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hidden order in nature...
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Intra unitcell nematic in the 
pseudogap states?

•Where we started

•BSCCO: got nematic? 

-Definition

-Analysis

•Meaning?



Local measure of  broken symmetry?
direct test of such ideas has not been possible
because neither the real-space electronic struc-
ture of the ECG state, nor that of an individual
“cluster,” could be determined directly as no
suitable imaging techniques existed.

Design of TA studies in Ca1.88Na0.12CuO2Cl2
and Bi2Sr2Dy0.2Ca0.8Cu2O8+d. STM-based im-
aging might appear an appropriate tool to ad-
dress such issues. But dI/dV imaging is fraught

with problems in lightly doped cuprates. For
example, a standard dI/dV image, although well
defined, is not a direct image of the LDOS (see
supporting online text 1). Moreover, there are
theoretical concerns that, in Ca2-xNaxCuO2Cl2,
the topmost CuO2 plane may be in an “extraor-
dinary” state (34) or that interference between
two tunneling trajectories through the 3pz-Cl
orbitals adjacent to a dopant Na+ ion may cause

rotational symmetry breaking in the tunneling
patterns (35).

The new proposals (4, 5) for tunneling
asymmetry measurements provide a notable
solution to problems with standard dI/dV
imaging because Eqs. 2 and 3 have a crucial
practical advantage. If we define the ratios
Zðr→, V Þ and Rðr→, V Þ in terms of the tunneling
current

Zðr→,V Þ ≡
dI
dV ðr

→, z, þV Þ
dI
dV ðr

→, z,−V Þ
ð4aÞ

Rðr→, V Þ ≡ Iðr→, z, þV Þ
Iðr→, z, −V Þ ð4bÞ

we see immediately from Eq. 1 that the un-
known effects in f ðr→, zÞ are all canceled out
by the division process. Thus, Zðr→, V Þ and
Rðr→, V Þ not only contain important physical
information (4, 5) but, unlike Nðr→, EÞ, are also
expressible in terms of measurable quantities
only. We have confirmed that the unknown
factors f ðr→, zÞ are indeed canceled out in Eq. 4
(see supporting online text and figures 2).

To address the material-specific theoret-
ical concerns (34, 35), we have designed a
sequence of identical TA-imaging exper-
iments in two radically different cuprates:
strongly underdoped Ca1.88Na0.12CuO2Cl2
(Na-CCOC; critical temperature Tc ~ 21 K)
and Bi2Sr2Dy0.2Ca0.8Cu2O8+d (Dy-Bi2212; Tc ~
45 K). As indicated schematically in Fig. 2, B
and C, they have completely different crystal-
lographic structure, chemical constituents, and
dopant species and sites in the termination
layers lying between the CuO2 plane and the
STM tip. Na-CCOC has a single CuO2 layer

Fig. 4. (A and D) R maps of Na-CCOC and Dy-Bi2212, respectively (taken at 150 mV from areas in
the blue boxes of Fig. 3, C and D). The fields of view are (A) 5.0 nm by 5.3 nm and (B) 5.0 nm by
5.0 nm. The blue boxes in (A) and (D) indicate areas of Fig. 4, B and C, and Fig. 4, E and F,
respectively. (B and E) Higher-resolution R map within equivalent domains from Na-CCOC and Dy-
Bi2212, respectively (blue boxes of Fig. 4, A and D). The locations of the Cu atoms are shown as
black crosses. (C and F) Constant-current topographic images simultaneously taken with Fig. 4, B
and E, respectively. Imaging conditions are (C) 50 pA at 600 mV and (F) 50 pA at 150 mV. The
markers show atomic locations, used also in Fig. 4, B and E. The fields of view of these images are
shown in Fig. 3, A and B, as orange boxes.

Fig. 5. (A) Locations relative to
the O and Cu orbitals in the CuO2
plane where each dI/dV spectrum
at the surfaces of Fig. 4, C and F,
and shown in Fig. 5B, is mea-
sured. Spectra are measured
along equivalent lines labeled
1, 2, 3, and 4 in both domains
of Fig. 4, B and E, and Fig. 5A.
(B) Differential tunneling con-
ductance spectra taken along
parallel lines through equiv-
alent domains in Na-CCOC and
Dy-Bi2212. All spectra were
taken under identical junction conditions (200 pA, 200 mV). Numbers (1 to 4)
correspond to trajectories where these sequences of spectra were taken.
Locations of the trajectories, relative to the domains, are shown between
Fig. 4B (C) and 4E (F) by arrows.
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Kohsaka et al, Science 315, 1380 (2007)
UD Tc=45K (p=0.08) 

R-map

1.80.69

2 nm a. e=0.4 b. e=0.6

c. e=0.8 d. e=1.0

e. e=1.2 f. e=1.4

Figure S7 a-f. A series of images displaying the real space conductance ratio Z as a function
of energy rescaled to the local psuedogap value, e = E/∆1(r). Each pixel location was rescaled
independently of the others. The common color scale illustrates that the bond centered
pattern appears strongest in Z exactly at E = ∆1(r).
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Figure S7 a-f. A series of images displaying the real space conductance ratio Z as a function
of energy rescaled to the local psuedogap value, e = E/∆1(r). Each pixel location was rescaled
independently of the others. The common color scale illustrates that the bond centered
pattern appears strongest in Z exactly at E = ∆1(r).

Z-map(ω)
Kohsaka et al, Nature 454, 1072 (2008)

UD Tc=45K

electronic disorder detected by STS1–4 to surface damage not present
in ARPES studies cannot be correct.

Second, the high-precision g(q,q) data presented here are rel-
evant to proposals that LDOS modulations in Bi-2212 might result
from the existence of a second charge-density wave order parameter
with fixed q-vector, for example, stripes25. In such models g(q,q)
should exhibit only two non-dispersive peaks (or four non-dis-
persive peaks for twinned stripe domains). By contrast, quantum
interferencemodels predict 16 sets of dispersive q-vectors consistent
with each other, the Fermi-surface, and D(ks). Clearly this is far
more consistent with our data. More recent proposals26–29 suggest
that a set of non-dispersive LDOS modulations due to fluctuations
of a charge- or spin-ordered state might coexist with the quasipar-
ticle interference patterns. We do not observe such a non-dispersive
signal in addition to the quasiparticle interference effects, in the
g(q,q) of these as-grown samples (except for crystalline effects). In
principle, however, one cannot rule out the possibility of such a
hypothetical non-dispersive signal because its intensity could be
arbitrarily weak. Overall, our data demonstrate that quasiparticle
interference is by far the predominant effect.

Third, we discuss the quantum mechanical description of the
copper oxide quasiparticles. Bogoliubov quasiparticles are the
excited states of a conventional Bardeen–Cooper–Schrieffer (BCS)
superconductor: quantum-coherent mixtures of particles and
holes. It is important to determine whether the copper oxide
quasiparticles are of this type. A strong experimental indication
consistent with Bogoliubov quasiparticles is the presence of two
identical branches of quasiparticle dispersion ^E(k). Although
efforts have been made to study the positive branch þE(k) by

photoemission30, it has proved challenging because the Fermi
function terminates photoemission intensity from these unoccu-
pied states. By using FT-STS we can probe the momentum-space
structure of the positive branch by measuring g(q,q) at positive
sample bias (tunnelling into unoccupied states). If identical positive
and negative branches ^E(k) exist, the LDOS modulations at
positive bias should be consistent with the negative-bias D(k) in
Fig. 3. A representative example of positive bias g(q,q) measured at
q ¼ þ14meV is shown in Fig. 2h. Comparison with that at
q ¼ 214meV shows them to be similar but not identical, as are
all measured pairs g(q, ^ q). However, when the positive branch
interference wavevectors qi(þq) are measured, the deduced D(k)
(triangles in Fig. 3c) is indistinguishable within errors from that of
the filled-state D(k) (open circles in Fig. 3c). This provides evidence
that, in momentum-space, the copper oxide quasiparticles are
particle–hole superpositions, consistent with the Bogoliubov
description.
Fourth, the data can also be used to explore implications of the

nanoscale electronic disorder in Bi-2212 (refs 1–4). Figure 2 shows
that at jqj, 0:15 there is a strong response in g(q,q) for all q. These
are apparent as dark regions near the centre of each panel in Fig. 2c–
h. This may reflect long-wavelength inhomogeneity in the inte-
grated LDOS1 and, if so, reveals an obvious candidate for weak but
ubiquitous potential scattering that could produce the LDOS-
modulations. We also note that the theoretical models, to date,
are based on isolated point-like scatterers14,15,16 but the real scat-
terers are likely to be more complex in form. In that case, the
character and strength of the scatterers could cause deviations of
ks(q) (as determined here) from the real Fermi surface, whereas
their spatial distribution could result in breaking the symmetry of
g(q,q) under 908 rotations. New microscopic models and further
experiments will be required to fully explore such effects.
A final new FT-STS observation relates to the antinodal quasi-

particles which are at the heart of high-Tc superconductivity.
Measurements of g(r,q) reveal intense LDOS modulations with
wavevectors equal to the reciprocal lattice vectors G when q < D0

or equivalently when k< ðp=a0;0Þ: In a crystal, the electronic
wavefunctions are a linear combination of states with wavevectors
k and k þ G near the zone boundary. This mixing is due to
Umklapp scattering off the crystal lattice and can produce intense
LDOS modulations at G when k< ðp=a0;0Þ:However, as shown in
Fig. 4, we unexpectedly find that for a given q the Umklapp LDOS
modulation signal is localized to the nanoscale regions where q is
equal to the local gap value. This implies strong nanoscale spatial
variations in the quasiparticle dispersions near k¼ ðp=a0;0Þ and
therefore significant scattering. Thus, whatever the source of
nanoscale electronic disorder, it appears to strongly influence the
lifetimes of antinodal quasiparticles in Bi-2212. A
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Figure 4 The electronic density of states modulations associated with antinodal
quasiparticles at energies near the gap maximum. a, A map of the energy-gap

magnitude4 in a particular area of the surface studied in this paper (see colour scale).

b–d, g(r,q) measured at three energies, 224meV, 234meV and 250meV

respectively, in this exact field of view. One can immediately see, by comparison of panel a
with the others, that wherever q equals the local value of D, an intense ‘tweed’-like

pattern exists g(r,q). The wavevectors of this pattern are the same in all three panels,
either q¼ ð2p=a0;0Þ or q¼ ð0;2p=a0Þ: Thus, LDOS modulations consistent with
Umklapp scattering occur at different energies in adjacent nanoscale regions, signifying

strong scattering of the antinodal quasiparticles.
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dI/dV(ω)-map
McElroy et al, Nature 422, 592 (2003)
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Local measure of  broken symmetry?

UD Tc=45K (p=0.08) Kohsaka et al, Nature 454, 1072 (2008)



Local measure of  broken symmetry?
HAMLET: Do you see yonder cloud that's almost in shape of a camel?
POLONIUS: By th'mass, and 'tis like a camel indeed.
HAMLET: Methinks it is like a weasel.
POLONIUS: It is backed like a weasel.
                                                                                                   --W. Shakespeare

UD Tc=45K (p=0.08) Kohsaka et al, Nature 454, 1072 (2008)



Local measure of  broken symmetry?
HAMLET: Do you see yonder cloud that's almost in shape of a camel?
POLONIUS: By th'mass, and 'tis like a camel indeed.
HAMLET: Methinks it is like a weasel.
POLONIUS: It is backed like a weasel.
                                                                                                   --W. Shakespeare

Challenge: An objective measure 
UD Tc=45K (p=0.08) Kohsaka et al, Nature 454, 1072 (2008)



BSCCO, got nematic?

Defining the local order parameters



Candidate broken symmetries

•Translational  symmetry

•Rotational symmetry 

Can we separately measure?

Need a                preserving order parameter 
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Local measure of  broken symmetry?

Qx vs Qy?b a

Q*x vs Q*y?
Position space

2nm Z(r,e=1)

Fourier space
QxQy

Q*xQ*y



Qx

Qy

Qx vs Qy

•Bragg peak
Z̃( �Qx) =

1√
N

�

�R+�d

Z(�R + �d)e−i �Qx·�d

�Qx = (2π/a, 0)

•Nematic OP
ON ≡ Z̃( �Qx)− Z̃( �Qy) + Z̃(− �Qx)− Z̃(− �Qy)

➡Preserves lattice translation
M.J. Lawler et al, 2009



Qx

Qy

Qx vs Qy

•Bragg peak
Z̃( �Qx) =

1√
N

�

�R+�d

Z(�R + �d)e−i �Qx·�d

�Qx = (2π/a, 0)

➡Measures C4 breaking

•Nematic OP
ON ≡ Z̃( �Qx)− Z̃( �Qy) + Z̃(− �Qx)− Z̃(− �Qy)

➡Preserves lattice translation
M.J. Lawler et al, 2009



Nematic OP         and microscopicsON

➡ Need O sites

Z̃( �Qx) = Z̄Cu − Z̄Ox + Z̄Oy Z̃( �Qy) = Z̄Cu + Z̄Ox − Z̄Oy,
ON ∝ (Z̄Ox − Z̄Oy )

O 2px 

Ox 

Oy
 

O!

Cu  

M.J. Lawler et al, 2009

CuO2 plane Intra unitcell Nematic:
C4  ➠  C2



Local version of Nematic OP        

• What real space information leads to a 
given momentum space peak?

O 2px 

M.J. Lawler et al, 2009

ON (r)

Z̃( �Q, �x) = low passΛ

�
Z(�x, e)ei �Q·�x

�

=
�

�x�

Z(�x�, e)ei �Q·�x�
fΛ(�x� − �x)

• Local order parameter:

ON (�x) = Z̃( �Qx, �x)− Z̃( �Qy, �y) + Z̃(− �Qx, �x)− Z̃(− �Qy, �y)



BSCCO, got nematic?

Piezo Drift



Key: Atomic registry with the lattice



Key: Atomic registry with the lattice



Key: Atomic registry with the lattice



Correct Piezo drift

Undistorts and fixes phase of Bragg peaks
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BSCCO, got nematic?

Listening to the Bragg peaks



Nematic ordering in UD 45
QxQy

Kohsaka et al, Nature 454, 1072 (2008)

Extracted from published data, T=4K

ON ≡ Z̃( �Qx)− Z̃( �Qy) + Z̃(− �Qx)− Z̃(− �Qy)
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Nematic ordering in UD 45
QxQy

Kohsaka et al, Nature 454, 1072 (2008)

Extracted from published data, T=4K

ON ≡ Z̃( �Qx)− Z̃( �Qy) + Z̃(− �Qx)− Z̃(− �Qy)
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distance physics)
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Nematic domains

Purple 

Gold 

ON(r,e=1) + Z(r,e=1)
O

N (r,e)

-0.02 

0.02 

2nm Dy-Bi2212 UD45K 
M.J. Lawler et al, 2009



BSCCO, got nematic?

Listening to the Q* peaks



Smectic ordering in UD 45
Q*xQ*y

Kohsaka et al, Nature 454, 1072 (2008)

OS average suppressed through out

OS ≡ Z̃( �Q∗
x)− Z̃( �Q∗

y) + Z̃( �−Q∗
x)− Z̃(− �Q∗

y)



Smectic domains
•Shift Q*x, Q*y to origin 
(“tune to the channel”)

•Low pass filter (long 
distance physics)
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Severely fluctuating in space through out
Confirm A.Maestro et al, J. Robertson et al (2006) 
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Hypothesis: longer ranged orientational ordering ?
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V. Emery, PRL 58, 2974 (1987)
C. Varma et al, PRL 58, 2974 (1987)

O!

Cu  

CuO2 plane

Microscopic Model

Extended 
Hubbard Model



Cu  

O!

CuO2 plane

Microscopic Model



Cu  

Microscopic Model

One-band Model
Hubbard or t-J



Cu  

Microscopic Model

One-band Model
Hubbard or t-J

Ox 

Oy
 

Intra unitcell Nematic in 
Pseudogap phase

Cu  

M.J. Lawler et al, 2009



Kivelson, Fradkin, Geballe, PRB 69, 144505 (2004)
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Other competing orders?

Intra unitcell Nematic 
in Pseudogap phase
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with �q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
�q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T � 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx � 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. �
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Figure 3 Schematic view of the local stripe order in the various phases discussed

in the text. Here, we have assumed that the stripes maintain their integrity

throughout, although in reality they must certainly become less and less well

defined as the system becomes increasingly quantum, until eventually they are

not the correct variables for describing the important correlations in the system.

Heavy lines represent liquid-like stripes, along which the electrons can flow,

whereas the filled circles represent pinned, density-wave order along the stripes.
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with �q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
�q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T � 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx � 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. �
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with �q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
�q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T � 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx � 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. �
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with �q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
�q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T � 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx � 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. �
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with �q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
�q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T � 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx � 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. �
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with �q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
�q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T � 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx � 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. �
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with �q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
�q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T � 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx � 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6!xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2!xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6!xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7!d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. �
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Figure 3 Schematic view of the local stripe order in the various phases discussed

in the text. Here, we have assumed that the stripes maintain their integrity

throughout, although in reality they must certainly become less and less well

defined as the system becomes increasingly quantum, until eventually they are

not the correct variables for describing the important correlations in the system.

Heavy lines represent liquid-like stripes, along which the electrons can flow,

whereas the filled circles represent pinned, density-wave order along the stripes.

The stripes are shown executing more or less harmonic oscillations in the

smectic phase. Two dislocations, which play an essential role in the smectic-to-

nematic phase transition, are shown in the view of the nematic phase.
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Experiment

direct test of such ideas has not been possible
because neither the real-space electronic struc-
ture of the ECG state, nor that of an individual
“cluster,” could be determined directly as no
suitable imaging techniques existed.

Design of TA studies in Ca1.88Na0.12CuO2Cl2
and Bi2Sr2Dy0.2Ca0.8Cu2O8+d. STM-based im-
aging might appear an appropriate tool to ad-
dress such issues. But dI/dV imaging is fraught

with problems in lightly doped cuprates. For
example, a standard dI/dV image, although well
defined, is not a direct image of the LDOS (see
supporting online text 1). Moreover, there are
theoretical concerns that, in Ca2-xNaxCuO2Cl2,
the topmost CuO2 plane may be in an “extraor-
dinary” state (34) or that interference between
two tunneling trajectories through the 3pz-Cl
orbitals adjacent to a dopant Na+ ion may cause

rotational symmetry breaking in the tunneling
patterns (35).

The new proposals (4, 5) for tunneling
asymmetry measurements provide a notable
solution to problems with standard dI/dV
imaging because Eqs. 2 and 3 have a crucial
practical advantage. If we define the ratios
Zðr→, V Þ and Rðr→, V Þ in terms of the tunneling
current

Zðr→,V Þ ≡
dI
dV ðr

→, z, þV Þ
dI
dV ðr

→, z,−V Þ
ð4aÞ

Rðr→, V Þ ≡ Iðr→, z, þV Þ
Iðr→, z, −V Þ ð4bÞ

we see immediately from Eq. 1 that the un-
known effects in f ðr→, zÞ are all canceled out
by the division process. Thus, Zðr→, V Þ and
Rðr→, V Þ not only contain important physical
information (4, 5) but, unlike Nðr→, EÞ, are also
expressible in terms of measurable quantities
only. We have confirmed that the unknown
factors f ðr→, zÞ are indeed canceled out in Eq. 4
(see supporting online text and figures 2).

To address the material-specific theoret-
ical concerns (34, 35), we have designed a
sequence of identical TA-imaging exper-
iments in two radically different cuprates:
strongly underdoped Ca1.88Na0.12CuO2Cl2
(Na-CCOC; critical temperature Tc ~ 21 K)
and Bi2Sr2Dy0.2Ca0.8Cu2O8+d (Dy-Bi2212; Tc ~
45 K). As indicated schematically in Fig. 2, B
and C, they have completely different crystal-
lographic structure, chemical constituents, and
dopant species and sites in the termination
layers lying between the CuO2 plane and the
STM tip. Na-CCOC has a single CuO2 layer

Fig. 4. (A and D) R maps of Na-CCOC and Dy-Bi2212, respectively (taken at 150 mV from areas in
the blue boxes of Fig. 3, C and D). The fields of view are (A) 5.0 nm by 5.3 nm and (B) 5.0 nm by
5.0 nm. The blue boxes in (A) and (D) indicate areas of Fig. 4, B and C, and Fig. 4, E and F,
respectively. (B and E) Higher-resolution R map within equivalent domains from Na-CCOC and Dy-
Bi2212, respectively (blue boxes of Fig. 4, A and D). The locations of the Cu atoms are shown as
black crosses. (C and F) Constant-current topographic images simultaneously taken with Fig. 4, B
and E, respectively. Imaging conditions are (C) 50 pA at 600 mV and (F) 50 pA at 150 mV. The
markers show atomic locations, used also in Fig. 4, B and E. The fields of view of these images are
shown in Fig. 3, A and B, as orange boxes.

Fig. 5. (A) Locations relative to
the O and Cu orbitals in the CuO2
plane where each dI/dV spectrum
at the surfaces of Fig. 4, C and F,
and shown in Fig. 5B, is mea-
sured. Spectra are measured
along equivalent lines labeled
1, 2, 3, and 4 in both domains
of Fig. 4, B and E, and Fig. 5A.
(B) Differential tunneling con-
ductance spectra taken along
parallel lines through equiv-
alent domains in Na-CCOC and
Dy-Bi2212. All spectra were
taken under identical junction conditions (200 pA, 200 mV). Numbers (1 to 4)
correspond to trajectories where these sequences of spectra were taken.
Locations of the trajectories, relative to the domains, are shown between
Fig. 4B (C) and 4E (F) by arrows.
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