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Abstract

Much interest in the superconducting proximity effect in 3D topological insulators (TIs) has been
driven by the potential to induce exotic pairing states at the interface. Most candidate materials for 3D
TI, however, are bulk metals, with bulk states at the Fermi level coexisting with well-defined surface
states exhibiting spin-momentum locking. In such topological metals, the proximity effect can differ
qualitatively from that in TIs. By studying a model topological metal-superconductor (TM-SC) het-
erostructure within the Bogoliubov-de Gennes formalism, we show that the pairing amplitude reaches
the naked surface, unlike in a topological insulator-superconductor (TI-SC) heterostructure where it is
confined to the interface. Furthermore, we predict vortex-bound-state spectra to contain a Majorana
zero-mode localized at the naked surface, separated from the bulk vortex-bound-state spectra by a finite
gap in such a TM-SC heterostructure. These naked-surface-bound modes are amenable to experimental
observation and manipulation, presenting advantages of TM-SC over TI-SC.

The potential realization of Majorana zero modes (MZMs) at the ends of a nanowire-superconductor hy-
brid system1–6 has attracted broad interest to different ways of stabilizing MZMs. While there are proposals
to exploit exotic statistics of MZMs within quasi-one-dimensional networks7–10, a two dimensional setting
would be desirable for observing statistical properties of MZMs. A MZM can appear as a vortex bound
state of triplet superfluids11 or superconductors12. Unfortunately, naturally occurring triplet superconduc-
tors are rare, and hence the proposal by Fu and Kane13 to use the superconducting proximity effect on the
topological insulator (TI) surface states raised enthusiasm as an alternative route to realizing MZMs hosted
in a two dimensional space. However, most known 3D TI candidate materials, such as Bi2Se3 and Bi2Te3,
have both the surface states and the bulk states at the Fermi energy14. Recent experimental successes in
inducing superconductivity in Bi2Se3 thin films through proximity effect15,16 makes it all the more urgent
to address the superconducting proximity effect in such topological metals, where surface states and bulk
states coexist.

In the proposal by Fu and Kane13 for realizing MZMs, superconductivity is induced to the surface states
of a 3D TI by proximity to a trivial s-wave superconductor. The argument for the existence of a MZM as
a vortex bound state is based on the formal equivalence between a p+ ip superconducting gap of a spinless
Fermion and a trivial s-wave gap after projection to the space of surface states. However, with only the
surface states available at the Fermi energy, the superconducting proximity effect is limited to the interface
between the TI and the adjacent superconductor. On the other hand when the bulk band crosses the Fermi
energy, as they do in many 3D TI materials, there is a chance that the proximity effect can reach the naked
surface. The key questions then would be (1) when can proximity effect reach the naked surface and (2)
whether the naked surface can host MZMs. These questions are the focus of this paper.

To be concrete, we consider a Bi2Se3-SC heterostructure, where the Bi2Se3 takes the form of a finite
thickness slab, so that we can study its naked surface [Fig. 1a]. We first study how the proximity effect
propagates differently depending on the location of the chemical potential, by solving the Bogoliubov-de
Gennes (BdG) equation in the heterostructure. We then study the vortex bound state spectra with the gap
structure inferred from the solution and investigate the stability of a MZM on the naked surface depending
on chemical potential.
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Figure 1: Model Bi2Se3-SC heterostructure and the electronic structure of Bi2Se3. (a) Bi2Se3-SC
heterostructure considered in this paper. (b) Dispersion of Bi2Se3 on a slab of finite thickness LTI. Each
point is doubly degenerate, and the color scale indicates the minimum zmin = minΨ 〈z〉Ψ that can be obtained
within the degenerate space Ψ ∈ span{Ψ1,Ψ2}. The dotted horizontal lines indicate chemical potentials that
represent TI, TM, and M regimes (as defined in the text) from bottom up, each giving rise to the schematic
Fermi surface on the right, where red filled circle represents the bulk states and the black line the surface
states. Each arrow points along the direction of the spin of the surface state on one of the surface, which is
locked to the momentum.

a

z(Å)

Pa
ir 

Am
pl

itu
de

 (1
06 Å

-1
) TI

b

z(Å)

M

c

z(Å)

TM

Figure 2: Distance dependence of pairing amplitudes. The pairing amplitudes in singlet and triplet
channels as a function of the distance from the interface boundary (z) in three regimes: (a) TI, (b) M,
and (c) TM, with chemical potentials µTI = 25meV, µM = 75meV, and µTM = 50meV, respectively. The
parameters used in the calculation are LTI = 500Å, LSC = 250Å, a = 5Å, ∆0 = 5meV, µSC = 300meV, and
with k points on a 100× 100 grid. (One quintuple layer is roughly 10Å.)
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Results

Electronic structure of Bi2Se3 The heterostructure of interest consists of a slab of Bi2Se3 for 0 < z < LTI

and superconductor for −LSC < z < 0. The electronic structure of Bi2Se3 is described by an effective two-
orbital Hamiltonian on a simple cubic lattice with lattice constant a. Given the slab geometry with periodic
boundary conditions in the x and y directions, we choose as basis |k, z, α, s〉, a state with momentum
k = (kx, ky) within an xy plane at z = (nz + 1/2)a for nz = 0 . . . NTI − 1, with orbital α and spin s. In this

basis the model Hamiltonian consists of two parts: intra-layer terms Ĥ0
k and the inter-layer hopping (from

nz to nz + 1) terms Ĥ
(1)
k written as

Ĥ
(0)
k =t0 − µ− 2t1 cos(kxa)− 2t1 cos(kya)

+ [m0 − 2m1 cos(kxa)− 2m1 cos(kya)] τ̂z

+ λ sin(kya)τ̂xσ̂x − λ sin(kxa)τ̂xσ̂y (1)

Ĥ
(1)
k =− t2 −m2τ̂z − i

λ′

2
τ̂y

where τ̂i(σ̂i) for i = x, y, z are Pauli matrices in the orbital (spin) space. The parameters are chosen such that
the model matches the continuum model from ref. 17 up to O(k2) for a = 5Å: t0 = 5.089eV, t1 = 1.216eV,
t2 = 0.230eV, m0 = 7.389eV, m1 = 1.780eV, m2 = 0.274eV, λ = 0.666eV, and λ′ = 0.452eV. The reference
chemical potential (t0) has been chosen such that the degeneracy point of the surface state branch lies at
E = 0 when µ = 0.

Topological metal. To explicitly define what we mean by a topological metal (TM) it is important to recall
the well-known band structure of the above model. As shown in Fig. 1b, the spectrum of the Hamiltonian
contains a (degenerate) gapless branch in addition to the bulk states separated by a finite gap. Depending
on the chemical potential, we now define three regimes: topological insulator (TI), TM, and metal (M). The
TI is a bulk insulating state with the chemical potential within the bulk band gap [Fig. 1b, µ = 25meV]. In
the TI regime, gapless states at the Fermi level are highly localized at the two surfaces of the slab. On the
other hand, when the chemical potential is well within the bulk conduction band, all the states at the Fermi
level, including the ones from the branch that contains surface states in the TI regime, are extended over the
entire slab [Fig. 1b, µ = 75meV]. Here, we refer to this regime as metal (M). In between these two regimes,
there is a range of chemical potential where the branch that is an extension of the Dirac cone coexists with
the bulk states at the Fermi level, but nevertheless it remains surface localized and spin-momentum locked
[Fig. 1b, µ = 50meV]. Experimentally, this regime can be identified through the spin-momentum locking of
Dirac-cone states outside the bulk band-gap, which has been observed in Bi2Se3 by spin-ARPES18. We refer
to this regime as topological metal19. Note that while the existence of the in-gap surface states is protected
by topology, its dispersion depends on material specific details. Therefore, the exact ranges of chemical
potential of the three regimes will also be material dependent. Nevertheless, the surface states and the bulk
states have qualitatively different contributions to the proximity effect as we will see below, and therefore
we expect the three regimes in a real material to show qualitatively the same features as the corresponding
regimes in our calculation.

Electronic structure of the superconductor. For the superconductor part (z < 0) we again use a
two-orbital model of the same form as equation (1) to describe its normal state, with z = (nz + 1/2)a for
nz = −NSC, . . . ,−1. The same parameters as Bi2Se3 are used, except that we flip the sign of the “mass
term” (m0 − 4m1 − 2m2) and make the resulting band structure trivial, by choosing m0 = 7.949eV. Also,

since the inter-layer hopping in both parts of the heterostructure is described by the same term H
(1)
k , we use

it to describe the tunneling between the two parts.

Spin-singlet and spin-triplet pairing amplitudes. In order to compare the proximity effect in the three
regimes, we impose an orbital-independent s-wave superconducting gap of strength ∆0 on the superconductor
(z < 0) and diagonalize the BdG Hamiltonian. As pointed out in ref. 20, spin-singlet A1g pairing term induces
spin-singlet A1g and spin-triplet A2u components of pairing amplitude in the presence of spin-orbit coupling
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of the form equation (1). We construct these pair amplitudes and study how they depend on the distance
from the interface surface. The 2× 2 pair amplitude matrix in the orbital basis for the singlet F̂ s(z) and the
triplet F̂ t(z) can be written as

F̂
s/t
αβ (z) =

1

N

∑

k,s1,s2

′ [
Ŝ

s/t
k · iσ̂y

]
s1s2

uk,z,α,s1v
∗
k,z,β,s2 , (2)

where N is the number of k points in the xy-plane and
∑′

indicates summation over every positive-energy
BdG eigenstate (uk,z,α,σ, vk,z,α,σ). In equation (2) Ŝs

k and Ŝt
k are the respective form factors for spin singlet

and triplet defined by

Ŝs
k = σ̂0, (3)

Ŝt
k =

sin(kya)σ̂x − sin(kxa)σ̂y

sin2(kxa) + sin2(kya)
, (4)

with σ̂0 the (2× 2) identity matrix. In the self-consistent approach with attractive interaction U in the BCS
channel, the superconducting gap ∆ is proportional to the pairing amplitude (∆ ∼ UF ). Here, however, no
such self-consistency is imposed, and the pair amplitude inside the Bi2Se3 is completely due to the Andreev
reflection from the interface21,22.

z-dependence of the pairing amplitudes. We study the z-dependence of the pairing amplitudes in
Bi2Se3 side (z > 0) in the three regimes, i.e., TI, M, and TM. For this purpose, we pick for each z in each

spin channel the largest eigenvalue F
s/t
+ (z) of the 2×2 matrix F̂ s/t(z), which indicates the leading instability

in the given spin channel. In Fig. 2, we plot F
s/t
+ (z) as a function of z. In the TI regime [Fig. 2 (a)], we find

that the pairing amplitude is confined to the buried interface with exponential decay, since it is carried almost
entirely by the surface states with such spatial profile. In addition, singlet and triplet components of the
pairing amplitude have the same magnitude as a result of spin-momentum locking of the surface states. On
the other hand in the M regime [Fig. 2 (b)], the pairing amplitudes show Friedel oscillations with an envelop
that decays logarithmically as a function of z. (See supplementary material for an analytic understanding
of the z-dependence of the pairing amplitudes in the M regime.) In addition, the singlet channel dominates
over the triplet channel in the M regime. The TM regime [Fig. 2 (b)] does not show much Friedel oscillations,
although the pairing amplitudes still decay slowly. Hence, superconductivity can be induced on the naked
surface by proximity effect in the TM. This induced pairing on the naked surface is a mixture of singlet and
triplet components. The two components, however, lead to the same low-energy effective Hamiltonian, as
the surface states are fully spin-polarized.

Majorana vortex bound states. Next, we ask whether the naked surface of a TM with proximity-
induced superconductivity can host MZMs. Formally related to the system of our interest is the 3D bulk
superconducting Cu-doped Bi2Se3. For this system Hosur et al.23 predicted a vortex parallel to the c-axis
to host a surface MZM even when the chemical potential is within the bulk conduction band, as long as it
is below a critical value of ∼ 0.24eV from the bottom of the band. The chemical potential of an undoped
Bi2Se3 falls within this range24, and so does our definition of TM in our model. Hence a vortex in a TM
proximity-coupled to a superconductor is likely to host a protected MZM at the naked surface. However, the
effect of z-axis-dependent proximity-induced pairing strength on the naked surface and energetic stability of
the MZM are not known a priori.

For concreteness, we solve the BdG equation on a cylindrical slab of Bi2Se3 with thickness L and radius R
[Fig. 3(a)], with chemical potential in the TI and TM regimes. Informed by our proximity effect calculation
above, we impose a s-wave superconducting gap of the following respective profiles for TI and TM:

∆TI(r, θ, z) = ∆0 tanh(r/ξR)eiθe−(z−z0)/ξz , (5)

∆TM(r, θ, z) = ∆0 tanh(r/ξR)eiθ (z/z0)
−γ

, (6)

where (r, θ, z) is the natural cylindrical coordinate of the system. ξR and ξz are superconducting correlation
lengths in the radial and axial directions, respectively. We chose z0 such that the bottom-most layer (z = z0)
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Figure 3: Spatial profiles of superconducting gap and vortex bound states. (a) and (b) show the
z-dependence of the gap profile used to compute vortex-bound-state spectra for TI (µ = 0.25eV) and TM
(µ = 0.50eV) regimes, respectively. (c) and (d) show the spatial profile ρ(r, z), as defined in equation (7),
of the lowest lying vortex bound state in two regimes. ρ(r, z) has been normalized such that the maximum
value is unity. The parameters used in the calculation are a = 5Å, R = 3000Å, L = 500Å, ∆0 = 5meV,
z0 = a/2, ξR = 100Å, and ξL = 8Å for TI and γ = 1/4 for TM. The inset in each case shows the vortex
bound state spectrum, i.e. the energy En of the nth excitation.

of the TI/TM has a gap of magnitude ∆0, and a positive exponent γ is used for the gap profile to decay as
z increases.

Each eigenstate (unα,σ(r, θ, z), vnα,σ(r, θ, z)) can be identified using its spatial profile

ρn(r, z) = r
∑

α,σ

∫
dθ

2π
|unα,σ(r, θ, z)|2 + |vnα,σ(r, θ, z)|2. (7)

Figures 3c and 3d show ρn(r, z) of the lowest excitation in the TI and TM regimes. In the TI regime, the
superconducting gap decays exponentially away from the bottom surface, becoming negligible on the top
surface. Correspondingly, a zero-energy vortex bound state appears on the bottom surface, while on the
top surface remains metallic [Fig. 3c]. Note that the gap between the zero mode and higher excited states
is limited only by the finite size of the system, and thus should vanish in the thermodynamic limit. In the
TM regime, on the other hand, the superconducting gap at the top surface is sizable, and a well-defined
Majorana vortex bound state exists at both the top and the bottom surface. In comparison to the TI case,
the finite energy separation between the zero-mode and higher energy modes also adds to the stability of
the zero mode, allowing its experimental detection.

Discussion

In summary, we studied the proximity effect in topological metals, i.e. topological insulators with bulk states
at the Fermi level coexisting with well-defined surface states exhibiting spin-momentum locking. Against
the common belief that ideal topological insulators should be bulk insulating, we showed that the existence
of bulk carriers can be a feature for the proximity effect as the induced gap will be observable at the naked
surface. Most importantly, we showed that a vortex line in a TM-SC structure will host an energetically
stable Majorana bound state at the naked surface.
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While we focused on the proximity effect due to a s-wave superconductor for concreteness, our results
are applicable to the proximity effect due to a d-wave superconductor such as the high-Tc cuprates as long
as the induced gap is dominantly s-wave. In fact Wang et al.16 observed an isotropic gap opening on the
Dirac branch on a thin film of Bi2Se3 on a Bi2Ca2Cu2O8+δ substrate below the superconducting transition
temperature. Given the mismatch of the crystalline symmetries between Bi2Se3 and Bi2Ca2Cu2O8+δ it is
quite possible the observed isotropic gap is indeed of s-wave symmetry16 and our results should apply.

Finally, we remark on experimentally testing our results by stabilizing and observing Majorana bound
states in the TM-SC heterostructures. So far little attention has been given to distinguishing the two
surfaces of TI-SC heterostructure: the buried interface and the naked top surface. However, now that
the heterostructures are realized, the obvious experimental goal for the future is to stabilize and observe
Majorana bound states in the heterostructures. We claim that it is crucial to differentiate signals from the
two surfaces. One way to experimentally identify the surface would be to use ARPES and look for the normal
state Fermi surface of the substrate. The Dirac state signal probed simultaneously with the substrate will
be coming from both the top surface and the interface. When the film is thick enough to not show the
substrate Fermi surface, the Dirac state signal will be coming from the naked top surface. In order to test
our predictions we propose first identifying which surface is contributing to the experimental signal and test
spin-momentum locking before cooling the system below the superconducting transition temperature.
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Supplementary Information to “Superconducting proximity effect in

topological metals”

Kyungmin Lee,1 Abolhassan Vaezi,1 Mark H. Fischer,2, 1 and Eun-Ah Kim1
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2Department of Condensed Matter Physics,
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We present here an analytical treatment of proximity effect in metal. By studying a one-

dimensional model heterostructure consisting of superconductor and metal and, we aim at gaining

insights into how the pairing amplitude propagates inside metal.

I. MODEL

As a model system we consider a one-dimensional heterostructure consisting of semi-infinite su-

perconductor and metal joined at the origin. For simplicity we assume that the system is described

by the following Hamiltonian studied in Ref. 1:

H = − 1

2m

(
∂2

∂x2
+ k2

F

)
τ̂3 + ∆Θ(−x)τ̂1 (1)

where τ̂i is a Pauli matrix in the Nambu space, and m and kF are respectively the effective mass

and the Fermi momentum of an electron (See Supplementary Fig. 1). ∆ > 0 is the strength of

−kF qh kF qe

Momentum

∆

E

E
n
e
rg

y

Superconducting (x<0)

−kF kh kF ke

Normal (x>0)

Supplementary Figure 1. Dispersion in the superconducting (x < 0) and the normal (x > 0) sides. The

black line in each case indicates the dispersion of a Bogoliubov quasiparticle, and the filled and the empty

circles represent the electron-like and the hole-like excitations of energy E.
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2

the superconducting gap, which is nonzero in the region x < 0. From the eigenstates of the above

Hamiltonian, we will study how the pairing amplitude defined as F (x) = 〈c↑(x)c↓(x)〉 depends on

x.

II. EIGENSTATES

Let us first discuss the eigenstates of the Hamiltonian Eq. (1). In the normal side (x > 0), there

are four eigenstates with energy E:

ψe±(E;x) =
1√
ve


1

0


 e±ikex, ψh±(E;x) =

1√
vh


0

1


 e±ikhx (2)

where ke/h and ve/h are the wave-vector and the group velocity of the quasiparticle, which can be

written as ke ≡ kF
√

1 + E/εF , kh ≡ kF
√

1− E/εF , ve ≡ ke/m, vh ≡ kh/m, with εF ≡ k2
F /2m.

The factors 1/
√
ve and 1/

√
vh have been included such that the states are normalized by energy,

i.e.
∫ ∞

−∞
[ψαs (E;x)]∗ ψβr (E′;x)dx =δαβδsr

1

vα
2πδ(kα − k′α) = δαβδsr2πδ(E − E′). (3)

In the superconducting side (x < 0), there are two classes of eigenstates: the super-gap states

(E > ∆) and the sub-gap states (E < ∆). The super-gap states can again be divided into

two groups: the electron-like states and the hole-like states, whose wave functions are written

respectively as

ψe±(x) =
1√
we


u0

v0


 e±iqex, ψh±(x) =

1√
wh


v0

u0


 e±iqhx, (4)

where



qe = kF

√
1 +

√
E2−∆2

εF

qh = kF

√
1−

√
E2−∆2

εF

and




u0 =

√
∆
2E e

1
2

cosh−1(E/∆)

v0 =
√

∆
2E e

− 1
2

cosh−1(E/∆)

. (5)

Here again we/h is the group velocity of a quasiparticle. Similarly for the sub-gap states,

ψe+(x) =
1√
we


u0

v0


 e+iqex ψh−(x) =

1√
wh


v0

u0


 e−iqhx (6)

where



qe = kF

√
1 + i

√
∆2−E2

εF

qh = kF

√
1− i

√
∆2−E2

εF

and




u0 = 1√

2
e
i
2

cos−1(E/∆)

v0 = 1√
2
e−

i
2

cos−1(E/∆)

. (7)



3

Note that for the sub-gap states, only the solutions that do not diverge as x → ∞ are allowed.

After making the following substitution for convenience:

E =





∆ coshφ, E > ∆

∆ cosφ, E < ∆

, (8)

we linearize the Hamiltonian, with k∆ = (∆/2εF ) kF . We get for E > ∆




qe = kF + k∆ sinhφ

qh = kF − k∆ sinhφ




ke = kF + k∆ coshφ

kh = kF − k∆ coshφ

(9)

and for E < ∆




qe = kF + ik∆ sinφ

qh = kF − ik∆ sinφ




ke = kF + k∆ cosφ

kh = kF − k∆ cosφ

. (10)

Also, the subscripts in the group velocities ve/h and we/h can be dropped.

Combining the solutions for the normal and the superconducting sides,

Ψ(x) =





Ae+
1√
ve




1

0


 eikex +Ae−

1√
ve




1

0


 e−ikex +Ah+

1√
vh




0

1


 eikhx +Ah−

1√
vh




0

1


 e−ikhx, x > 0

Be
+

1√
we



u0

v0


 eiqex +Be

−
1√
we



u0

v0


 e−iqex +Bh

+
1√
wh



v0

u0


 eiqhx +Bh

−
1√
we



v0

u0


 e−iqhx, x < 0

(11)

As a one-dimensional scattering problem, Ae−, Ah+, Be
+, and Bh

− correspond to the incoming waves,

while the rest of the coefficients correspond to outgoing waves. From continuity of Ψ and Ψ′ ≡
dΨ/dx, we can write down the following equation:




1 0 −u0 −v0

0 1 −v0 −u0

−ike 0 −iqeu0 iqhv0

0 ikh −iqev0 iqhu0







Ae−/
√
ve

Ah+/
√
vh

Be
+/
√
we

Bh
−/
√
wh




+




1 0 −u0 −v0

0 1 −v0 −u0

ike 0 iqeu0 −iqhv0

0 −ikh iqev0 −iqhu0







Ae+/
√
ve

Ah−/
√
vh

Be
−/
√
we

Bh
+/
√
vh




=0 (12)

Relations between coefficients of incoming and outgoing waves (A’s and B’s) can be represented
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by reflectivity r and transmittivity t:




rRee rReh tLee tLeh

rRhe rRhh tLhe tLhh

tRee tReh rLee rLeh

tRhe tRhh rLhe rLhh




= −




ve

vh

we

wh




1/2


1 0 −u0 −v0

0 1 −v0 −u0

−ike 0 −iqeu0 iqhv0

0 ikh −iqev0 iqhu0




−1




1 0 −u0 −v0

0 1 −v0 −u0

ike 0 iqeu0 −iqhv0

0 −ikh iqev0 −iqhu0







ve

vh

we

wh




−1/2

(13)

where the superscript L/R denotes where the incoming wave is coming from, and the two subscripts

denote the basis for the outgoing and incoming waves, respectively. Assuming that k∆ � kF , we

make the Andreev approximation2. For E > ∆ we get




rRee rReh tLee tLeh

rRhe rRhh tLhe tLhh

tRee tReh rLee rLeh

tRhe tRhh rLhe rLhh




=




0 e−φ
√

1− e−2φ 0

e−φ 0 0
√

1− e−2φ

√
1− e−2φ 0 0 −e−φ

0
√

1− e−2φ −e−φ 0



, (14)

while for E < ∆,


r

R
ee rReh

rRhe rRhh


 =


 0 e−iφ

e−iφ 0


 , (15)

with all the other elements zero.

III. PAIRING AMPLITUDE

Let us now find the pairing amplitude on the normal side. The possible incoming waves with

energy E are:

Ψin(x) =
1√
v


1

0


 e−ikex,

1√
v


0

1


 eikhx,

1√
w


u0

v0


 eiqex,

1√
w


v0

u0


 e−iqhx (16)
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In all four possibilities:

incoming wave (Ψi) reflected wave (Ψr) transmitted wave (Ψt)

Case 1
1√
v


1

0


 e−ikex (←)

rLhe√
v


0

1


 e−ikhx (→)

tLee√
w


u0

v0


 e−iqex (←)

Case 2
1√
v


0

1


 e+ikhx (←)

rLeh√
v


1

0


 e+ikex (→)

tLhh√
w


v0

u0


 e+iqhx (←)

Case 3
1√
w


u0

v0


 e+iqex (→)

rRhe√
w


v0

u0


 e+iqhx (←)

tRee√
v


1

0


 e+ikex (→)

Case 4
1√
w


v0

u0


 e−iqhx (→)

rReh√
w


u0

v0


 e−iqex (←)

tRhe√
v


0

1


 e−ikhx (→)

The arrows indicate the propagation directions. Among these, only the cases 1 and 2 (reflection of

the incoming wave from the normal side) lead to pairing amplitude in the normal side. The pairing

amplitude density produced by the incoming wave of case 1 is

FE,1(x) =
rRhe
v
e−i(ke−kh)x =





e−φ
v e−i(ke−kh)x E > ∆

e−iφ
v e−i(ke−kh)x E < ∆

(17)

and of case 2 is

FE,2(x) =
rR∗eh
v
e+i(ke−kh)x =





e−φ
v e+i(ke−kh)x E > ∆

eiφ

v e
+i(ke−kh)x E < ∆

(18)

Combining the two we get

FE(x) =





e−φ
v cos [(ke − kh)x] = e−φ

v cos
[(

2∆
v x
)

coshφ
]

E > ∆

1
v cos

[(
2∆
v x
)

cosφ− φ
]

E < ∆

(19)

To get the total pairing amplitude, we need to integrate FE(x) over the energy E. Let us first

consider only the sub-gap states. Integrating over E we get

Fsub(x) =

∫ ∆

0

1

v
cos

[(
2∆

v
x

)
cosφ− φ

]
dE

2π
=

∆

2πv

∫ π/2

0
cos

[(
2∆

v
x

)
cosφ− φ

]
sinφ dφ

=
∆

2πv
× −1 + cos(x̃) + x̃ sin(x̃) + π

2H1(x̃)

x̃2
(20)

where x̃ ≡ 2x/ξ with ξ ≡ v/∆, and H1(x) is Struve function of order 13. For x̃� 1,

Fsub(x) ∼ 1

2πξ

(
1

2
+

2

3
x̃+O(x̃2)

)
(21)
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and for x̃� 1

Fsub(x) ∼ 1

2πξ

[
1 + sin x̃

x̃
−
√
π

2

cos x̃+ sin x̃

x̃3/2
+O

(
1

x̃2

)]
(22)

The maximum value of Fsub(x) lies between these two limits, and is ∼ 0.7/2πξ. Now let us look

at the super-gap states. Integrating up to a cut-off energy scale ΛE = ∆ cosh Λφ,

Fsuper (x) =

∫ ΛE

∆

e−φ

v
cos

[(
2x

ξ

)
coshφ

]
dE

2π
=

1

2πξ

∫ Λφ

0
e−φ cos

[(
2x

ξ

)
coshφ

]
sinhφ dφ

≈ ∆

4πv

∫ Λφ

0
cos

[(
x

ξ

)
eφ
]

dφ =
∆

4πv

[
Ci

(
x

ξ
eΛφ

)
− Ci

(
x

ξ

)]
(23)

We can relate the cutoff Λφ to the Fermi momentum:

Fsuper(x) ≈ 1

4πξ
[Ci(kFx)− Ci(x/ξ)] , (24)

where Ci(x) is cosine integral3. At length scale larger then the Fermi wavelength, the first term

provides a short wavelength oscillation of the pair amplitude, while the second term provides the

overall envelope. Using the asymptotic expansion of Ci(x):

Ci(x) =




γ + lnx− x2

2·2! + x4

4·4! − . . . for any x

sinx
x

(
1− 2!

x2
+ . . .

)
− cosx

x

(
1
x − 3!

x3
+ . . .

)
x� 1

(25)

where γ is the Euler constant, we find that for x� ξ, the envelope has the following form

F envelope
super (x) ∼ 1

4πξ

sin x̃

x̃
(26)

At the length scale x ∼ x0 where 1/kF � x0 � ξ, the envelope has the following form:

F envelope
super (x) ∼ 1

4πξ

[
ln

ξ

x0
− γ − ln

x

x0

]
=

ln ξ
x0
− γ

4πξ

[
1− 1

ln ξ
x0
− γ

ln
x

x0

]
∼

ln ξ
x0
− γ

4πξ

(
x

x0

)− 1

ln
ξ
x0

−γ

(27)

exhibiting a power-law-like decay with an anomalous exponent.
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