ω − ω′)σaαβσbα′β′P
†
αα′(k, q;ω,Ω)Pβ′β(k′, q;ω′,Ω), (9)

with the interaction

Vab(p,Ω) = −1

2

∑
ijmn

∫
dτdτ ′e−ip·(rm−rn)e−iΩ(τ−τ ′)IimIjn〈TτSai (τ)Sbj (τ

′)〉. (10)

However, unlike the Rashba type spin-orbit coupling HR(k) ∼ (ẑ × k) · ~σ, which breaks

parity symmetry, the pairing interaction Vab(p,Ω) induced by the insulating substrate, for

which the spin dependence and momentum dependence may not decouple, is even under

parity: Vab(p,Ω) = Vab(−p,Ω). This ensures that the parity odd and parity even pairing

channels do not mix. We can then organize the pair operators in different parity channels:

Pµ = 1√
2

∑
αα′ [iσyσµ]αα′ Pαα′ , and P †µ = 1√

2

∑
αα′ [iσyσµ]∗αα′ P

†
αα′ , with µ = 0 representing

parity even pairing channel, and µ = x, y, z parity odd channels. The pairing action written

in this representation

Sint =

∫
d2k

(2π)2

∫
dω

2π

∫
d2k′

(2π)2

∫
dω′

2π
Vµν(k − k′, ω − ω′)P †µ(k, ω)Pν(k

′, ω′), (11)

where Vµν =
∑

ab

∑
αα′ββ′ Vabσ

a
αβσ

b
α′β′ [σµiσy]

∗
α′α[σνiσy]ββ′ , is block diagonal: V0x = V0y =

V0z = 0.

The resulting pairing order parameter is largely determined by the symmetry of the

system. The presence of the interface breaks the SO(3) coordinate space rotation symmetry

to U(1) rotation around the z-axis (the interface is at z = 0). The spin-orbit entanglement

in the pairing interaction Vab(q,Ω) then leaves only the z-component of the total angular

momentum Jz = Lz + Sz conserved, i.e. the full SO(3)L × SU(2)S symmetry is reduced

down to U(1)Jz . This imposes severe constraints on the possible pairing channels.

With both parity and Jz being good quantum numbers, the pairing interaction can be

organized in the parity and Jz basis. We first decompose the pairing interaction in different

partial wave channels:

Vµν(k − k′) =
∑
Lz ,L′

z

V µν
LzL′

z
(k, k′)eiLzϕke−iL

′
zϕk′ . (12)

Here ϕk represents the angle of the momentum, i.e. k = k(cosϕk, sinϕk). To simplify

the notation, we will keep the frequency dependence implicit. The different partial wave
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components read

V µν
LzL′

z
(k, k′) =

∫
dϕk

2π

∫
dϕk′

2π
Vµν(k − k′)e−iLzϕkeiL

′
zϕk′ . (13)

Since pairing happens near the Fermi surface, we can approximate V µν
Lz ,L′

z
(k, k′) '

V µν
Lz ,L′

z
(kF , kF ) ≡ Vµν(Lz, L

′
z). Correspondingly the partial wave components of the pair

operator can be written as

Pµ(Lz) =

∫
dϕk

2π
e−iLzϕkPµ(k). (14)

The pairing Hamiltonian then becomes of the form

Hint =
∑
Lz ,L′

z

Vµν(Lz, L
′
z)P

†
µ(Lz)Pν(L

′
z). (15)

With parity a good quantum number, the pairty-even and parity-odd parts of the pairing

interactio decouple, and we can write the above Hamiltonain as Hint = H
(+)
int + H

(−)
int , with

+ for even parity and − for odd parity. The even parity part involves only even orbital

angular momentum (e.g. s- and d-waves), and spin singlet channels:

H
(+)
int =

∑
Lz ,L′

zeven

V
(+)

00 (Lz, L
′
z)P

†
0 (Lz)P0(L′z). (16)

The odd parity part involves only odd orbital angular momentum (e.g. p- and f -waves),

and spin triplet channels:

H
(−)
int =

∑
Lz ,L′

zodd

∑
µ,ν=x,y,z

V (−)
µν (Lz, L

′
z)P

†
µ(Lz)Pν(L

′
z). (17)

In the even parity channels, the Cooper pair has Sz = 0, and hence Jz = Lz. In the

odd parity channels, the orbital and spin parts combine to form different Jz channels. We

reorganize the pair operator in Sz-basis as

P (Lz, Sz = 0) = −Pz(Lz), (18)

P (Lz, Sz = 1) =
1√
2

[Px(Lz)− iPy(Lz)] , (19)

P (Lz, Sz = −1) = − 1√
2

[Px(Lz) + iPy(Lz)] . (20)

The odd parity pairing interaction thus reads

H
(−)
int =

∑
Lz ,L′

zodd

∑
Sz=0,±1

V (−)(Lz, Sz;L
′
z, S

′
z)P

†(Lz, Sz)P (L′z, S
′
z). (21)
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Then combining different (Lz, Sz) pair operators with the same Jz = Lz +Sz, one arrives at

the pairing Hamiltonian in the parity and Jz basis as

Hint =
∑
κ=±

∞∑
Jz=−∞

V (κ)(Jz)P
†
κ(Jz)Pκ(Jz), (22)

which is diagonal in both parity κ and Jz. The gap function can be defined as

∆
(κ)
Jz

= V (κ)(Jz)〈Pκ(Jz)〉. (23)

Estimation of superconducting Tc

While the frequency dependence of the pairing interaction does not affect the dominant

pairing channel, it does determine the superconducting Tc. As in phonon mediated super-

conductivity, where the phonon frequency sets the scale of Tc, here Tc is determined by

the frequency scale of the spin correlations in the spin-fluctuating insulator. To give an

estimation of Tc, we then separate the frequency part of the pairing interaction from the

momentum and spin dependent part. The frequency part of the pairing interaction is deter-

mined by the uniform spin susceptibility is of the spin-fluctuating insulator χ(ω). We can

write the pairing interaction as Vµν(k̂, k̂
′;ωn) = V0V̂µν(k̂, k̂

′)χ(ωn). Correspondingly the gap

can be factorized as dµ(k̂, ωn) = d̂µ(k̂)∆(ωn), with the gap magnitude encoded in ∆(ωn).

The frequency dependent part of the gap equation

∆(ωn) = N0V0T
∑
n′

χ(ωn − ωn′)
∆(ωn′)

|ωn′| , (24)

then determines Tc.

Consider a general Debye type relaxation for the magnetic substrate, one has

χ(ω) ∼ 1

1− iωτ , (25)

with the relaxation rate τ−1. Then we carry out the analytic continuation to the Matsubara

frequency domain,

χ(ωn) = − 1

π

∫
dν

χ′′(ν)

iωn − ν
, (26)

where χ′′ denotes the imaginary part of χ. The result is

χ(ωn) ∼ 1

1 + |ωn|τ
, (27)
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which is an even function of ωn. We can then substitute χ(ωn) into the frequency part of

the gap equation

∆(ωn) = T
∑
n′

N0V0

1 + |ωn − ωn′|τ
∆(ωn′)

|ωn′ | . (28)

This can be compared with the case of phonon mediated pairing. The dominant scattering

processes for Cooper pairing occur around momentum transfer q ' 2kF . In this region, the

phonon spectrun can be approximated by the Einstein form, and the phonon propagator

is D(q, ωn) = ω0/(ω
2
n + ω2

0), with the typical phonon frequency ω0, which is of the order

of the Debye frequency. One can see that the relaxation rate τ−1 plays the role of phonon

frequency ω0.

The superconducting Tc can be obtained by solving the integral equation (28). To esti-

mate the energy scale of Tc, one can use a BCS type approximation [55]. Since the pairing

interaction is largely suppressed for frequencies larger than the relaxation rate τ−1, we can

truncate frequency at ωc, with ωc of order τ−1, and only sum over frequences |ωn|, |ωn′| < ωc.

The resulting Tc equation is of the well-known BCS form Tc ∼ ωce
−1/λ, with the effective cou-

pling λ = N0V . The strength of pairing interaction can be determined from V ∼ J2
K〈SiSj〉.

With the exchange interaction JexSiSj, one has 〈SiSj〉 ∼ 1/Jex, and hence V ∼ J2
K/Jex, and

Tc ∼ τ−1 exp(−EFJex/J
2
K). (29)

Therefore Tc critically depends on having appreciable scales of relaxation rate and interfacial

Kondo coupling.

SII: Candidate materials for the spin-fluctuating insulator

As discussed in the main text, the criteria for the material choice for the spin-fluctuating

insulator are (1) no long range order, and (2) having strong dynamic spin fluctuations.

Practically one can only expect the candidate material to have such properties in certain

temperature window T ∗ < T < Jex, where the exchange interaction Jex is on the order of the

Curie-Weiss temperature, and T ∗ represents the temperature at which other effects set in to

destroy the paramagnetic spin correlations. Below T ∗, the material can develop magnetic

ordering, or the spins may just freeze out. What is crucial is that the superconducting Tc,

which is a function of Jex, should be much higher than T ∗, i.e. Tc(Jex)� T ∗, so that there

is a finite temperature range T ∗ < T ≤ Tc where the material superconducts.
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Material magnetic ion moment magnetic lattice exchange interaction T ∗ bound reference

Pr2Zr2O7, Pr2Sn2O7 Pr3+ j = 4 pyrochlore J ∼ 1.4K 20 mK [24]

Yb2Ti2O7 Yb3+ j = 7/2 pyrochlore J ∼ −0.65K 30 mK [22,23]

Tb2Ti2O7 Tb3+ j = 6 pyrochlore J ∼ 14K 50 mK [21]

ZnCu3(OH)6Cl2 Cu2+ s = 1/2 kagome J ∼ 200K 20 mK [56,57]

[NH4]2[C7H14N][V7O6F18] V4+ s = 1/2 kagome J ∼ 60K 40 mK [58]

AA′VO(PO4)2 V4+ s = 1/2 square −J1 ∼ J2 ∼ 5K 0.4 K [59,60]

Na4Ir3O8 Ir4+ s = 1/2 hyperkagome J ∼ 300K 7 K [61–64]

NiGa2S4 Ni2+ s = 1 triangular J ∼ 80K 10 K [65–67]

κ-(ET)2Cu2(CN)3 ET dimer s = 1/2 triangular J ∼ 250K 32 mK [68]

TABLE I: List of candidate materials for spin-fluctuating insulator. Magnetic lattice represents

the lattice of magnetic ions. T ∗ bound denotes the lowest temperature at which neither long-range

magnetic ordering nor spin freezing has been detected experimentally.

A list of candidate materials that have such desired properties is included in Table I.

All these materials are magnetic insulators with strong frustration, and are usually termed

quantum spin liquids. For these materials, T ∗ is usually at least two orders of magnitude

smaller than the exchange interaction, providing sufficiently large temperature window that

can accommodate superconductivity. The first class of these materials are the quantum

spin ice materials: Pr2Zr2O7, Pr2Sn2O7, Yb2Ti2O7, Tb2Ti2O7 (see [5] for a comprehensive

review). They involve strong spin-orbit coupling and relatively large magnetic moment. Here

we use the term quantum spin ice in a broader sense as quantum mechanical generalization

of classical spin ice, which does not necessarily imply the existence of photon like excitations.

Classical spin ice materials will not generate superconductivity, since their relaxation rate is

extremely low, and hence the resulting superconducting Tc is too low to be of any relevance.

One extra merit of quantum spin ice materials is that since their moment is relatively large,

the conduction electrons from the metallic layer can not easily Kondo screen them. Hence

their magnetic properties are more stable. Another class of materials are quantum spin

liquids with small magnetic moments, mostly s = 1/2 (see [3] for a comprehensive review).

Among them, herbertsmithite ZnCu3(OH)6Cl2 is a spin-1/2 kagome-lattice antiferromagnet,

and a prominent candidate for quantum spin liquid [56,57]. High quality single crystals

23



are available, and neutron scattering has been performed, showing a continuum of spin

excitations at low temperatures [57]. The large exchange energy scale of herbertsmithite can

potentially lead to a high superconducting transition temperature in the heterostructure.

A third class of materials are the organic spin liquids. We expect it is technically more

challenging to fabric superconducting heterostructures using these materials.

SIII: The metal/quantum-spin-ice heterostructure

In this section, we include a detailed study of a concrete example of metal/QSL het-

erostructure. The insulator part is taken to be a candidate material for quantum spin

ice, namely Pr2Zr2O7, for which thermodynamic and neutron scattering data are available

[24]. We first present the modeling of spin correlations for this material (SIII A). Then we

search for the proper metallic layer that provides a good match for Pr2Zr2O7, and density

functional theory (DFT) is employed to calculate the band structure of the resulting het-

erostructure (SIII B). Having the two parts of the heterostructure ready, we then proceed

to study the coupling between the two parts (SIII C). Finally we study the pairing problem

in this heterostructure, and determine the dominant pairing channel (SIII D).

A. The insulator: spin correlations in quantum spin ice Pr2Zr2O7

One can see from Eq.(10) that the pairing interaction in the metal/spin-fluctuating-

insulator heterostructure depends crucially on the spin-spin correlation function

〈Sai (τ)Sbj (τ
′)〉 of the spin fluctuating insulator. Hence to study the pairing problem in a

microscopic setup, we need to obtain the spin-spin correlation function in the lattice spin

system, which in principle can be obtained from the neutron scattering measurements. How-

ever for the purpose of theoretical calculations, it is valuable to obtain the correlation func-

tions in closed analytic forms. Having in mind the experimental results for the spin-spin

correlation function in quantum spin ice (QSI) material Pr2Zr2O7 [24], here we will take a

semi-phenomenological approach to model the spin-spin correlation function in QSI.

The elastic neutron spectrum of QSI [24] is essentially the same as that of classical

spin ice [69], showing clear pinch point structures. Hence we start by modeling the spa-

tial/momentum part of the spin-spin correlation function in QSI by that of classical spin
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ice, the analytic form of which is known [26,70,71]. As is manifest from the smearing of the

pinch points in the inelastic neutron spectrum [24], quantum fluctuations play important

roles in QSI, the effect of which is captured by the inclusion of the correlation length and

relaxation rate. The relaxation rate determines the frequency dependence of the resulting

pairing interaction, and will determine the superconducting Tc. The correlation length con-

trols the momentum dependence of the pairing interaction, which enters the calculation of

the pairing symmetry.

The analytic form of the spin-spin correlation function for classical spin ice can be ob-

tained in the large-N limit, where N is the number of spin components. For pyrochlore

magnets, this method was first developed in [70,71]. Generalizing the Ising spins σi to O(N)

spins φαi , with α = 1, · · · , N , the spin Hamiltonian can be written as [70,71]

HS =
J

2

∑
〈ij〉

N∑
α=1

φαi φ
α
j , (30)

with the constraint
∑N

α=1 φ
α
i φ

α
i = N . Explicit forms of the spin correlators can be found in

[26]

〈φα1 (q)φβ1 (−q)〉 = 2δαβ
3− c̄2

xy − c̄2
xz − c̄2

yz

3−Q ,

〈φα1 (q)φβ2 (−q)〉 = 2δαβ
cos
( qy

2

)
c̄xz − cxz

3−Q , (31)

where cab = cos qa+qb
4

, c̄ab = cos qa−qb
4

, and Q = c2
xy + c2

yz + c2
xz + c̄2

xy + c̄2
yz + c̄2

xz − 3. The long

wavelength limit of the spin structure factor obtained from Eq.(31) is of the form [25,26]

Sab(q) ∼ δab −
qaqb
q2

. (32)

which is long-ranged and strongly anisotropic, and is the ξ →∞ limit of Eq.(5) of the main

text.

In the neutron scattering experiments, the incident neutron polarization is parallel to

the crystalline [11̄0] axis, which determines the direction of Sz. Sx direction is chosen to

be parallel to the wavevector (h, h, l). Hence we have the unit vectors êz = 1√
2
(1,−1, 0),

êx = 1√
2h2+l2

(h, h, l), êy = 1√
2l2+4h2

(l, l,−2h). The Ising spin directions ẑ1−4 now need to be

written in the basis of êx,y,z. With ~SA ∼ φAẑA, we have

〈SaA(q)SbB(−q)〉 ∼ ẑaAẑ
b
B〈φA(q)φB(−q)〉. (33)
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FIG. 2: (Color online) Momentum depenence of the static spin structure factor in the plane where

the wavevector is of the form [h, h, l], as obtained from the large-N calculation. One can see clearly

the pinch-point structure. We also note that there is substantial spectral weight near Q = 0.

To compare with the experimental results, let us consider the spin flip spin structure factor

in the (h, h, l) plane, which can be shown to be of the form

Syy(q) =
∑
AB

〈SyA(q)SyB(−q)〉 ∼ 64
[
qx(cos qx

4
+ cos qz

4
) sin qx

4
+ qz cos qx

4
sin qz

4

]2
3(2q2

x + q2
z)(5− cos qx − 4 cos qx

2
cos qz

2
)

. (34)

The result is plotted in Fig. 2. This reproduces the elastic neutron scattering results for

classical and quantum spin ice [24,72] in the full momentum space.

For the metal/QSI heterostructure, we use the coordinate system with the [1, 1̄, 1] plane as

the xy plane. The basis vectors are κ̂x = 1√
2
(1, 1, 0), κ̂y = 1√

6
(−1, 1, 2), κ̂z = 1√

3
(1,−1, 1). In

the κ̂ coordinate system, the spins are in the directions ẑ1 = 1
3
(−
√

6,−
√

2,−1), ẑ2 = (0, 0, 1),

ẑ3 = 1
3
(
√

6,−
√

2,−1), ẑ4 = 1
3
(0, 2
√

2,−1). The spin structure factors can be obtained in this

coordinate system by substituting qx → qx√
2
− qy√

6
+ qz√

3
, qy → qx√

2
+ qy√

6
− qz√

3
, qz → 2qy√

6
+ qz√

3
.

B. The metal: material choices and DFT calculations

With the insulator part chosen to be Pr2Zr2O7, we now search for proper metallic ma-

terials that can be deposited on top of it. We try to keep the connection between the real

materials and the minimal theoretical model that we constructed as tight and realistic as

possible for definiteness and for making progress of the basic idea. We look for metals in
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which the conduction electrons are from s-orbitals, since s-orbitals have several merits: (1)

large bandwidth, and hence large Fermi energy, which is good for superconductivity; (2)

weak correlation, which helps to avoid ordering by itself; (3) non-degenerate bands, which

helps to provide odd numbers of Fermi surfaces to generate topological superconductivity.

We first searched for elemental metals with fcc structure, such as alkaline earth metals and

some of the transition metals, that can match with the cubic pyrochlore lattice structure of

Pr2Zr2O7. Unfortunately, they have complicated band structure, and the Fermi surfaces do

not have the desired peroperties. We then searched for stoichiometric metallic pyrochlores

with chemical formula A2B2O7, e.g. Bi2Ru2O7, Bi2Ir2O7. However, the conduction electrons

in these materials have strong d-electron component, and hence correlation effects play im-

portant roles, which can give rise to local moments or large mass renormalization. Actually

to the best of our knowledge, there is no stoichiometric metallic pyrochlore with s-electrons

forming the conduction band.

Then we turn to the case of doping an insulating pyrochlore to make it metallic. We

choose Sn as the B-site in the parent compound A2B2O7 since it can provide s-electrons.

Both La and Y, which form 3+ cations, can be the A-site. Hence two possible parent

compounds are La2Sn2O7 and Y2Sn2O7. We can dope either the A-site or the B-site. Ce

with robust 4+ cation can be used to dope the A-site, and Sb can be used to dope the

B-site. Actually DFT calculations show that Ce-doped La2Sn2O7, Sb-doped La2Sn2O7 and

Sb-doped Y2Sn2O7 have very similar band structures near the Fermi level. At doping levels

around x = 0.2, they all have the desired electronic properties for our heterostructure. The

evolution of the band structure of Y2Sn2−xSbxO7 with Sb doping is shown in Fig. 3.

We have performed DFT calculations on the heterostructure Pr2Zr2O7/ Y2Sn2−xSbxO7

(see Fig.3A in main text). For the structural relaxations, we used PBEsol approximation

using projector augmented-wave potentials, as implemented in the Vienna ab initio simu-

lation package (VASP).73,74 Structural optimization was performed with a force criterion of

0.001eV/Å. To find lattice parameters of Y2Sn2O7 films which is grown on top of Pr2Zr2O7,

we performed ‘strained-bulk’ calculations. With the theoretical in-plane lattice constant of

Pr2Zr2O7 (spacegroup Fd3̄m), 10.686Å, we optimized c-axis lattice constant of Y2Sn2O7

bulk in (111) oriented geometry. Once we have lattice parameters of Y2Sn2O7, we then

construct (111)-oriented (Pr2Zr2O7)16/(Y2Sn2−xSbxO7)2 superlattice. For the calculation of

the electronic properties of the superlattice, we employed the linear-combination-of-pseudo-
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FIG. 3: Evolution of the band structure of Y2Sn2−xSbxO7 with Sb doping from DFT calculation.

atomic-orbitals (LCPAO) method as implemented in OpenMX.75 To describe the Sb-doping,

a virtual atom is treated with fractional nuclear charge by using a pseudopotential with the

corresponding fractional nuclear charge. And the 4f state of Pr is treated as core state by

considering occupation of two electrons, and thereby not involed in calculations explicitly.

The resulting electronic properties of the superlattice are shown in Fig.3B and Fig.3C of the

main text.

C. The interfacial coupling: estimation from microscopic model

We consider next the coupling between the metallic layer and the insulating substrate.

There is extra complication due to the fact that the ground state of Pr3+ is a non-Kramers

doublet. The Ising component of Pr moment along the local [111] direction forms mag-

netic dipole moment τ z ∼ Jz, and the planar components form quadrupole moments

τ± ∼ {Jz, J±}. Under time reversal, one has τ z → −τ z, and τ± → τ±. Therefore the Ising

component τ z couples to the spin density of the conduction electrons sam =
∑

αβ c
†
mασ

a
αβcmβ,

i.e. a Kondo type coupling, and the planar components τ± couple to the charge density of

the conduction electrons ρm =
∑

α c
†
mαcmα [53,76]. The couplings depend crucially on the

symmetry properties of both the ground state atomic configuration and the lowest excited

state atomic configuration at Pr Site, which give rise to several selection rules [77]. Simi-

larly neutron spin only couples to the Ising component of Pr moment, and hence what is

measured in neutron scattering [24] is the spin susceptibility of the Ising component of Pr
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moment [78]. Therefore we have a good knowledge about the Ising spin correlations. The

quadrupole-quadrupole correlations are currently not available experimentally. Here we will

first focus on the Kondo coupling between the Ising moment and the conduction electron

spin, and then show that the inclusion of planar quadrupole fluctuations with reasonable

strength will not change the dominant pairing channel.

We now estimate the strength of the Kondo coupling from second-order perturbation

theory. To benchmark this estimaiton, let us also estimate the Kondo coupling in the closely

related material Pr2Ir2O7 for which the Kondo coupling can be compared with experiments.

The local environments on Pr3+ sites are essentially the same for both systems. There are

two 4f electrons at Pr3+. If we neglect the nonsphericity of the Coulomb and exchange

interaction (which is exact in the case of the fully occupied or empty orbital), the local

atomic Hamiltonian has the form:

Hf =
∑
imm′

εfmm′f
†
imfim′ + λSO

∑
i

Li · Si +
1

2

∑
imm′,α 6=β

Unimαnim′β +
1

2

∑
im 6=m′,α

(U − JH)nmαnm′α,

(35)

where i is the site index; m,m′ are the orbital quantum number; α =↑, ↓ is the spin index;

nimα = f †imαfimα is the f -electron density; εf is the effective one-electron energies; λSO is the

spin-orbit coupling energy; U is the Hubbard interaction; JH is the Hund’s rule coupling.

The dominant energy scales are the Hund’s coupling JH ∼ 1 eV [79] and the Hubbard

interaction U ∼ 4 eV [79] (crystal field splitting ∼ 40 meV [80], spin-orbit coupling λSO ∼
0.25 eV [81]).

The Kondo coupling arises from the overlap of the conduction electron and the local 4f

electron wavefunctions. The hybridization Hamiltonian reads

Hcf =
∑
ijα

(
V cf
ij f

†
iαcjα + h.c.

)
, (36)

with the transfer integral Vcf . The leading order contribution to the Kondo coupling arises

from the following two processes: (1) an electron hops from the conduction electron site (5s

orbitals of Sn, 5d orbitals of Ir) to the 4f orbitals of Pr and then hops back, (2) an electron

hops from 4f orbitals of Pr to the conduction electron site and then hops back. From the

energy level diagram Fig.4, one can see that these two processes give rise to the coupling

JK ∼ V 2
cf

[
1

εf + 3(U − JH)− EF
+

1

EF − εf

]
∼ V 2

cf

3(U − JH)

∆cf [3(U − JH)−∆cf ]
, (37)

29



ǫf

ǫf + (U − JH)

ǫf + 3(U − JH)
EF (Heterostructure)
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FIG. 4: Energy level diagram of metal/QSI heterostructure and Pr2Ir2O7 for Pr site in 4f1, 4f2

and 4f3 states. The filled circles represent filled levels, and the empty circles represent empty

levels. The dashed lines denote the corresponding Fermi energy.

with the charge transfer energy ∆cf ≡ EF − εf . ∆cf can be estimated from the band

structure, with ∆cf (Hetero) ∼ 8.5 eV, and ∆cf (Pr2Ir2O7)∼ 3.5 eV.

To estimate Vcf we have performed DFT calculations of (1) one-dimensional chains with

alternating Pr and Sn sites and (2) one-dimensional chains with alternating Pr and Ir sites.

The lattice constants in these chains are chosen to be the same as in the corresponding

pyrochlore structures. We constructed Wannier function to fit DFT band structure. With

this constructed Wannier function, we can obtain tight-binding matrix element of 4f(Pr)-

5d(Ir) and 4f(Pr)-5s(Sn) orbitals. As a result, we confirmed that both transfer integrals are

about 0.05-0.08eV. This is one order of magnitude smaller than the estimates of hybridization

parameter V for Anderson impurity model of transition metal impurity which are on the

order of 0.1-0.7 eV [81].

Using the above parameters, the Kondo coupling for Pr2Ir2O7 can be estimated to be

JK(Pr2Ir2O7)∼ 12-30 K. This is of the same order as the estimated JK ∼ 45K using the

relation JRKKY ∼ J2
K/EF , with the RKKY interaction JRKKY ∼ 20 K determined from

the Curie-Weiss temperature [82], and the Fermi energy EF ∼ 10 meV with mass renor-

malization m∗ ∼ 20me. For the heterostructure, one obtains JK(Hetero) ∼ 53-136 K, and

λ = J2
K/(EFJex) ∼ 0.9-6, which is of order one. We emphasize again that this is just a rough

estimate of the order of magnitude, and the real materials are much more complicated.

SIV: Pairing in the metal/quantum-spin-ice heterostructure

We include here the detailed study of the pairing problem in the metal/QSI heterostruc-

ture. The pairing problem can be treated using the standard BCS type approach, by di-
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agonalizing the pairing interaction matrix to find the most negative eigenvalue. However

the essential physics can be most clearly demonstrated by considering a simplified model

with magnetic dipole-dipole interaction. We will first study such a simplified model analyt-

ically to gain insight into the pairing mechanism, and then proceed to study the effects of

microscopic details using the BCS approach.

A. Magnetic dipole-dipole interaction

The spin-spin correlation function of QSI gives rise to a long-ranged, anisotropic spin ex-

change interaction among the conduction electrons. In the limit of large correlation length,

the induced interaction is asymptotically of the form of the magnetic dipole-dipole inter-

action at large separations. As we show below, such an interaction vanishes identically in

the even-parity spin-singlet pairing channels. Thus pairing only occurs in the odd-parity

spin-triplet channels.

1. Selection rules

To better understand the pairing problem, we consider first the quantum mechanical

problem of two electrons interacting via the magnetic dipole-dipole interaction:

Vdd(r) ∼ 1

r3

[
~S1 · ~S2 − 3(~S1 · r̂)(~S2 · r̂)

]
, (38)

where ~S1,2 represent the spin operators of the two electrons. A generic two body interaction

between spinful particles can be decomposed in terms of the irreducible components of a

general rank two tensor, which consist of a rank-zero scalar interaction (∝ ~S1 ·~S2), a rank-one

vector interaction (∝ ~L · ~S, with the relative orbital angular momentum ~L and the total spin

~S = ~S1 + ~S2) and a traceless and symmetric rank-two tensor interaction [34]. The magnetic

dipole-dipole interaction has the unique property that it is a rank-two tensor interaction,

and it carries magnetic quadrupole moment. We can then write Vdd(r) in the form [34]

Vdd(r) ∼ R(2)(r1, r2) · S(2)(s1, s2), (39)

where both R(2) and S(2) are rank-two tensors, with R(2) acting on coordinate space, and

S(2) on spin space. In particular, S(2) represents the magnetic quadrupole moment. Here
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· denotes the scalar product of two tensors. The rank-two character of Vdd gives rise to

selection rules that dictate the possible ground states of the two-body system. In particular,

the spin tensor S(2) determines the spin part of the ground state wavefunction.

Let us consider the spin part of the two electron Hilbert space. The two electrons can

form a spin singlet state with total spin S = 0: |↑↓〉−|↓↑〉√
2
≡ |S = 0〉. And they can form

spin triplet states with S = 1: | ↑↑〉 ≡ |S = 1, Sz = 1〉, | ↓↓〉 ≡ |S = 1, Sz = −1〉,
|↑↓〉+|↓↑〉√

2
≡ |S = 1, Sz = 0〉. As parity is a good quantum number, the spin singlet states,

which have even parity, and the spin triplet states, which have odd parity, can not be

transformed into each other by the interaction term, i.e. 〈S = 0|Vdd|S = 1, Sz〉 = 0. The

question is then which states can have nonzero expectation value under the interaction Vdd.

This question is answered by a powerful theorem of quantum mechanics, namely the

Wigner-Eckart theorem [83]. To set the stage, let us first review the well-known example of

forbidden transition in atomic hydrogen [83]. Consider a single atomic electron interacting

with electromagnetic field via the coupling e
m
~A ·~p. Within the electric dipole approximation,

the transition amplitude from an initial state with quantum numbers l and m to a final state

with quantum numbers l′ and m′ is 〈l′m′|eε̂·~p|lm〉, where ε̂ is the polarization direction of the

vector potential ~A. Since p ∼ [H0, r], where H0 = p2/2m is the free electron Hamiltonian,

the transition amplitude is proportional to

〈l′m′|eε̂ · r|lm〉, (40)

from which one recognizes the electric dipole operator er. Since the dipole operator is a

vector, i.e. rank-one tensor, Wigner-Eckart theorem leads to the selection rule (“triangular

relation”)

|1− l| ≤ l′ ≤ 1 + l. (41)

Hence for example the 2s → 1s transition with l = l′ = 0 is forbidden, while the 2p → 1s

transition with l = 1, l′ = 0 is allowed.

The above result of single particle transition under the electric dipole operator can be

easily generalized to our case of two electron transition under the magnetic quadrupole

operator. According to the Wigner-Eckart theorem, the matrix elements of the rank-two

tensor interaction 〈S ′S ′z|S(2)|SSz〉 are nonzero only if the following selection rule is satisfied:

|2− S| ≤ S ′ ≤ 2 + S. (42)

32



It follows immediately that even parity pairing states with S = 0 have zero expectation

value under the magnetic dipole-dipole interaction [34]

〈S = 0|Vdd|S = 0〉 = 0. (43)

The vanishing of magnetic dipole-dipole interaction in the even parity pairing channels has

been pointed out in [32]. Odd parity pairing states which have total spin S = 1 satisfy the

above selection rule and hence can have nonzero matrix elements

〈S = 1, S ′z|Vdd|S = 1, Sz〉 6= 0. (44)

2. Binding energy

We then proceed to consider in more detail which odd parity pairing states are favored

by Vdd, i.e. have negative binding energy Edd ≡ 〈Vdd〉. We consider first the case of

3d magnetic dipole-dipole interaction [32], which has higher symmetry SO(3)J . The two

electron states can be classified according to their J value. Since the interaction does not

contain appreciable higher harmonic components, we consider orbital angular momentum

channel L = 1. With L = 1 and S = 1, the total angular momentum can take values

J = 0, 1, 2. The corresponding pairing states can be easily obtained from the Clebsch-

Gordan coefficients 〈JJz|LLzSSz〉. In particular, the J = 0 state reads

|J = 0〉 =
1√
3

(|Lz = 1, Sz = −1〉+ |Lz = −1, Sz = 1〉 − |Lz = 0, Sz = 0〉) , (45)

the J = 1 states

|J = 1, Jz = 0〉 =
1√
2

(|Lz = 1, Sz = −1〉 − |Lz = −1, Sz = 1〉) , (46)

|J = 1, Jz = ±1〉 =
1√
2

(|Lz = ±1, Sz = 0〉 − |Lz = 0, Sz = ±1〉) , (47)

and similarly for the J = 2 states. More explicitly, in terms of the spherical harmonic

Ylm(r̂), one has

|J = 0〉 =
1√
3

(
Y1,1| ↓↓〉+ Y1,−1| ↑↑〉 − Y1,0

| ↑↓〉+ | ↓↑〉√
2

)
, (48)
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and

|J = 1, Jz = 0〉 =
1√
2

(Y1,1| ↓↓〉 − Y1,−1| ↑↑〉) , (49)

|J = 1, Jz = 1〉 =
1√
2

(
Y1,1
| ↑↓〉+ | ↓↑〉√

2
− Y1,0| ↑↑〉

)
, (50)

|J = 1, Jz = −1〉 =
1√
2

(
Y1,−1

| ↑↓〉+ | ↓↑〉√
2

− Y1,0| ↓↓〉
)
. (51)

To calculate the binding energy, we write Eq.(39) explicitly in terms of the spherical

harmonic Ylm(r̂) and the rank-two spin tensors Σ2,m [34,84]

Vdd(r) = V0

2∑
m=−2

Y ∗2m(r̂)Σ2,m. (52)

The spin tensors read [84]

Σ2,0 = −
√

3

2

(
S1zS2z −

1

3
~S1 · ~S2

)
,

Σ2,±1 = ±1

2
(S1zS2± + S1±S2z) ,

Σ2,±2 = −1

2
S1±S2±. (53)

One can see that Σ2,m raises the z-component of the electron spin by m, while Y ∗2m raises the

z-component of the orbital angular momentum by −m, and hence their product Y ∗2mΣ2,m

conserves Jz.

One can then check that the binding energy is negative in the J = 1 triplet channel, and

positive in the J = 0 and J = 2 channels [32]. In particular, in the J = 1 channel the

binding energy reads

Edd(|J = 1, Jz = 0,±1〉) = −1

4

√
15

2π

1

3
V0, (54)

where the three Jz channels are degenerate as required by symmetry. In fact, in the cor-

responding many-body pairing problem, the magnetic dipole-dipole energy of a spin triplet

pairing state can be determined from its ~d-vector as [85]

Edd ∼
∫
dΩk

4π

(
|~d(k̂) · k̂|2 − |~d(k̂)|2

)
, (55)

with the solid angle Ωk in momentum space. Here one assumes that pairing involves only

a single orbital angular momentum (say L = 1). The second term in the above equation is
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fixed by normalization
∫

dΩk

4π
|~d(k̂)|2 = 1. The first term depends on the orientation of the

~d-vector, and is minimized when

~d(k̂) · k̂ = 0. (56)

The ~d-vector has 5 degrees of freedom (three complex variables modulo an overall factor).

The ~d(k̂) · k̂ = 0 condition imposes two constraints (real and imaginary parts). Hence we

are left with 5− 2 = 3 independent degrees of freedom. It is thus a triplet state and hence

J = 1. One can check explicitly that the J = 1 pairing states, with the correspondingly

~d-vectors

~d(J = 1, Jz = 0) =
1

2
(k̂y,−k̂x, 0), (57)

~d(J = 1, Jz = ±1) =
1

2
√

2
(−k̂z,∓ik̂z, k̂x ± ik̂y), (58)

satisfy the above transverse condition, and hence minimizes the dipole energy.

Going from the above 3d case to the 2d interface, the SO(3)J symmetry is reduced

to U(1)Jz symmetry. The binding energy can be similarly calculated, noting that at the

interface z = 0, and hence Y1,0 → 0, Y2,0 → 0. The resulting negative binding energy states

are

|Jz = 0〉 =
1√
2

(Y1,1| ↓↓〉 − Y1,−1| ↑↑〉) , (59)

|Jz = ±1〉 = Y1,±1
| ↑↓〉+ | ↓↑〉√

2
. (60)

The states at the 2d interface can be regarded as descendants of the 3d case. In particular,

the negative binding energy states |Jz = 0,±1〉 are descendants of the 3d J = 1 triplet

states. These three states are still degenerate, with the same binding energy as in 3d:

Edd(|Jz = 0,±1〉) = −1

4

√
15

2π

1

3
V0. (61)

But while the degeneracy in 3d is protected by SO(3)J symmetry, the degeneracy at the 2d

interface is not protected by any symmetry, and hence will be lifted by perturbations.

3. Emergent gauge structure

The appearence of novel superconductivity at the metal/QSI interface has its origin from

the underlying emergent gauge structure of spin ice materials [5,25,26]. The classical spin
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ice Hamiltonian possesses a largely degenerate ground state manifold, consisting of all Ising

spin configurations that satisfy the ice rule condition, namely for the four spins on each

tetrahedron, two point in towards the center of the tetrahedron and two point out. Such an

ice rule condition is the lattice version of the zero divergence condition. The coarse-grained

spin field ~S(r) then satisfies the constraint25,26

~∇ · ~S(r) = 0. (62)

One can then define an emergent gauge field ~A(r) so that

~S(r) = ~∇× ~A(r). (63)

The gauge field propagator reads

〈Aa(q)Ab(−q)〉 ∼ 1

q2
(δab − 2q̂aq̂b) , (64)

from which one can obtian the spin-spin correlation function

Sab(q) ≡ 〈Sa(q)Sb(−q)〉 ∼ δab − q̂aq̂b. (65)

Quantum fluctuations can lead to different types of dynamical spin correlations. A theo-

retically appealing possibility is the emergence of the full photon-like excitations [17,31].

However in the particular QSI candidate material that we consider, namely Pr2Zr2O7, the

dynamics is actually simply relaxational as observed from neutron scattering [24]. Hence we

will consider the full dynamical spin susceptibility to be of the form χab(q, ω) ∼ 1
1−iωτSab(q).

The Kondo coupling can be written in the form

HK = JK
∑
rαβ

ψ†rα~σαβψrβ ·
[
~∇× ~A(r)

]
. (66)

For simplicity, let us first consider the coupling in the whole 3d space. A partial integration

can be performed to yield

HK = JK
∑
rαβ

~A(r) ·
(
~σαβ × ~∇

)
ψ†rαψrβ, (67)

i.e. the gauge field couples to a magnetic current. We can rewrite the coupling in momentum

space as

HK = JK
∑
kqαβ

~A(q) · (~σαβ × q)ψ†
k+ q

2
,α
ψk− q

2
,β. (68)
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The coupling here should be contrasted to the usual minimal coupling between fermions

and gauge fields obtained from the momentum substitution:

HJ =
∑
q

~j(q) · ~A(q) = e
∑
kqα

~A(q) · k
m
ψ†
k+ q

2
,α
ψk− q

2
,α. (69)

Choosing the Coulomb gauge where ~∇ · ~A = 0, the gauge field mediated interaction among

the fermions is [27,28]

Hint ∼ −
∑

p1p2qα

D(q)
(p1 × q̂) · (p2 × q̂)

m2
ψ†p1+q,αψp1,αψ

†
p2−q,βψp2,β, (70)

with the propagator of the transverse gauge field D(q) > 0. Such an interaction can not

generate the usual BCS type pairing where two electrons in a Cooper pair have opposite

momenta. Taking p1 ' −p2, one can see that the above interaction is repulsive. This is

indeed the well-known result of Ampere’s force law: two antiparallel currents repel each

other. To generate pairing using the current-current interaction mediated by gauge field,

one thus needs to have parallel currents which attract each other, that is, to pair electrons

with nearly equal momenta, i.e. p1 ' p2. This is the idea of Ampere pairing [27,28]. It

has been shown that when the gauge field propagator is singular enough, the gauge field

mediated interaction can indeed generate Ampere type finite momentum Cooper pairing

[27,28].

A similar analysis can be carried out for our problem. The Kondo coupling induced

interaction reads

Hint ∼ −J2
K

∑
p1p2q

∑
ab

∑
αβα′β′

〈Aa(q)Ab(−q)〉 (~σαβ × q)a (~σα′β′ × q)b ψ
†
p1+q,αψp1,βψ

†
p2−q,α′ψp2,β′ ,(71)

The second term in the gauge field propagator (Eq.64) does not contribute, since (~σ × q)·q =

0. The interaction can then be simplified to

Hint ∼ −J2
K

∑
p1p2q

∑
αβα′β′

(~σαβ × q̂) · (~σα′β′ × q̂)ψ†p1+q,αψ
†
p2−q,α′ψp2,β′ψp1,β. (72)

The pairing states can be understood from the above interaction. The |J = 1, Jz = 0〉
pairing state for the 3d case, and correspondingly its descendant 2d pairing state:

|Jz = 0〉 ∼ (kx + iky)| ↓↓〉+ (kx − iky)| ↑↑〉, (73)
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correspond to equal spin pairing. They make use of the α = β = α′ = β′ =↑ term in the

interaction

Hint ∼ −J2
K

∑
p1p2q

|~σ↑↑ × q̂|2ψ†p1+q,↑ψ
†
p2−q,↑ψp2,↑ψp1,↑, (74)

and its spin down counterpart with α = β = α′ = β′ =↓. These terms are attractive when

σαα× q̂ 6= 0. Since σαα = (0, 0,±1), this condition is satisfied when the momentum transfer

q is in the xy plane, or the Cooper pair momenta in the xy plane.

The |J = 1, Jz = ±1〉 pairing states in 3d and the |Jz = ±1〉 pairing state in 2d can be

similarly undersood. The degeneracy of the |J = 1, Jz = ±1〉 states with the |J = 1, Jz = 0〉
state in the 3d case is guaranteed by SO(3)J symmetry. For the 2d case, we can rewrite the

states as

|Jz = ±1〉 ∼ (kx ± iky)
| ↑↓〉+ | ↓↑〉√

2
∼ ky

|⇒〉x − |⇔〉x√
2

∓ kx
|⇒〉y − |⇔〉y√

2
. (75)

The resulting four terms correspond to spin-orbit configurations with attractive interactions.

For example the term ky| ⇒〉x represents equal spin pairing with spins pointing in the x

direction, i.e. α = β = α′ = β′ =→. The corresponding interaction term reads

Hint ∼ −J2
K

∑
p1p2q

|~σ⇒ × q̂|2ψ†p1+q,→ψ
†
p2−q,→ψp2,→ψp1,→, (76)

which is attractive as its z direction counterpart (Eq.74). Here the momentum is along the

y direction and hence ~σ × q̂ 6= 0.

B. BCS approach including microscopic details

We have given above an analytic understanding of the pairing states at the metal/QSI

interface using a much simplified model, namely continuum Fermi gas with magnetic dipole-

dipole interaction. In this subsection, we study the effect of longitudinal spin fluctuations,

the effect of the lattice, and the effect of quadrupole fluctuations. These effects can no longer

be treated analytically. We will proceed using the BCS type approach by diagonalizing the

pairing interaction matrix. The most negative eigenvalue corresponds to the dominant

pairing channel.
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1. Low energy effective model

We start with the simpler case, namely the low energy effective model, and then proceed

to study the effect of the lattice. In the low energy effective model, the momentum part of

the spin structure factor is

Sab(q) ∼ δab −
(

1− 1

1 + q2ξ2

)
qaqb
q2

. (77)

When the correlation length ξ →∞, one has

Sab(q) ∼ δab −
qaqb
q2

, (78)

which gives rise to the magnetic dipole-dipole interaction as considered above.

Following the procedure outlined in Section SI, we can obtain the interaction matrix V̂ .

We first project Sab to different pairing channels to obtain

Sµν =
∑
ab

∑
αα′ββ′

Sabσ
a
αβσ

b
α′β′ [σµiσy]

∗
α′α[σνiσy]ββ′ . (79)

Then we integrate over momentum in the direction perpendicular to the interface to obtain

the pairing interaction at the interface:

Vµν(p) = −J2
K

∫ ∞
−∞

dqz
2π

Sµν(px, py, qz), (80)

From the ab initio calculations, one obtains a circular Fermi surface for the heterostruc-

ture Pr2Zr2O7/Y2Sn2−xSbxO7, with Fermi momemtum kF = 0.37(2π/a) (lattice constant

of Pr2Zr2O7 is a ' 10.7Å). Hence we can parameterize momentum on the Fermi surface

as k = kF (cos θk, sin θk). To solve the gap equation numerically, we then discretize the

angle θk = 2π
N
n, with n = 0, 1, 2, · · · , N − 1. Due to the presence of parity symmetry, the

coupling between the even and odd parity pairing channels vanishes. Hence the interaction

matrix V̂ is block diagonal, and the even parity part and odd parity part can be separately

diagonalized. Due to the presence of the U(1)Jz symmetry, the eigenvectors can be further

organized in the Jz basis. The leading eigenvalues and the corresponding parity, Jz, and or-

bital angular momentum are listed in Table II, and plotted in Fig.5a. The dominant pairing

channels have odd parity, orbital angular momentum L = 1 (p-wave), with Jz = 0,±1. Up

to a U(1) phase factor, the eigenvectors can be written in matrix form as (see Fig.6)

∆̂(k) = i~d(k) · ~σσy ∼

kx − iky 0

0 kx + iky

 ,

 0 kx ± iky
kx ± iky 0

 . (81)
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Jz 0 0 1 2 3

parity even odd odd even odd

orbital s p p d f

eigenvalue (LEEM) -163.994 -1743.41 -1716.57 -41.78 -133.978

eigenvalue (LM) 118.746 -1526.9 -1499.41 -0.188 -139.588

TABLE II: The leading negative eigenvalues of the pairing interaction matrix in the low energy

effective model (LEEM) and the lattice model (LM). Here the Fermi momentum kF = 0.37(2π/a),

where a is the lattice constant, the correlation length ξ = 10Å [24]. The results are plotted in Fig.5

below.
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FIG. 5: (Color online) The leading negative eigenvalues of the pairing interaction matrix for

different parity and Jz channels in the low energy effective model (a), and the lattice model (b).

The eigenvalues are dimensionless numbers in arbitrary units. The dominant pairing channels have

odd parity with L = 1 (p-wave), S = 1, Jz = 0,±1. Also shown other pairing channels: s-wave

(even parity, Jz = 0), d-wave (even parity, Jz = 2), f -wave (odd parity, Jz = 3).

These are exactly the negative binding energy states |Jz = 0,±1〉 as obtained in the two-

body problem with magnetic dipole-dipole interaction. We also find that with decreasing

correlation length, the eigenvalue decreases, while the dominant pairing channels do not

change. Hence the effect of longitudinal spin fluctuations is to reduce the superconducting

Tc.
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FIG. 6: (Color online) The superconducting gap function in the dominant pairing channels obtained

from both the lattice model, and the low energy effective model. (a) represents odd parity pairing

with Jz = ±1, where dx = dy = 0, d′z and d′′z denote real and imaginary parts of dz. (b) represents

odd parity pairing with Jz = 0, where dz = 0.

2. Lattice model

We then consider the pairing problem on the lattice. From the ab initio calculations,

one can see that the conduction electron wavefunction mostly only penetrates into the first

layer of tetrahedra in QSI. Hence only spins on these tetrahedra have appreciable coupling

with the conduction electrons. These tetrahedra form a triangular lattice in the [1, 1̄, 1]

plane, with lattice constant a′ = 1/
√

2 (the lattice constant of the Pr2Zr2O7 is set to 1).

To proceed, we make the approximation that the Kondo couplings between the conduction

electrons and the four spins in a tetrahedron are of equal strength. The induced exchange

coupling in the Hamiltonian H
(2)
int =

∑
abrr′ Jab(r, r

′)sa(r)sb(r
′) is thus of the form

Jab(r, r
′) = −1

2

∑
RR′

I(r,R)I(r′,R′)
∑
q

eiq·(R−R
′)Sab(q), (82)

with r labeling the position of the conduction electron sites, and R the center of the tetra-

hedra in QSI. Under such an approximation, all the information about the local moment

part needed for the pairing problem is encoded in the spin structure factor

Sab(q) =
∑
AB

ẑaAẑ
b
B〈φA(q)φB(−q)〉, (83)

which can be extracted from neutron scattering data (neutron scattering averages over the

four sites in a tetrahedron).

In the metal part of the heterostructure, the conduction electrons are predominantly

on the B sites of A2B2O7. We consider the first layer of conduction electrons near the
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interface, which also form a triangular lattice, with its sites right above the center of the

spin triangular lattice. Since the Kondo coupling decays very fast in space, we will only

include the coupling between the conduction electrons with the nearest tetrahedra of spins.

For such a bilayer system, we include the coupling with the three nearest tetrahedra, and

the exchange interaction is

Jab(ri, rj) = −J
2
K

9

∑
m,n=1,2,3

∫
d3q

(2π)3
Sab(q)eiq·(ri−rj+bm−bn), (84)

with b1,2 = (±a′

2
, a′

2
√

3
), and b3 = (0, a

′
√

3
), a′ = 1/

√
2. The resulting pairing interaction is

then

Vµν(p) = −J2
Kf(p)

∫
dqz
2π

Sµν(px, py, qz), (85)

with the form factor f(p) = 1
3

+ 2
9

[
cos (pxa

′) + cos
(
pxa′

2
+
√

3pya′

2

)
+ cos

(
pxa′

2
−
√

3pya′

2

)]
,

and the projected spin structure factor Sµν =
∑

ab

∑
αα′ββ′ Sabσ

a
αβσ

b
α′β′ [σµiσy]

∗
α′α[σνiσy]ββ′ .

The qz integral is over the Brillouin zone

| px√
2
− py√

6
+

qz√
3
| < 2π,

| px√
2

+
py√

6
− qz√

3
| < 2π,

|2py√
6

+
qz√

3
| < 2π,

| px√
2
− py√

6
+

qz√
3
|+ | px√

2
+

py√
6
− qz√

3
|+ |2py√

6
+

qz√
3
| < 3π. (86)

With the knowledge of the momentum and spin dependence of the pairing interaction,

the gap equation can be solved following the same procedure as in the low energy effective

model. We discretize the Fermi surface to obtain the interaction matrix V̂ , which is also

block diagonal. Organizing the eigenvectors in the Jz basis, the leading eigenvalues and the

corresponding quantum numbers are listed in Table II, and plotted in Fig.5b. The dominant

pairing channels are the same as in the low energy effective model. We emphasize again that

the degeneracy of the Jz = 0 and Jz = ±1 pairing channels are accidental, i.e. not protected

by any symmetry. Hence such degeneracy can be lifted in real materials due to microscopic

details.
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3. Quadrupole fluctuations

We have been focusing on the spin fluctuations associated with the Ising component of

Pr moments in QSI, and we consider next the effect of quadrupole fluctuations associated

with the planar components. The planar components τ± couple to the charge density of

conduction electrons ρm =
∑

α c
†
mαcmα at site m in the form [53,76]

Hρ =
∑
im

(
Mimτ

+
i ρm + h.c.

)
, (87)

with the coupling Mim. Such a coupling induces density-density interactions among the

conduction electrons,

Sint =
∑
mn

∫
dt

∫
dt′Vρ(rmn, t− t′)ρm(t)ρn(t′). (88)

Such an interaction can generate pairing in the parity even channels that competes with

odd-parity pairing mediated by the Ising spin fluctuations. We can mean-field decompose

this interaction into the even-parity pairing channel

Sint =

∫
d2k

(2π)2

∫
dω

2π

∫
d2k′

(2π)2

∫
dω′

2π
Vρ(k − k′, ω − ω′)P †0 (k, ω)P0(k′, ω′), (89)

where the pairing interaction Vρ(p) ∼ |M |2
∫
dqzQ+−(px, py, qz) is determined by the

quadrupole structure factor Q+− of QSI. The momentum dependence of Q+−(q) will de-

termine the pairing symmetry. Since the planar components and the Ising components are

strongly entangled, one expects the momentum dependence of the quadrupole correlation

functions to be correlated with that of the spin correlation functions. Since the spin cor-

relation functions do not contain appreciable harmonic components higher than p-wave, it

is reasonable to expect that quadrupole correlation functions also do not contain appre-

ciable high harmonic components. One thus expects that quadrupole correlations induce

paring in the s-wave channel. However, Coulomb repulsion suppresses s-wave pairing, while

pairings in higher angular momentum channels are much less affected. Hence we expect

that including quadrupole fluctuations will not change the dominant pairing channel in our

heterostructure.
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